
A Gentle Adventure Mechanising
Message Passing Concurrency Systems
Formalising the Metatheory for smol-Zooid

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida

1 / 14



The MPST World, as We Know It

G

L1 L2
. . . Ln

proc1 proc2 . . . procn

projection (�)

typing (`lt)

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. POPL ’08
2 / 14



Zooid

G Gc global trace

L Lc local trace

proc process trace

OCaml code Zooid

< LTS

< LTS

� �c =

`lt

LTS

erase

extraction DSL layer

Well typed!

Certified semantics!

Extractable!

D. Castro-Perez, F. Ferreira, L. Gheri, and N. Yoshida. Zooid: a DSL for certified multiparty computation:
from mechanised metatheory to certified multiparty processes. PLDI 2021

3 / 14



Introducing the Metatheory of smol-Zooid Types

Simple, but significant multiparty session type metatheory!

G Gc global trace

L Lc local trace

< LTS

< LTS

� �c =

Embark on our Gentle Adventure!!! https://github.com/emtst/GentleAdventure

4 / 14



Formalisation of Global and Local Types

Inductively Defined Datatypes Coinductively Defined Datatypes

G ::= end

| X
| µX.G
| p→ q :(S).G

Gc ::= endc

| p→ q :(S).Gc

| p q :(S).Gc

L := end

| X
| µX.L
| ![q];(S).L
| ?[p];(S).L

Lc ::= endc

| !c[p];(S).Lc

| ?c[q];(S).Lc

5 / 14



Formalisation of Global and Local Types

G = µX.p→ q :(S).X < Gc = p→ q :(S).Gc

� �c

G �p= µX.![q];(S).X
G �q= µX.?[p];(S).X

<

Lc
p = !c[q];(S).Lc

p

Lc
q = ?c[p];(S).Lc

q

with Gc �cp Lc
p

and Gc �cq Lc
q

6 / 14



Abandoning Inductive Datatypes

Theorem (Unravelling preserves projections)

Given G, L, Gc and Lc, such that (a) G�r = L , (b) G<Gc, and (c) L<Lc, then
Gc �cr Lc.

G Gc

L Lc

<

<

� �c

Proof.
By coinduction. :)

The Paco Library for Coq: https://plv.mpi-sws.org/paco/
7 / 14



Type Semantics for Zooid

Gc global trace

Lc local trace

LTS

LTS

�c =

8 / 14



With Love, from p to q

p sends:

p→ q :(S).Gc p q :(S).Gc Gc

!c[q];(S).Lc Lc

!pqS

�p

?qpS

�p �p

!pqS

q receives:

p→ q :(S).Gc p q :(S).Gc Gc

?c[p];(S).Lc′ Lc′

!pqS

�q

?qpS

�q

�q

?qpS

9 / 14



Tools for our LTS

Actions. !pqS and ?qpS

(Local) Environments. E such that, E(p) = Lc
p where Gc �cp Lc

p

Queues and Queue Environments. Q, buffers for asynchronous communication.

!c[q];(S).Lc Lc

Q(p, q) = [] Q(p, q) = [S] Q(p, q) = []

?c[p];(S).Lc′ Lc′

step

enqueue dequeue

step

Gc Gc

E Q (E,Q)
���c ���q

������

10 / 14



Tools for our LTS

Actions. !pqS and ?qpS

(Local) Environments. E such that, E(p) = Lc
p where Gc �cp Lc

p

Queues and Queue Environments. Q, buffers for asynchronous communication.

!c[q];(S).Lc Lc

Q(p, q) = [] Q(p, q) = [S] Q(p, q) = []

?c[p];(S).Lc′ Lc′

step

enqueue dequeue

step

Gc Gc

E Q (E,Q)
���c ���q

������

10 / 14



Theorems

Theorem (Step Soundness)

If Gc a−→ Gc′ and Gc � �(E,Q), there exist E ′ and Q′ such that Gc′ � �(E ′, Q′) and

(E,Q)
a−→ (E ′, Q′).

Theorem (Step Completeness)

If (E,Q)
a−→ (E ′, Q′) and Gc � �(E,Q), there exist Gc′ such that Gc′ � �(E ′, Q′)

and Gc a−→ Gc′.

Theorem (Trace equivalence)

If Gc � �(E,Q), then trgtGc if and only if trlt(E,Q) .

11 / 14



Lemma, to give the flavour

p→ q :(S).Gc p q :(S).Gc

!c[q];(S).Lc Lc

!pqS

�p
�p

!pqS

p→ q :(S).Gc p q :(S).Gc

?c[p];(S).Lc′

!pqS

�q
�q

−→ Coq!

12 / 14



Our Adventurer Rests and Meditates

• Formal proofs are not easy! (But useful and fun!)

• Proof design is the key.

• Proof techniques are to be taken seriously: (co)induction, functions VS
relations...

“You need to stay focused. Otherwise you miss the subtleties!” 1

1
Barney Greenway (Napalm Death), after suprising the audience with a blitz performance of “You Suffer”.

13 / 14



Our Adventurer Rests and Meditates

• Formal proofs are not easy! (But useful and fun!)

• Proof design is the key.

• Proof techniques are to be taken seriously: (co)induction, functions VS
relations...

“You need to stay focused. Otherwise you miss the subtleties!” 1

1
Barney Greenway (Napalm Death), after suprising the audience with a blitz performance of “You Suffer”.

13 / 14



Future

• Adding Features for Reasoning about Processes

• Certifying Existing Systems (e.g., integration with νScr)

• Moving Further towards Coinduction (e.g., Interaction Trees)

• Hoping for New People and Collaborations :)

Check out our material!

→ D. Castro-Perez, F. Ferreira, L. Gheri, and N. Yoshida. ”Zooid: a DSL for certified multiparty
computation: from mechanised metatheory to certified multiparty processes”. PLDI 2021.
DOI: https://doi.org/10.1145/3453483.3454041
website: http://mrg.doc.ic.ac.uk/publications/zooid-paper/

→ This tutorial is available at https://github.com/emtst/GentleAdventure

Thank You!
14 / 14


