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Go concurrency verification research at DcC
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A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".
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A static verification framework for message passing in Go using
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Dialogue between Industry and Academia

Binary Session Types [PARL’ 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

U
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology




CDL Equivalent

* Basic example:

package HelloWorld {

roleType YouRole, WorldRole;

participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole
relationship=YouWorldRel channel=worldChannel {

request messageType=Hello;

Dr Gary Brown (P14 Tech) in 2007




Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

* Basic example:

protocol HelloWorld {

role You, World:;
Hello from You to World:;
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Multiparty Session Types [POPL08]
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Multiparty Session Types [POPL08]
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Introduction to Session Types and Scribble

Rumyana Neykova, Nobuko Yoshida
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Observation 1: Types E

> One of the computing most successful concepts
- Codify the structure of the data

. Serve as a fundamental unit of compositionality
- Allow easy error prevention

- Appears from the oldest to the newest programming
languages



Observation 2: But distributed systems ...
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Building blocks E

- Primitives — to build the types

> send, receive (well , there are few more, but it boils down to these
two @)

send(int).send(int).receive( )

» Context — to be checked by the type system
protocols — describe the communication between processes

SESSION



session lype

Defining the type

- Separate the communication into sessions

&

» Each process has a type in a session, defined by the
interactions on the session channel



A Protocol @

- Protocol: Buyer-Seller

title _
- Description: Alice buying a book
- quote
Lok
Address

Date
e
quit

send(int).receive(int).eo{ok: send( ).receive( ), quit:end}

receive(int).send(int).&{ok: receive( ).send( ), quit: end}



Are we compatible?

send(int).send(int).receive(

receive(int).receive(int).send(

It is all about duality!

)



Are we compatible? @

receive(int).send(nt).receive( )

receive(int).receive(int).send( )



Delegate T




How does it work?

Global

Types
Projection
Local Types
Type
checking
Y :
Multiple
BPEL Languages

» Step 1: Write a Global Type
» Step 2: Write Local Programs

Alice — Bob: (Nat).
Bob — Carol: (Nat).end

TBob =‘?(Alice, N&t).’,
!(Carol,Nat);end

PBOb — S?(Alicew'x);
s!(Carol,x);0

» Step 3: Project and Type Check Locally



Session Types in a Nutshell \ /

SESSION = STRUCTURED SEQUENCE OF COMMUNICATION

send(int).send(int).receive(bool)



What i1s type sate communication?

— Communication Safety
* No communication mismatch

Session Fidelity
« Communication follow the described protocol

— Progress

* No deadlock/ stuck in a session







Binary Sesston Types: Bujer - Seller Frotoco

o) (G

A\ repeat
“— retry —»|-

wt! Title : ? Quote; T {ok: TAdd; ? Date, retry: £ |



W] Title 5 7 Quote ;! {ok: TAdd3 7 Date, remry £}
«t? Title ;¥ Quote; ? {OK: 2Add; ¥ Date, retvy: t |




Multiparty Sesston Types
Buyer . Seller Buyer 2
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M”hrwm SQS&‘OV\ -Ty”s [Honda, Yoshida, Carbone QOOSJ
s BIS I STEP

B2
| G ) Wrrte Global Type
3 S — B2 Char



Nulﬂl"”‘y Session TYPeS [ronds, fsda, Gurbone 2005]
B|—S .. STEFI

d
O Write Global T)’Pe-
H S ==l 82 Cﬁar

STEP 2
| Fd* Project to Local
Pr OJGCﬂ (, By ?lnt, B22 Char Type.s
v " v
T1 :9. T3



|

H"“‘Pm SQSSIO" -'7”5 [Honda, Yoshida, Carbone 2008:]

| W oba e
S — B2 Char rite Global Typ
STEP 2
(\I B ?Inf. Bz’ Char Project o Local
- Tree
STEP 3

g X « Static Check.

> Generate Code
o Run-tme Check
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Properties of Session Types

1. Communication Error-Freedom
No communication mismatch

2. Session Fidelity
The communication sequence in a session follows the scenario
declared in the types.

3. Progress
No deadlock/ Stuck in a session

1

“well-typed channels cannot go wrong”




Session T ypes o
?(pjo[icau’ons

44



Type Checking
[ECOOP16, OOPSLA'15, POPL'16]

Global Type
Projection

Local Type Local Type Local Type

Y A Y

Type : Type Type .

Checking Checking Checking
— — E—
Program Program Program

Alice Bob Carol
S y \ Y L y




Dynamic Monitoring
[RV'13, COORDINATION'14, FMSD'15]

Global Type
Projection

Local Type Local Type Local Type

A z .

Dynamic Dynamic Dynamic

Monitoring Monitoring Monitoring *
s ' ™ f ' ™ - ' \
Program Program Program

Alice Bob Carol

\ y, \ y \ Y




Code Generation [CC'15, FASE'16]

Global Type

Projection

(Generation

Local Type

A

v

-

Program
Alice

\.

~

J

Local Type

i

Generation ,

(

v
)

Program
Bob

/

Local Type

it

(Generation ,

A 4

-

\

~

Program

Carol
J




Synthesis
[ICALP'13, POPL'15, CONCUR'15, TACAS 16, CC'16]

Global Type
Synthesis
Local Type Local Type Local Type
4 3 A
Type - Type ype
Inference Inference Inference
— SEmm— SR
Program Program Program
Alice Bob Carol

\. / . v \ /




MPST (. Scribble

- Applications
- Deadlock Detection (Go)
- Recovery strategies(Erlang)
- Type-driven programming (Java, Scala, F#)
- Static Verification (C, OCaml, Rust)
~ Runtime monitoring (Python)

= [ w

Java ERLANG ERabb|t
% python QOL

IIIIIIIIIIIIIIIIIIIIIIIIIIII




Applications

(S Scribble




Session Type Based Tools

OO0l Governance

¥ |

Process .; ﬂm
OOI ‘ Business Logic ‘ i \y

| Governance control — B
i Interceptor — | Knowledge i
i Base :

{ Specs

1 (ACL)

annotate |

o Specs
Lstate |nf°j’—|:—M°':“t°r—}W[ (Sc?ibble) i

- I

| Messaging Client ‘

Message Broker

Actor Verification

Monitors ONTLR

Session (protocol mailboxes)
Session (Roles) (& scribble
Actor Model (Processes and mailboxes) : @ python” &

Session Actor

ZDLC: Process Modeling

JVM Logs,
Application
Logs

System logs,
DB Logs

C/C++
JAVA

| MAINFRAME

| i1BMBPM

COBOL
TANDEM
| ORACLE DB

MQs

il

MPI code generations

Communication protocol

a-2

(a-1)

Custom Pabble

Common protocols

or .
global protocols | repository

I — .
. 1
I .
. I
I .
- 1
w I .
| . S—— I
) " .
2 |
[v4 | .
b4 . N
v 1 .
. I
I -
. 1
I .
. 1
I -
. 1
e o o 2 -
UML & BPMN2
Model
Sequential code
b
Sequential
kernels (C99
D (38 Output(s)

(

Pabble tool j

¥

Endpoint protocol

—_—

MPI codegen

)

C) ¥

MPI backbone

Protocol compiler

(Automatic)

d.e
LARA weaver

Optimised MPI
application

/

Non-Optimised MPI
application




Session Type based Tools

Java API Generation [FASE’16] @

Simple Mail Transfer

TABLE OF CONTENTS

4.1. SNTP Commands ..

4.1.1. Command Semantics

312, Command Syntax

22, STP Replie:

4.2.1. Reply Codes by Functicn Group

4.2.2. Reply Codes in Numeric Order

33 Seguencing of Commandz and Replie:

4.4, Stave Diagrams .

35, Dewail: - .

451 inimum Implementation

53 TrENIREREnTy oo

4.3.). SiTWE ..cccceccccccnccncccnccccccccccans
o

Sugust 1982
fer Protecel

B EEEEE .

Al ks

—
a
i
a
S

¥ (> channels
&C
» (> ioifaces
EndSocket.java

Smtp_C_1_Future.java

Smtp_C_1.java
Smtp_C_10.java

|J] Smtp_C_11_Cases.java
Smtp_C_11_Handler.java

Smtp_C_11.java
|41 Smtp_C 12.java

.send(Smtp.S, new DatalLine("Session
.send(Smtp.S, new EndOfData())

Deadlock Detection for Go [CC’16, POPL’17, ICSE’18]

.receive(Smtp.S, Smtp._250, new Buf

.S

© send(S role, Mail m) : Smtp_C_11 - Smtp_C_10
@ send(S role, Quit m) : EndSocket - Smip C_10

is multiparty

0K < compatible?

Global Session Graph

' 4
Synthesis

> deadlock

Goroutine Automata }

2 | Convert

Local Session Types

1 | infer

SSA IR (go/ssa)

Go source code

Safe Recovery for Erlang [CC’'15]

i Protocol recovery algorithm implementation
ﬁ Dependency Graph a Recovery Table “ Erlang Runtim
(B:1) (C:2)
n | r | recovery points
0 A; [{A;:0} ‘ Protocol Supervisor ]
0|4, {AzZO,Allo} o, NN
1|4 {Az:O,Alio} /// / \ ......
1| ¢ {C:1,A;:0,A;:0} -z A Ja
3B, {32:3’31:2} Local Type Local Type Local Type Local Type
3| D {{D:3,B:2,B;:2}
4| c [{c:1,A,:0,4,:0} (A:3)
4| E ({C:1,A,:0,4,:0,D:3,B,:2,B;:2,E:4}
5| D [{D:3,B,:2,B;:2} 0 \
5| E [{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} 1 3 R v
6 |CE|{C:1,A;:0,A2:0,D:3,B;:2,B; :2,E:4} Process Process Process| |Process
7 |D,E|{C:1,A::0,A5:0,D:3,B;:2,B, :2,E: 4} t 7 B c D
8 |[ED|{C:1,A;:0,A>:0,D:3,B;:2,B;:2,E:4}
9 |any |@
10

1%

|Initia| Failurel |Recovered| |Ignore FaiIure”Unaffectedl

{ Channel Automata
i

Link participants with channels’

This work



Applications

Java API Generation [FASE'16] /U Deadlock Detection for Go [CC’16, POPL'17]

is multiparty :
- Global Session Graph >
0K compatible? P deadlock
1 Zuguzt 1982 ¥ (> channels * ’ )
Sieple Mai1 Trameter Prosmcel ~ Synthesis
i or comme > = ioifaces

: : ) EndSocketiava | Goroutine Automata | | Channel Automata
. |4} Smtp_C_1_Future.java i
: . |J) Smtp_C_1.java X

: [J) Smtp_C_10.java 2 Convert !

i |d] Smtp_C_11_Cases.java :

:_ |J) Smtp_C_11_Handler.java Local Session Typ&s _____ 3 Link o ith ch | "

= ) Smtp_C_11.java 7 ink participants with channels

= |41 Smtp C 12.java lﬁ
: u | canAdAl Cm+n € naw NAaral s nal"Cacedinn T lace - This work

ﬂ Dependency Graph ﬂ Recovery Table & Erlang Runtim
(B:1) (C:2)
n | r | recovery points
Y S 0| A; [{A;:0} | Protocol Supervisor
0|4, {AzIO,Al 0} o, .
T ko> T B oED 1|4 [{A2:0,4;:0} P / \
7 1|c {c:1,A;:0,A;:0} P ) T
3B, {32:3’31:2} Local Type Local Type Local Type Local Type
ECoE> GF:iBobo 3| D |[{D:3,B,:2,B;:2} (A:3)
4| c [{C:1,A;:0,4,:0} :
t‘m 4| E [{C:1,A;:0,4,:0,D:3,B,:2,B; :2,E:4}
5| D |{D:3,B,:2,B,:2} i |
EESCD 5| E [{C:1,A::0,4,:0,D:3,B,:2,B; :2,E: 4} | Y o v v
6 |CE|{C:1,A1:0,A2:0,D:3,B;:2,B;:2,E:4} Process Process| |Process| |Process
7 |D,E{C:1,A;:0,A:0,D:3,B,:2,B;:2,E: 4} t A B C D
i 8 |ED|{C:1,A;:0,A:0,D:3,B,:2,B; :2,E:4} N N T
Q: end > 10: end > 9 i
T end> T0:_end> 10 zi o |Initia| Failurel |Recovered| |Ignore Failure”Unaffectedl
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Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

* Basic example:

protocol HelloWorld {

role You, World:;
Hello from You to World:;



wWww.Sscribble.org

Scribble

Protocol Lanﬂuaﬂe

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural

construction come from that unconscious moment, when you do not realise what it is, when there is no concrete Documents

shape, only & whisper which is not 8 whisper, an image which is not an image, somehow it starts to urge you in your Protocol L. anﬁuaae Guide
mind, in s0 small & voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

Downloads
P 2

What is Scribble+ e
Scribble is a Ianguage to describe application-level protocols among Communicating

systems. A protocol represents an agreement on how participating systems interact with ComnHy

each other. Without a prOtOCOI. itis hard todo a meaningful interaction: participants simply Discussion Forum
cannot communicate effectively, since they do not know when to expect the other parties to Java Tools

send their data, or whether the other party IS ready fo receive a datum it is Sending. In fact :;ue:

e i . : : . Ikl

it is not clear what kinds of data is to be used for each interaction. It is too costly to carry Py+hon Tools

out communications based on guess works and with inevitable communication mismatch lGsues
(synchronisation bugs). Simply. it is not feasible as an engineering practice. WiKi


http://www.scribble.org/

Meet Scribble www.scribble.org

(. scribble

N

What is Scribble?

Scribble is a langusge to descaibe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do meaningful interaction: participants
simply cannot communicate effectively, since they do not know when to expect the
other parties to send dats, or whether the other party is ready to receive dats.

However, having a desaription of a protocol has further benefits. It enables verification
to ensure that the protocol can be implemented without resulting in unintended
consequences, such as deadlooks.

Find out more __.

Language Guide Specification

Describe ¢

Scribble is a language
for describing
multiparty protocols

Verify 15

Scribble has a theoretical foundation,
based on the Pi Calculus and Session
Types, to ensure that protocols

~ LI
Projecte «
Endpoint projection is

the term used for
identifying the

An example

module examples;

global protocol Helloworld({role Me, role wWerld) {
hello(Greetings) from Me to wWorld;
choice at world {
hello{GoodMorning) from World to Me;
yor{
hello(Goodafternoon) from wWorld to Me;

A very simply example, but this illustrates the basic syntax for 8 hello world interaction,
where 3 party performing the role Me sends 3 message of type Greefings to another
party performing the role "World', who subsequently makes a decision which determines
which path cf the choice will be followed, resulting in 8 GoodMoming or
GoodAftemoon message being exchanged.

Monitor Q

Use the endpoint
projection for roles
defined within a

Implement &

Various options exist, including (a)
using the endpoint projection for a
role to generate a skeleton code, (b)



http://www.scribble.org

Let’S th SOme pPOtOCOlS http://scribble.doc.ic.ac.uk/

module examples}

-~ global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldjs
v choice at World {
goodMorningl() from World to Mej
~ }or{
goodMorningl() from World to Mej
}
}

Load a sample ﬁ Check Protocol: examples.Helloworld  Role: Me Project  Generate Graph


http://scribble.doc.ic.ac.uk/

Example

- Q&A(role me, role you)
recursion . rae loop {
Se“fj' ask(string) from you to me;
choice choice at me
{ response (string) from me to you;
continue loop; }
or { enough() from me to you; }}
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Protocol Validation -

60



Are we compatible? \ /

send(/nt).send(int).receive(ool)

receive(int).receive(int).send(bhool)

It is all about duality!



Are we compatible?

receive(int).send(int).receive(ool)

receive(nt).receive(ini).send(hool)



Good/Bad MPST by example

- Communication model:
- asynchronous, reliable, role-to-role ordering
- MPST applies to transports that fit this model
- TCP, HTTP, ..., AMQP, ...shared memory
- MPST protocols should be fully specified

- no implicit messages needed to conduct a session

Next....

- Core Scribble constructs

- What can go wrong ?

- MPST safety and liveness errors (informally)
- How are they ruled out (syntactically)




Properties ( by example)

=z Communication mismatch

send (A, Div, 1nt) recv (A, Add, 1int) o? Wrong label
send (A, Div, int) recv (A, Add, string) € Wrong payload
send (B, Div, 1nt) recv (A, Div, 1nt) 0 Wrong role

@ Orphan messages

send (A) | send (A)

@ Deadlock

recv (A) | recv (B)

recv (C) |[recv(C) |1f (n=0) then send(A) else send (B)



Scribble constructs:
Role-to-role Message passing

123(Int, String) from A to B; @ @
&
W

Payload types B?123 (Int, Str)

Operator (label, header, ...)

A'123(Int, Str)
& @

- Empty operator and/or payload is allowed

() from A to B;




Scribble constructs:
“Located” choice

choice at A {
1() from A to
2() from A to

} or |

M

A?1() A?2()

3() from A to B; 2
4() from A to C; | |
} .
} C?ZN Y ;

© Internal choice by global choice subject

- External choice for all other roles

Condition

© Only enabled roles can send messages 1n choice paths
- Start role enabled, other disabled
© arole 1s enabled by receiving a message from an enabled role




Scribble constructs:
“Located” choice

choice at A {
buyerl(int) from A to B; // Total to pay
(int) from B to A;// B will pay that much
buyerl(int) from A to C; // C pays the remainder
poor |
buyerl(x:int, y:int) from A to C; // Total to pay
(Int) from C to A; // C pays that much
buyer2(x:int, y:int) from A to B;// B pays the remainder
}
}

- More flexible than directed choice

p—q :{li:Gi}ier Branching

- Branching via different payloads not allowed

choice at A {1() from A to B;} or {1(int) from A to B;} <



Exercise:
“Located” choice

Condition

Only enabled roles can send messages in choice paths
Start role enabled, other disabled
a role 1s enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;
}oor |
2() from B to A; €@ Role B not enabled
choice at B {
2() from B to C;
} oor |
3() from B to C;

}
4() from C to A;

}
UWhat actvally goes wrong 7

© MPST Safety errors:
- © reception error, orphan message, deadlock




Exercise:
“Located” choice

What actvally goes wrong ?

~ MPST Safety errors:
© reception error, orphan message, deadlock

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;

}oor |
2() from B to A; @ Role B not enabled

choice at B {
2() from B to C;

poor |
3() from B to C;
}

4() from C to A;




[s this protocol OK? 1/4

choice at A {

1() from A to B;

3() from B to C;

4() from C to A;
}oor |

2() from A to B;

3() from A to C;

5() from A to C;

}
Errore explained 7

- Ambitious choice for C

- Should Csend a4 or 5to A?

- potential reception errors (4, 5) if interpreted non-deterministically
- Non-deterministic choice at C inconsistent with the choice by A

- Not mergeable in syntactic projections

- has to merge continuations (undefined for distinct outputs)




[s this protocol OK? 1/4

choice at A {

1()_ifom A to B;
- 3() from B to C;

4() from C to A;
}oor |

2() from A to B;
" 3() from A to C;

5() from A to C;

}




[s this protocol OK? 1/4

choice at A {
1() from A to B;
3a() from B to C;
4() from C to A;
}oor |
2() from A to B;
3b() from A to C;
5() from A to C;




[s this protocol OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge(A, C);
y or {
2() from A to B;
3() from B to C;
do Merge(A, C);

global protocol Merge(role A, role C){
choice at A {
5() from A to C;

}oor |
5() from A to C;

;)

- Duplicate cases inherently mergeable, e.g [POPL'11]



[s this protocol OK? 3/4

choice at A {
la() from A to B;
2() from A to C;
3() from B to C; €
4() from C to A;

} oor {
1b() from A to B;
3() from B to C; €
4() from C to A;

}
Errors explained 7

© “Race condition” on choice on C due to asynchrony

© What should C do after receiving a 3?

© Potential orphan message (2) if interpreted as multi-queue FIFO
~ Inconsistent external choice subject

© (trivially non-mergeable in standard MPST)

© Arole must be enabled by the same role 1n choice paths

»



[s this protocol OK? 4 /4

choice at A {
1() from A to B;
2() from A to C; €
poor |
3() from B to B;
}

Errore explained 7

- Unrealisable choice at C

- No implicit message can be assumed, e.g end of session
- How can C determine if a message is coming?

- Potential deadlock (C waiting for A), or potential orphan (2),
depending on the interpretation

- Empty action option to terminal state
can’t merge end type with anything else




Quiz: Mergeability

choice at A {
1() from A to
2() from C to

y or |
3() from A to D; e

4() from D to
}

o O oo O

- e -

choice at A {
1() from A to
2() from C to

}oor { v
3() from A to B;

2() from C to
}

o M

- o - o

O W

choice at A {
1() from A to
2() from C to
yoor {
3() from A to
4() from C to

}

choice at A {
1() from A to
2() from B to
}oor |
3() from A to
4() from B to

}

O o

O M o o

O o

- o - o




Scribble construct: Recursion

- Tail recursion with recursive scopes A .

rec X { C}
1() from A to B;

continue X;

}
2() from A to B; @ Dead code

Condition

© Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
~ Regular interaction structure at endpoints (CFSM)




Scribble construct: Recursion

- Talil recursion with recursive scopes

rec X {
1() from A to B;
continue X;

}
2() from A to B; € Dead code

rec X { a
1() from A to B; — B!1()
continue X; .
}
2() from C to D;
Condition

© Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
~ Regular interaction structure at endpoints (CFSM)




[s this protocol ok? 1/4

rec X {
choice at A
1() from A to B;
continue X;
2() from A to B; > Dead code
}oor |
3() from A to B;
}

4() from A to B;

}
5() from A to B;

Condition

le Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
© Regular interaction structure at endpoints (CFSM)




I[s this protocol OK? 2/4

rec X {
choice at A {

1() from A to
2() from B to
3() from C to

yoor |
4() from A to
5() from C to

o M O

o M

}

continue X;




I[s this protocol OK? 3/4

rec X {
choice at A {
1() from A to B;
continue X;
poor |
1() from A to B;
}




I[s this protocol ok? 4 /4

rec X {

choice at A {
1() from A to
1() from B to
continue X;

poor o
2() from A to B;
2() from B to C; @

M To

© Safety errors?
© hint: Consider the FSM at A?



I[s this protocol ok? 4 /4

rec X {

choice at A {
1() from A to
1() from B to
continue X;

}oor |
2() from A to B;
2() from B to C; @

M To

o Safety errors? © Liveness errors?

> hint: Consider the FSM at A? ~ Role progress
-~ How about now? © Message liveness
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Scribble Endpoint APl generation toolchain

, Global
» Protocol spec. as Scribble protocol (asynchronous MPST) brotocol
|
» Global protocol validation Projection
(safely distributable asynchronous protocol) l
» Syntactic projection to local protocols :I)C;Zilol
(static session typing if supported) P |
» Endpoint FSM (EFSM) translation FSM translation
(dynamic session typing by monitors) |
Endpoint
» Protocol states as state-specific channel types FSM

» Call chaining API to link successor states |
API generation

» Java APIs for implementing the endpoints l
Endpoint

API




Example: Adder

global protocol Adder(role C, role S) {

}

Global
protocol

Local
protocol

Endpoint
FSM

(validation, projection)

Endpoint
API

choice at C {

}

}

Add(Integer, Integer) from C to S;

Res(Integer) from S to C;

do Adder(C, S);

or {

Bye() from C to S;
Bye() from S to C;



Example: Adder

Global | Local Endpoint | Endpoint
protocol | protocol FSM | API

(FSM translation)

» Projected Endpoint FSM
(EFSM) for C
global protocol Adder(role C, role S) {
choice at C {
Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);
} or {
Bye() from C to S;
Bye() from S to C;

}
}




Adder: State Channel API for C

» Adder_C_1

» OQutput state channel: (overloaded) send methods

Adder_C_2 send(S role, Add op, Integer argO, Integer argl) throws ...

Adder_C_3 send(S role, Bye op) throws ...

» Parameter types: message recipient, operator and payload
» Return type: successor state



Adder: endpoint implementation for C

Adder_C_1

Adder_C_2

Adder_C_1 c1 = new Adder_C_1(...);

ciﬁ.ﬂ

@ send(S role, Bye op) : Adder_C_3 - Adder_C_1
@ send(S role, Add op, Integer arg0, Integer arg1) : Adder_C_2 - Adder_C_1



A demo Is worth a thousand
slides




MPST beyond
verification



Let it Recover:
Multiparty Protocol-Induced Recovery

Rumyana Neykova, Nobuko Yoshida
Imperial College London
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