PRINCIPLES AND PRACTICE OF

Distributed M Types

Systems Session Types

SESSION TYPES

Rumyana Neykova & Nobuko Yoshida

Imperial College
London

http://mrg.doc.ic.ac.uk

Mobility Research Group

Ti-calculus, Session Types research at Imperial College o

S5
~———

\X/S SELECTED Post-docs:
vy PUBLICATIONS Simon CASTEL

asynchronous session types by '
Kohei Honda, Nobuko Yoshida, DaV I d CAST R C
and Marco Carbone, published in
POPL 2008 has been awardedthe 2018 — ;
ACM SIGPLAN Most Influential Francisco FER]
POPL Paper Award today at POPL Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : A Static
2018. : - : - - -

Ver|ﬂcat|on. Framework for Message Passing in Go using Behavioural Types. QaymOﬂd |_| U
e To appear in ICSE 2018 .
10 Jan 2018 Bernardo Toninho , Nobuko Yoshida : Depending On Session Typed Process. QU mya Nna N EY
Estafet has published a page on To appear in FoSSaCS 2018 . '
their usage of the Scribble \I | C h O [aS N G
language developed in our group Bernardo Toninho , Nobuko Yoshida : On Polymorphic Sessions And
with RedHat and other industry ; . g ;
Dartners. ;;:(;tlons. A Talk of Two (Fully Abstract) Encodings. To appear in ESOP AlCGSte SCA L/ﬁ
» more ‘

Rumyana Neykova , Raymond Hu , Nobuko Yoshida, Fahd Abdeljallal : .
Lot 2l Session Type Providers: Compile-time API Generation for Distributed PhD StUdentS
Nick spoke at Golang UK 2017 on Protocols with Interaction Refinements in F#. To appear in CC 2018 . ASS@[A LTAY E\

applying behavioural types to

verifv concurrent Go proarams. J U [| ana F R A N C
Eva GRAVERSI

http://mrg.doc.ic.ac.uk

Interactions with Industries

Strange Loop

SEPTEMBER 15-17 2016 PEABODY OPERA HOUSE ST. LOUIS, MO

oy
;
w- . Adam Bowen “adamnbowen - Sep 15 .
’ 3 | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

DoC researcher to speak at Golang UK conference y rocking on

0 b 2018 about static deadlock detection in

DoC researcher to speak at industry-focused Golang UK Click here to add content
conference on results of concurrency research

Interactions with Industries

6 days ago - 6:30 PM

Session Types with Fahd Abdeljallal

o E Wl £ CHEE
N

43 Members

Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... tearn More

Current State

* behaviors can be composed both sequentially
and concurrently
Dr. Roland Kuhn » effects are not yet tracked
@rolanCEE] /\ctyx » Scribble generator for Scala not yet there

* theoretical work at Imperial College, London

(Prof. Nobuko Yoshida & Alceste Scalas)
actyx

OO Behavioural Type-Based ok
- Static Verification Framework
for A

Imperial College
London

Home College and Campus Science Health Business | Search here... m

Go concurrency verification research at DcC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".

g

<4

the morning paper

an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

Home About InfoQ QR Editions Subscribe

A static verification framework for message susscrise
passing in Go using behavioural types

JANUARY 25, 2018 i

tags: Concurrency, Programming Languages

never miss an issue! The

Morning Paper delivered

A static verification framework for message passing in Go using
behavioural types Lange et al., ICSE 18

straight to your inbox.

With thanks to Alexis Richardson who first forwarded this paper to me. SEARCH

H type and press enter

We're jumping ahead to ICSE 18 now, and a paper that has been accepted

for publication there later this year. It fits with the theme we’ve been ARCHIVES

exploring this week though, so I thought I’d cover it now. We've seen

verification techniques applied in the context of Rust and JavaScript, Select Month

looked at the integration of linear types in Haskell, and today it is the MOST READ IN THE

turn of Go! LAST FEW DAYS

Selected Publications 2017/2018

» [CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time AP| Generation for Distributed Protocols with Interaction
Refinements in F#.

» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.

» [ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.

» [ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.

» [ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming..

» [COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

» [FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
» [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
» [POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

Selected Publications g&017/2018

[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time API Generation for Distributed Protocols with Interaction
Refinements in F#.

[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.

[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.

[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.

[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming.

[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

[FOSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

Dialogue between Industry and Academia

Binary Session Types [PARL’ 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

U
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

CDL Equivalent

* Basic example:

package HelloWorld {

roleType YouRole, WorldRole;

participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole
relationship=YouWorldRel channel=worldChannel {

request messageType=Hello;

Dr Gary Brown (P14 Tech) in 2007

Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

* Basic example:

protocol HelloWorld {

role You, World:;
Hello from You to World:;

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

)
Formalisation of W3C WS-CDL [ESOP’07]

J
Scribble at T4 Technology

li

Multiparty Session Types [POPL08]

ll

(S Scribble reait

Dialogue between Industry and Academia

Binary Session Types [PARL’ 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

ll
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL08]

|
‘ 2N
%L @ Scribble redfat SAVARA

Cognizant !

Part One

15

DistributedM

Systems Session Types

Types

Type Me If You Can:

Introduction to Session Types and Scribble

Rumyana Neykova, Nobuko Yoshida

Me

Interruptible | History/Background

by
questions | Sessjon Types

Properties & Safety Guarantees

Scribble (by example)

Protocol Validation

Program verification

You

Session T des

‘Motivation

18

Observation 1: Types E

> One of the computing most successful concepts
- Codify the structure of the data

. Serve as a fundamental unit of compositionality
- Allow easy error prevention

- Appears from the oldest to the newest programming
languages

Observation 2: But distributed systems ...

ll“l..ll"'l..l Types
Systems

Building blocks E

- Primitives — to build the types

> send, receive (well , there are few more, but it boils down to these
two @)

send(int).send(int).receive()

» Context — to be checked by the type system
protocols — describe the communication between processes

SESSION

session lype

Defining the type

- Separate the communication into sessions

&

» Each process has a type in a session, defined by the
interactions on the session channel

A Protocol @

- Protocol: Buyer-Seller

title _
- Description: Alice buying a book
- quote
Lok
Address

Date
e
quit

send(int).receive(int).eo{ok: send().receive(), quit:end}

receive(int).send(int).&{ok: receive().send(), quit: end}

Are we compatible?

send(int).send(int).receive(

receive(int).receive(int).send(

It is all about duality!

)

Are we compatible? @

receive(int).send(nt).receive()

receive(int).receive(int).send()

Delegate T

How does it work?

Global

Types
Projection
Local Types
Type
checking
Y :
Multiple
BPEL Languages

» Step 1: Write a Global Type
» Step 2: Write Local Programs

Alice — Bob: (Nat).
Bob — Carol: (Nat).end

TBob =‘?(Alice, N&t).’,
!(Carol,Nat);end

PBOb — S?(Alicew'x);
s!(Carol,x);0

» Step 3: Project and Type Check Locally

Session Types in a Nutshell \ /

SESSION = STRUCTURED SEQUENCE OF COMMUNICATION

send(int).send(int).receive(bool)

What i1s type sate communication?

— Communication Safety
* No communication mismatch

Session Fidelity
« Communication follow the described protocol

— Progress

* No deadlock/ stuck in a session

Binary Sesston Types: Bujer - Seller Frotoco

o) (G

A\ repeat
“— retry —»|-

wt! Title : ? Quote; T {ok: TAdd; ? Date, retry: £ |

W] Title 5 7 Quote ;! {ok: TAdd3 7 Date, remry £}
«t? Title ;¥ Quote; ? {OK: 2Add; ¥ Date, retvy: t |

Multiparty Sesston Types
Buyer . Seller Buyer 2

Cea?e ;s MBtal | ABIa;BCTb o BC7biCA?C

M”hrwm SQS&‘OV\ -Ty”s [Honda, Yoshida, Carbone QOOSJ
s BIS I STEP

B2
| G) Wrrte Global Type
3 S — B2 Char

Nulﬂl"”‘y Session TYPeS [ronds, fsda, Gurbone 2005]
B|—S .. STEFI

d
O Write Global T)’Pe-
H S ==l 82 Cﬁar

STEP 2
| Fd* Project to Local
Pr OJGCﬂ (, By ?lnt, B22 Char Type.s
v " v
T1 :9. T3

|

H"“‘Pm SQSSIO" -'7”5 [Honda, Yoshida, Carbone 2008:]

| W oba e
S — B2 Char rite Global Typ
STEP 2
(\I B ?Inf. Bz’ Char Project o Local
- Tree
STEP 3

g X « Static Check.

> Generate Code
o Run-tme Check

%’7’
b Y
o
&
%
e
J
.= - ."’4":?

ol

AV 2 EATIDR Y
),‘ i O)
3
=
v
3
1 -
p |
/"(” ‘ -

axadp™

Aice ABTa ; cAfc

NO
Peadl

Bob AB?Q; BCTb

Properties of Session Types

1. Communication Error-Freedom
No communication mismatch

2. Session Fidelity
The communication sequence in a session follows the scenario
declared in the types.

3. Progress
No deadlock/ Stuck in a session

1

“well-typed channels cannot go wrong”

Session T ypes o
?(pjo[icau’ons

44

Type Checking
[ECOOP16, OOPSLA'15, POPL'16]

Global Type
Projection

Local Type Local Type Local Type

Y A Y

Type : Type Type .

Checking Checking Checking
— — E—
Program Program Program

Alice Bob Carol
S y \ Y L y

Dynamic Monitoring
[RV'13, COORDINATION'14, FMSD'15]

Global Type
Projection

Local Type Local Type Local Type

A z .

Dynamic Dynamic Dynamic

Monitoring Monitoring Monitoring *
s ' ™ f ' ™ - ' \
Program Program Program

Alice Bob Carol

\ y, \ y \ Y

Code Generation [CC'15, FASE'16]

Global Type

Projection

(Generation

Local Type

A

v

-

Program
Alice

\.

~

J

Local Type

i

Generation ,

(

v
)

Program
Bob

/

Local Type

it

(Generation ,

A 4

-

\

~

Program

Carol
J

Synthesis
[ICALP'13, POPL'15, CONCUR'15, TACAS 16, CC'16]

Global Type
Synthesis
Local Type Local Type Local Type
4 3 A
Type - Type ype
Inference Inference Inference
— SEmm— SR
Program Program Program
Alice Bob Carol

\. / . v \ /

MPST (. Scribble

- Applications
- Deadlock Detection (Go)
- Recovery strategies(Erlang)
- Type-driven programming (Java, Scala, F#)
- Static Verification (C, OCaml, Rust)
~ Runtime monitoring (Python)

= [w

Java ERLANG ERabb|t
% python QOL

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Applications

(S Scribble

Session Type Based Tools

OO0l Governance

¥ |

Process .; ﬂm
OOI ‘ Business Logic ‘ i \y

| Governance control — B
i Interceptor — | Knowledge i
i Base :

{ Specs

1 (ACL)

annotate |

o Specs
Lstate |nf°j’—|:—M°':“t°r—}W[(Sc?ibble) i

- I

| Messaging Client ‘

Message Broker

Actor Verification

Monitors ONTLR

Session (protocol mailboxes)
Session (Roles) (& scribble
Actor Model (Processes and mailboxes) : @ python” &

Session Actor

ZDLC: Process Modeling

JVM Logs,
Application
Logs

System logs,
DB Logs

C/C++
JAVA

| MAINFRAME

| i1BMBPM

COBOL
TANDEM
| ORACLE DB

MQs

il

MPI code generations

Communication protocol

a-2

(a-1)

Custom Pabble

Common protocols

or .
global protocols | repository

I — .
. 1
I .
. I
I .
- 1
w I .
| . S—— I
) " .
2 |
[v4 | .
b4 . N
v 1 .
. I
I -
. 1
I .
. 1
I -
. 1
e o o 2 -
UML & BPMN2
Model
Sequential code
b
Sequential
kernels (C99
D (38 Output(s)

(

Pabble tool j

¥

Endpoint protocol

—_—

MPI codegen

)

C) ¥

MPI backbone

Protocol compiler

(Automatic)

d.e
LARA weaver

Optimised MPI
application

/

Non-Optimised MPI
application

Session Type based Tools

Java API Generation [FASE’16] @

Simple Mail Transfer

TABLE OF CONTENTS

4.1. SNTP Commands ..

4.1.1. Command Semantics

312, Command Syntax

22, STP Replie:

4.2.1. Reply Codes by Functicn Group

4.2.2. Reply Codes in Numeric Order

33 Seguencing of Commandz and Replie:

4.4, Stave Diagrams .

35, Dewail: - .

451 inimum Implementation

53 TrENIREREnTy oo

4.3.). SiTWE ..cccceccccccnccncccnccccccccccans
o

Sugust 1982
fer Protecel

B EEEEE .

Al ks

—
a
i
a
S

¥ (> channels
&C
» (> ioifaces
EndSocket.java

Smtp_C_1_Future.java

Smtp_C_1.java
Smtp_C_10.java

|J] Smtp_C_11_Cases.java
Smtp_C_11_Handler.java

Smtp_C_11.java
|41 Smtp_C 12.java

.send(Smtp.S, new DatalLine("Session
.send(Smtp.S, new EndOfData())

Deadlock Detection for Go [CC’16, POPL’17, ICSE’18]

.receive(Smtp.S, Smtp._250, new Buf

.S

© send(S role, Mail m) : Smtp_C_11 - Smtp_C_10
@ send(S role, Quit m) : EndSocket - Smip C_10

is multiparty

0K < compatible?

Global Session Graph

' 4
Synthesis

> deadlock

Goroutine Automata }

2 | Convert

Local Session Types

1 | infer

SSA IR (go/ssa)

Go source code

Safe Recovery for Erlang [CC’'15]

i Protocol recovery algorithm implementation
ﬁ Dependency Graph a Recovery Table “ Erlang Runtim
(B:1) (C:2)
n | r | recovery points
0 A; [{A;:0} ‘ Protocol Supervisor]
0|4, {AzZO,Allo} o, NN
1|4 {Az:O,Alio} /// / \
1| ¢ {C:1,A;:0,A;:0} -z A Ja
3B, {32:3’31:2} Local Type Local Type Local Type Local Type
3| D {{D:3,B:2,B;:2}
4| c [{c:1,A,:0,4,:0} (A:3)
4| E ({C:1,A,:0,4,:0,D:3,B,:2,B;:2,E:4}
5| D [{D:3,B,:2,B;:2} 0 \
5| E [{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} 1 3 R v
6 |CE|{C:1,A;:0,A2:0,D:3,B;:2,B; :2,E:4} Process Process Process| |Process
7 |D,E|{C:1,A::0,A5:0,D:3,B;:2,B, :2,E: 4} t 7 B c D
8 |[ED|{C:1,A;:0,A>:0,D:3,B;:2,B;:2,E:4}
9 |any |@
10

1%

|Initia| Failurel |Recovered| |Ignore FaiIure”Unaffectedl

{ Channel Automata
i

Link participants with channels’

This work

Applications

Java API Generation [FASE'16] /U Deadlock Detection for Go [CC’16, POPL'17]

is multiparty :
- Global Session Graph >
0K compatible? P deadlock
1 Zuguzt 1982 ¥ (> channels * ’)
Sieple Mai1 Trameter Prosmcel ~ Synthesis
i or comme > = ioifaces

: :) EndSocketiava | Goroutine Automata | | Channel Automata
. |4} Smtp_C_1_Future.java i
: . |J) Smtp_C_1.java X

: [J) Smtp_C_10.java 2 Convert !

i |d] Smtp_C_11_Cases.java :

:_ |J) Smtp_C_11_Handler.java Local Session Typ&s _____ 3 Link o ith ch | "

=) Smtp_C_11.java 7 ink participants with channels

= |41 Smtp C 12.java lﬁ
: u | canAdAl Cm+n € naw NAaral s nal"Cacedinn T lace - This work

ﬂ Dependency Graph ﬂ Recovery Table & Erlang Runtim
(B:1) (C:2)
n | r | recovery points
Y S 0| A; [{A;:0} | Protocol Supervisor
0|4, {AzIO,Al 0} o, .
T ko> T B oED 1|4 [{A2:0,4;:0} P / \
7 1|c {c:1,A;:0,A;:0} P) T
3B, {32:3’31:2} Local Type Local Type Local Type Local Type
ECoE> GF:iBobo 3| D |[{D:3,B,:2,B;:2} (A:3)
4| c [{C:1,A;:0,4,:0} :
t‘m 4| E [{C:1,A;:0,4,:0,D:3,B,:2,B; :2,E:4}
5| D |{D:3,B,:2,B,:2} i |
EESCD 5| E [{C:1,A::0,4,:0,D:3,B,:2,B; :2,E: 4} | Y o v v
6 |CE|{C:1,A1:0,A2:0,D:3,B;:2,B;:2,E:4} Process Process| |Process| |Process
7 |D,E{C:1,A;:0,A:0,D:3,B,:2,B;:2,E: 4} t A B C D
i 8 |ED|{C:1,A;:0,A:0,D:3,B,:2,B; :2,E:4} N N T
Q: end > 10: end > 9 i
T end> T0:_end> 10 zi o |Initia| Failurel |Recovered| |Ignore Failure”Unaffectedl

Session T ZEQS

(. scribble

o4

Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

* Basic example:

protocol HelloWorld {

role You, World:;
Hello from You to World:;

wWww.Sscribble.org

Scribble

Protocol Lanﬂuaﬂe

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural

construction come from that unconscious moment, when you do not realise what it is, when there is no concrete Documents

shape, only & whisper which is not 8 whisper, an image which is not an image, somehow it starts to urge you in your Protocol L. anﬁuaae Guide
mind, in s0 small & voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

Downloads
P 2

What is Scribble+ e
Scribble is a Ianguage to describe application-level protocols among Communicating

systems. A protocol represents an agreement on how participating systems interact with ComnHy

each other. Without a prOtOCOI. itis hard todo a meaningful interaction: participants simply Discussion Forum
cannot communicate effectively, since they do not know when to expect the other parties to Java Tools

send their data, or whether the other party IS ready fo receive a datum it is Sending. In fact :;ue:

e i . : : . Ikl

it is not clear what kinds of data is to be used for each interaction. It is too costly to carry Py+hon Tools

out communications based on guess works and with inevitable communication mismatch lGsues
(synchronisation bugs). Simply. it is not feasible as an engineering practice. WiKi

http://www.scribble.org/

Meet Scribble www.scribble.org

(. scribble

N

What is Scribble?

Scribble is a langusge to descaibe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do meaningful interaction: participants
simply cannot communicate effectively, since they do not know when to expect the
other parties to send dats, or whether the other party is ready to receive dats.

However, having a desaription of a protocol has further benefits. It enables verification
to ensure that the protocol can be implemented without resulting in unintended
consequences, such as deadlooks.

Find out more __.

Language Guide Specification

Describe ¢

Scribble is a language
for describing
multiparty protocols

Verify 15

Scribble has a theoretical foundation,
based on the Pi Calculus and Session
Types, to ensure that protocols

~ LI
Projecte «
Endpoint projection is

the term used for
identifying the

An example

module examples;

global protocol Helloworld({role Me, role wWerld) {
hello(Greetings) from Me to wWorld;
choice at world {
hello{GoodMorning) from World to Me;
yor{
hello(Goodafternoon) from wWorld to Me;

A very simply example, but this illustrates the basic syntax for 8 hello world interaction,
where 3 party performing the role Me sends 3 message of type Greefings to another
party performing the role "World', who subsequently makes a decision which determines
which path cf the choice will be followed, resulting in 8 GoodMoming or
GoodAftemoon message being exchanged.

Monitor Q

Use the endpoint
projection for roles
defined within a

Implement &

Various options exist, including (a)
using the endpoint projection for a
role to generate a skeleton code, (b)

http://www.scribble.org

Let’S th SOme pPOtOCOlS http://scribble.doc.ic.ac.uk/

module examples}

-~ global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldjs
v choice at World {
goodMorningl() from World to Mej
~ }or{
goodMorningl() from World to Mej
}
}

Load a sample ﬁ Check Protocol: examples.Helloworld Role: Me Project Generate Graph

http://scribble.doc.ic.ac.uk/

Example

- Q&A(role me, role you)
recursion . rae loop {
Se“fj' ask(string) from you to me;
choice choice at me
{ response (string) from me to you;
continue loop; }
or { enough() from me to you; }}

(. scribble
Protocol Validation -

60

Are we compatible? \ /

send(/nt).send(int).receive(ool)

receive(int).receive(int).send(bhool)

It is all about duality!

Are we compatible?

receive(int).send(int).receive(ool)

receive(nt).receive(ini).send(hool)

Good/Bad MPST by example

- Communication model:
- asynchronous, reliable, role-to-role ordering
- MPST applies to transports that fit this model
- TCP, HTTP, ..., AMQP, ...shared memory
- MPST protocols should be fully specified

- no implicit messages needed to conduct a session

Next....

- Core Scribble constructs

- What can go wrong ?

- MPST safety and liveness errors (informally)
- How are they ruled out (syntactically)

Properties (by example)

=z Communication mismatch

send (A, Div, 1nt) recv (A, Add, 1int) o? Wrong label
send (A, Div, int) recv (A, Add, string) € Wrong payload
send (B, Div, 1nt) recv (A, Div, 1nt) 0 Wrong role

@ Orphan messages

send (A) | send (A)

@ Deadlock

recv (A) | recv (B)

recv (C) |[recv(C) |1f (n=0) then send(A) else send (B)

Scribble constructs:
Role-to-role Message passing

123(Int, String) from A to B; @ @
&
W

Payload types B?123 (Int, Str)

Operator (label, header, ...)

A'123(Int, Str)
& @

- Empty operator and/or payload is allowed

() from A to B;

Scribble constructs:
“Located” choice

choice at A {
1() from A to
2() from A to

} or |

M

A?1() A?2()

3() from A to B; 2
4() from A to C; | |
} .
} C?ZN Y ;

© Internal choice by global choice subject

- External choice for all other roles

Condition

© Only enabled roles can send messages 1n choice paths
- Start role enabled, other disabled
© arole 1s enabled by receiving a message from an enabled role

Scribble constructs:
“Located” choice

choice at A {
buyerl(int) from A to B; // Total to pay
(int) from B to A;// B will pay that much
buyerl(int) from A to C; // C pays the remainder
poor |
buyerl(x:int, y:int) from A to C; // Total to pay
(Int) from C to A; // C pays that much
buyer2(x:int, y:int) from A to B;// B pays the remainder
}
}

- More flexible than directed choice

p—q :{li:Gi}ier Branching

- Branching via different payloads not allowed

choice at A {1() from A to B;} or {1(int) from A to B;} <

Exercise:
“Located” choice

Condition

Only enabled roles can send messages in choice paths
Start role enabled, other disabled
a role 1s enabled by receiving a message from an enabled role

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;
}oor |
2() from B to A; €@ Role B not enabled
choice at B {
2() from B to C;
} oor |
3() from B to C;

}
4() from C to A;

}
UWhat actvally goes wrong 7

© MPST Safety errors:
- © reception error, orphan message, deadlock

Exercise:
“Located” choice

What actvally goes wrong ?

~ MPST Safety errors:
© reception error, orphan message, deadlock

choice at A {
1() from A to B;
1() from B to C;
1() from C to A;

}oor |
2() from B to A; @ Role B not enabled

choice at B {
2() from B to C;

poor |
3() from B to C;
}

4() from C to A;

[s this protocol OK? 1/4

choice at A {

1() from A to B;

3() from B to C;

4() from C to A;
}oor |

2() from A to B;

3() from A to C;

5() from A to C;

}
Errore explained 7

- Ambitious choice for C

- Should Csend a4 or 5to A?

- potential reception errors (4, 5) if interpreted non-deterministically
- Non-deterministic choice at C inconsistent with the choice by A

- Not mergeable in syntactic projections

- has to merge continuations (undefined for distinct outputs)

[s this protocol OK? 1/4

choice at A {

1()_ifom A to B;
- 3() from B to C;

4() from C to A;
}oor |

2() from A to B;
" 3() from A to C;

5() from A to C;

}

[s this protocol OK? 1/4

choice at A {
1() from A to B;
3a() from B to C;
4() from C to A;
}oor |
2() from A to B;
3b() from A to C;
5() from A to C;

[s this protocol OK? 2/4

choice at A {
1() from A to B;
3() from B to C;
do Merge(A, C);
y or {
2() from A to B;
3() from B to C;
do Merge(A, C);

global protocol Merge(role A, role C){
choice at A {
5() from A to C;

}oor |
5() from A to C;

;)

- Duplicate cases inherently mergeable, e.g [POPL'11]

[s this protocol OK? 3/4

choice at A {
la() from A to B;
2() from A to C;
3() from B to C; €
4() from C to A;

} oor {
1b() from A to B;
3() from B to C; €
4() from C to A;

}
Errors explained 7

© “Race condition” on choice on C due to asynchrony

© What should C do after receiving a 3?

© Potential orphan message (2) if interpreted as multi-queue FIFO
~ Inconsistent external choice subject

© (trivially non-mergeable in standard MPST)

© Arole must be enabled by the same role 1n choice paths

»

[s this protocol OK? 4 /4

choice at A {
1() from A to B;
2() from A to C; €
poor |
3() from B to B;
}

Errore explained 7

- Unrealisable choice at C

- No implicit message can be assumed, e.g end of session
- How can C determine if a message is coming?

- Potential deadlock (C waiting for A), or potential orphan (2),
depending on the interpretation

- Empty action option to terminal state
can’t merge end type with anything else

Quiz: Mergeability

choice at A {
1() from A to
2() from C to

y or |
3() from A to D; e

4() from D to
}

o O oo O

- e -

choice at A {
1() from A to
2() from C to

}oor { v
3() from A to B;

2() from C to
}

o M

- o - o

O W

choice at A {
1() from A to
2() from C to
yoor {
3() from A to
4() from C to

}

choice at A {
1() from A to
2() from B to
}oor |
3() from A to
4() from B to

}

O o

O M o o

O o

- o - o

Scribble construct: Recursion

- Tail recursion with recursive scopes A .

rec X { C}
1() from A to B;

continue X;

}
2() from A to B; @ Dead code

Condition

© Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
~ Regular interaction structure at endpoints (CFSM)

Scribble construct: Recursion

- Talil recursion with recursive scopes

rec X {
1() from A to B;
continue X;

}
2() from A to B; € Dead code

rec X { a
1() from A to B; — B!1()
continue X; .
}
2() from C to D;
Condition

© Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
~ Regular interaction structure at endpoints (CFSM)

[s this protocol ok? 1/4

rec X {
choice at A
1() from A to B;
continue X;
2() from A to B; > Dead code
}oor |
3() from A to B;
}

4() from A to B;

}
5() from A to B;

Condition

le Reachability of protocol states (no “dead code™)
© Checked via projection (reachability w.r.t per-role protocol flow)
© Regular interaction structure at endpoints (CFSM)

I[s this protocol OK? 2/4

rec X {
choice at A {

1() from A to
2() from B to
3() from C to

yoor |
4() from A to
5() from C to

o M O

o M

}

continue X;

I[s this protocol OK? 3/4

rec X {
choice at A {
1() from A to B;
continue X;
poor |
1() from A to B;
}

I[s this protocol ok? 4 /4

rec X {

choice at A {
1() from A to
1() from B to
continue X;

poor o
2() from A to B;
2() from B to C; @

M To

© Safety errors?
© hint: Consider the FSM at A?

I[s this protocol ok? 4 /4

rec X {

choice at A {
1() from A to
1() from B to
continue X;

}oor |
2() from A to B;
2() from B to C; @

M To

o Safety errors? © Liveness errors?

> hint: Consider the FSM at A? ~ Role progress
-~ How about now? © Message liveness

(. scribble

Trogmm \/eriﬁ’cau’on

84

Scribble Endpoint APl generation toolchain

, Global
» Protocol spec. as Scribble protocol (asynchronous MPST) brotocol
|
» Global protocol validation Projection
(safely distributable asynchronous protocol) l
» Syntactic projection to local protocols :I)C;Zilol
(static session typing if supported) P |
» Endpoint FSM (EFSM) translation FSM translation
(dynamic session typing by monitors) |
Endpoint
» Protocol states as state-specific channel types FSM

» Call chaining API to link successor states |
API generation

» Java APIs for implementing the endpoints l
Endpoint

API

Example: Adder

global protocol Adder(role C, role S) {

}

Global
protocol

Local
protocol

Endpoint
FSM

(validation, projection)

Endpoint
API

choice at C {

}

}

Add(Integer, Integer) from C to S;

Res(Integer) from S to C;

do Adder(C, S);

or {

Bye() from C to S;
Bye() from S to C;

Example: Adder

Global | Local Endpoint | Endpoint
protocol | protocol FSM | API

(FSM translation)

» Projected Endpoint FSM
(EFSM) for C
global protocol Adder(role C, role S) {
choice at C {
Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);
} or {
Bye() from C to S;
Bye() from S to C;

}
}

Adder: State Channel API for C

» Adder_C_1

» OQutput state channel: (overloaded) send methods

Adder_C_2 send(S role, Add op, Integer argO, Integer argl) throws ...

Adder_C_3 send(S role, Bye op) throws ...

» Parameter types: message recipient, operator and payload
» Return type: successor state

Adder: endpoint implementation for C

Adder_C_1

Adder_C_2

Adder_C_1 c1 = new Adder_C_1(...);

ciﬁ.ﬂ

@ send(S role, Bye op) : Adder_C_3 - Adder_C_1
@ send(S role, Add op, Integer arg0, Integer arg1) : Adder_C_2 - Adder_C_1

A demo Is worth a thousand
slides

MPST beyond
verification

Let it Recover:
Multiparty Protocol-Induced Recovery

Rumyana Neykova, Nobuko Yoshida
Imperial College London

92

