
PRINCIPLES AND PRACTICE OF
SESSION TYPES

Rumyana Neykova & Nobuko Yoshida

http://mrg.doc.ic.ac.uk

Mob󰇮󰇰󰇯󰇺y Re󰇷󰇪󰈜󰈦c󰇬 G󰈦o󰇻p

Post-docs:
Simon CASTELLAN

David CASTRO

Francisco FERREIRA

Raymond HU

Rumyana NEYKOVA

Nicholas NG

Alceste SCALAS

PhD Students:
Assel ALTAYEVA

Juliana FRANCO

Eva GRAVERSEN

http://mrg.doc.ic.ac.uk

ECOOP’16ECOOP’17

CC’18

POPL’17

ICSE’18

[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time API Generation for Distributed Protocols with Interaction
Refinements in F#.
[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.
[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.
[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types
[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming..
[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.
[FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.
[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

Selected Publications 2017/2018

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time API Generation for Distributed Protocols with Interaction
Refinements in F#.
[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.
[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.
[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.
[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming.
[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.
[FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.
[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

Selected Publications 2017/2018

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

Part One

15

Type Me If You Can:  
Introduction to Session Types and Scribble

Rumyana Neykova, Nobuko Yoshida

Distributed
Systems

TypesSession Types

 Content
Specification and Verification of Distributed Protocols

Me You

Interruptible
by

questions

Scribble (by example)

Properties & Safety Guarantees

Session Types

History/Background

Protocol Validation

Program verification

Session Types
Motivation

18

Observation 1: Types
One of the computing most successful concepts
Codify the structure of the data
Serve as a fundamental unit of compositionality
Allow easy error prevention
Appears from the oldest to the newest programming
languages

Observation 2: But distributed systems …

focus on the
communication

 not on
computation

Then…

Distributed
Systems

TypesSession Types

Building blocks

send(int).send(int).receive(bool)

Primitives – to build the types
send, receive (well , there are few more, but it boils down to these
two ☺)

! Context – to be checked by the type system
! protocols – describe the communication between processes

SESSION= STRUCTURED SEQUENCE OF INTERACTIONS

Defining the type
Separate the communication into sessions

! Each process has a type in a session, defined by the
interactions on the session channel

A Protocol

Alice Seller
title

quote

Address

Date

ok

quit

send(int).receive(int).⊕{ok: send(string).receive(date), quit:end}

receive(int).send(int).&{ok: receive(string).send(date), quit: end}

Protocol: Buyer-Seller
Description: Alice buying a book

Are we compatible?

send(int).send(int).receive(bool)

receive(int).receive(int).send(bool)

It is all about duality!

Are we compatible?

receive(int).send(int).receive(bool)

receive(int).receive(int).send(bool)

Wait a minute! What if it is more than 2?

Alice Seller Bob Carol

title

quote

Quote div 2

Address

Date

quote

ok
ok

Quote contr

Delegate T

How does it work?

! Step 1: Write a Global Type
! Step 2: Write Local Programs
! Step 3: Project and Type Check Locally

Session Types in a Nutshell

SESSION = STRUCTURED SEQUENCE OF COMMUNICATION

send(int).send(int).receive(bool)

What is type safe communication?

• Communication follow the described protocol

• No communication mismatch
Communication Safety

Session Fidelity

• No deadlock/ stuck in a session
Progress

“well-typed channels cannot go wrong”

Session Types
Applications

44

MPST
Applications

Deadlock Detection (Go)
Recovery strategies(Erlang)
Type-driven programming (Java, Scala, F#)
Static Verification (C, OCaml, Rust)
Runtime monitoring (Python)

Applications

Session Type Based Tools

Actor Verification

OOI Governance

MPI code generations

ZDLC: Process Modeling

Session Type based Tools
Deadlock Detection for Go [CC’16, POPL’17, ICSE’18]

Applications
Deadlock Detection for Go [CC’16, POPL’17]

Session Types

54

www.scribble.org

http://www.scribble.org/

Meet Scribble www.scribble.org

http://www.scribble.org

Let’s try some protocols: http://scribble.doc.ic.ac.uk/

http://scribble.doc.ic.ac.uk/

Example

global protocol Q&A(role me, role you){
rec loop {
 ask(string) from you to me;
 choice at me
 { response (string) from me to you;

 continue loop; }
 or { enough() from me to you; }}

recursion
send-receive
choice

protocol def

Protocol Validation

60

Are we compatible?

Are we compatible?

Good/Bad MPST by example

Core Scribble constructs
What can go wrong ?
MPST safety and liveness errors (informally)
How are they ruled out (syntactically)

Communication model:
asynchronous, reliable, role-to-role ordering
MPST applies to transports that fit this model

TCP, HTTP, …, AMQP, …shared memory
MPST protocols should be fully specified

no implicit messages needed to conduct a session

Nex󰇹….

Properties (by example)

Communication mismatch
send(A, Div, int) | recv(A, Add, int)
send(A, Div, int) | recv(A, Add, string)
send(B, Div, int) | recv(A, Div, int)

Orphan messages

Deadlock

Wrong label
Wrong payload
Wrong role

recv(A)|recv(B)

send(A)|send(A)

recv(C)|recv(C)|if (n=0) then send(A) else send(B)

Scribble constructs:
Role-to-role Message passing

1

2

1

2

B?123(Int, Str)

A!123(Int, Str)

123(Int, String) from A to B;

Operator (label, header, …)

Payload types
{

() from A to B;

Empty operator and/or payload is allowed

✅

Scribble constructs:
“Located” choice

choice at A {
1() from A to B;
2() from A to C;
} or {
3() from A to B;
4() from A to C;
}

}

Internal choice by global choice subject
External choice for all other roles

1

2

A?1()

A B

B!1() B!3()

C?2() C?4()

A?2()

Only enabled roles can send messages in choice paths
Start role enabled, other disabled
a role is enabled by receiving a message from an enabled role

Con󰈧󰇮󰇺󰇯on

Scribble constructs:
“Located” choice
 choice at A {
 buyer1(int) from A to B; // Total to pay
 (int) from B to A;// B will pay that much
 buyer1(int) from A to C; // C pays the remainder
} or {
 buyer1(x:int, y:int) from A to C; // Total to pay
 (Int) from C to A; // C pays that much
 buyer2(x:int, y:int) from A to B;// B pays the remainder
}

}

More flexible than directed choice

Branching via different payloads not allowed

choice at A {1() from A to B;} or {1(int) from A to B;}

Exercise:
“Located” choice

 choice at A {
 1() from A to B;
 1() from B to C;
 1() from C to A;
} or {
 2() from B to A;
 choice at B {
 2() from B to C;
 } or {
 3() from B to C;
 }
 4() from C to A;

}

Role B not enabled

MPST Safety errors:
reception error, orphan message, deadlock

Wha󰇹 󰇧󰈝t󰇼a󰇰󰇱y 󰇫󰈢󰈥󰈤 w󰇶o󰈡g ?

Exercise:
“Located” choice

 choice at A {
 1() from A to B;
 1() from B to C;
 1() from C to A;
} or {
 2() from B to A;
 choice at B {
 2() from B to C;
 } or {
 3() from B to C;
 }
 4() from C to A;

}

Role B not enabled

MPST Safety errors:
reception error, orphan message, deadlock

Wha󰇹 󰇧󰈝t󰇼a󰇰󰇱y 󰇫󰈢󰈥󰈤 w󰇶o󰈡g ?

Is this protocol OK? 1/4

Ambitious choice for C
Should C send a 4 or 5 to A?
potential reception errors (4, 5) if interpreted non-deterministically

Non-deterministic choice at C inconsistent with the choice by A
Not mergeable in syntactic projections
has to merge continuations (undefined for distinct outputs)

 choice at A {
 1() from A to B;
 3() from B to C;
 4() from C to A;
} or {
 2() from A to B;
 3() from A to C;
 5() from A to C;
}

Er󰇶o󰈦s 󰇪󰈀󰇵l󰈜i󰇳󰇪󰈨 ?

Is this protocol OK? 1/4
 choice at A {
 1() from A to B;
 3() from B to C;
 4() from C to A;
} or {
 2() from A to B;
 3() from A to C;
 5() from A to C;
}

How to fix t?

Is this protocol OK? 1/4
 choice at A {
 1() from A to B;
 3a() from B to C;
 4() from C to A;
} or {
 2() from A to B;
 3b() from A to C;
 5() from A to C;
}

Distinguish label 3!

Is this protocol OK? 2/4
 choice at A {
 1() from A to B;
 3() from B to C;
 do Merge(A, C);
} or {
 2() from A to B;
 3() from B to C;
 do Merge(A, C);
}

global protocol Merge(role A, role C){
 choice at A {
 5() from A to C;
 } or {
 5() from A to C;
}}

Duplicate cases inherently mergeable, e.g [POPL’11]

✅

Is this protocol OK? 3/4
 choice at A {
 1a() from A to B;
 2() from A to C;
 3() from B to C;
 4() from C to A;
} or {
 1b() from A to B;
 3() from B to C;
 4() from C to A;
}

“Race condition” on choice on C due to asynchrony
What should C do after receiving a 3?
Potential orphan message (2) if interpreted as multi-queue FIFO

Inconsistent external choice subject
(trivially non-mergeable in standard MPST)
A role must be enabled by the same role in choice paths

Er󰇶o󰈦s 󰇪󰈀󰇵l󰈜i󰇳󰇪󰈨 ?

Is this protocol OK? 4/4
choice at A {
1() from A to B;
2() from A to C;
} or {
3() from B to B;

}

Unrealisable choice at C
No implicit message can be assumed, e.g end of session
How can C determine if a message is coming?
Potential deadlock (C waiting for A), or potential orphan (2),
depending on the interpretation

Empty action option to terminal state
 can’t merge end type with anything else

Er󰇶o󰈦s 󰇪󰈀󰇵l󰈜i󰇳󰇪󰈨 ?

Quiz: Mergeability
 choice at A {
 1() from A to B;
 2() from C to B;
} or {
 3() from A to D;
 4() from D to B;
}

 choice at A {
 1() from A to C;
 2() from C to D;
} or {
 3() from A to B;
 2() from C to D;
}

 choice at A {
 1() from A to B;
 2() from C to D;
} or {
 3() from A to B;
 4() from C to D;
}

 choice at A {
 1() from A to C;
 2() from B to C;
} or {
 3() from A to B;
 4() from B to C;
}

✅ ✅

Scribble construct: Recursion
Tail recursion with recursive scopes

Reachability of protocol states (no “dead code”)
Checked via projection (reachability w.r.t per-role protocol flow)

Regular interaction structure at endpoints (CFSM)

Con󰈧󰇮󰇺󰇯on

B!2()

A B!1()

 rec X {
 1() from A to B;
 continue X;
}
2() from A to B; Dead code

Scribble construct: Recursion
Tail recursion with recursive scopes

Reachability of protocol states (no “dead code”)
Checked via projection (reachability w.r.t per-role protocol flow)

Regular interaction structure at endpoints (CFSM)

Con󰈧󰇮󰇺󰇯on
D!2()

A CB!1()

 rec X {
 1() from A to B;
 continue X;
}
2() from A to B;

 rec X {
 1() from A to B;
 continue X;
}
2() from C to D; ✅

Dead code

Is this protocol ok? 1/4

Reachability of protocol states (no “dead code”)
Checked via projection (reachability w.r.t per-role protocol flow)

Regular interaction structure at endpoints (CFSM)

Con󰈧󰇮󰇺󰇯on

 rec X {
 choice at A
 1() from A to B;
 continue X;
 2() from A to B;
 } or {
 3() from A to B;
}
4() from A to B;
}
5() from A to B;

Dead code

Why does Scribble not allow this protocol?

 rec X {
 choice at A {
 1() from A to B;
 2() from B to C;
 3() from C to B;
} or {
 4() from A to C;
 5() from C to B;
}
continue X;

Is this protocol OK? 2/4

Is this protocol OK? 3/4

Potential deadlocks or orphans

 rec X {
 choice at A {
 1() from A to B;
 continue X;
} or {
 1() from A to B;
}

A?1()

A CB!1()

B!1()

A?1()

Is this protocol ok? 4/4

Safety errors?
hint: Consider the FSM at A?

 rec X {
 choice at A {
 1() from A to B;
 1() from B to C;
 continue X;
 } or {
 2() from A to B;
 2() from B to C;
}

Is this protocol ok? 4/4

Safety errors?
hint: Consider the FSM at A?
How about now?

Liveness errors?
Role progress
Message liveness

 rec X {
 choice at A {
 1() from A to B;
 1() from B to C;
 continue X;
 } or {
 2() from A to B;
 2() from B to C;
}

Program Verification

84

A demo is worth a thousand
slides

MPST beyond
verification

Let it Recover:
Multiparty Protocol-Induced Recovery

92

