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Example:  “Travel Agency”
Endpoints interacting over WebSocket connections
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Example:  “Travel Agency”
Endpoints interacting over WebSocket connections

• Traveller asks Server about details for a 
particular destination 

• If available: 

• Server receives seat 

• Server responds with price 

• Traveller responds with decision 

• If Traveller rejects, Server releases seat 

• Otherwise, Traveller can try again
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Example:  “Travel Agency”
Potential Communication Errors

• Traveller asks Server about details for a 
particular destination 

• If available: 

• Server reserves seat 

• Server responds with price 

• Traveller responds with decision 

• If Traveller rejects, Server releases seat 

• Otherwise, Traveller can try again.

Communication 
Mismatch 

What if Server sends string, but 
Traveller expects number?
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Example:  “Travel Agency”
Potential Communication Errors

• Traveller asks Server about details for a 
particular destination 

• If available: 

• Server reserves seat 

• Server responds with price 

• Traveller responds with decision 

• If Traveller rejects, Server releases seat 

• Otherwise, Traveller can try again.

Channel Linearity 
Violation 

What if Traveller sends query 
twice? How many seats will be 

reserved?
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Example:  “Travel Agency”
Potential Communication Errors

• Traveller asks Server about details for a 
particular destination 

• If available: 

• Server reserves seat 

• Server responds with price 

• Traveller responds with decision 

• If Traveller rejects, Server releases seat 

• Otherwise, Traveller can try again.

Session Cancellation 

What if Traveller leaves the session 
prematurely before responding to 

the Server’s quotation?
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Applying Multiparty Session Types
Towards Communication Safety

Global TypeGlobal Type
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Applying Multiparty Session Types
Towards Communication Safety

Global Type

Server 
Local Type

Global Type

Local Types

Projection

Selection

Branching
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Applying Multiparty Session Types
Towards Communication Safety

Global Type

Server 
Local Type

Server.ts

Global Type

Local Types

Endpoint 
Implementation

Verify

Projection
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Applying Multiparty Session Types
Towards Communication Safety

Global Type

Traveller  
Local Type

Server 
Local Type

Traveller.ts Server.ts

Global Type

Local Types

Endpoint 
Implementation

Projection
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“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

suggest( string )

Traveller FriendServer
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“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

suggest( string )

Traveller FriendServer

Recall that WebSockets 
define channels between 

client and server.
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“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

Traveller!suggest( string )

Traveller FriendServer
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“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

How to formalise this 
routing mechanism?

Traveller!suggest( string )

Traveller FriendServer

17



Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee 
communication-safe web development 

• RouST - a new session type theory that supports multiparty communications with 
routing mechanisms
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Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee 
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with 
routing mechanisms
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STScript
Session Type API Generation Toolchain for TypeScript

https://github.com/STScript-2020/cc21-artifact
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1⃣ Specify Communications Aspect
Using the Scribble Protocol Specification Language

type <typescript> “Credentials” from “./Payment” as Cred; 
global protocol TravelAgency(role Traveller, role Server) { 
    Destination(string) from Traveller to Server; 
    choice at Server { 
        Available(number) from Server to Traveller; 
        choice at Traveller { 
            Confirm(Cred) from Traveller to Server; 
        } or { Reject() from Traveller to Server; } 
    } or { 
        Full() from Server to Traveller; 
        do FlightService(Traveller, Server); 
}}
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1⃣ Specify Communications Aspect
Using the Scribble Protocol Specification Language

type <typescript> “Credentials” from “./Payment” as Cred; 
global protocol TravelAgency(role Traveller, role Server) { 
    Destination(string) from Traveller to Server; 
    choice at Server { 
        Available(number) from Server to Traveller; 
        choice at Traveller { 
            Confirm(Cred) from Traveller to Server; 
        } or { Reject() from Traveller to Server; } 
    } or { 
        Full() from Server to Traveller; 
        do FlightService(Traveller, Server); 
}}
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2⃣ Endpoint API Generation

Global Protocol

Traveller  
Local Protocol

Server 
Local Protocol

Global Protocol

Local Protocol

Projection

Traveller.ts Server.ts
Endpoint 

Implementation

Verify

Local Protocol as Endpoint Finite State Machine (EFSM)
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2⃣ Endpoint API Generation
Local Protocol as Endpoint Finite State Machine (EFSM)

• Transitions represent IO actions, 
either send or receive 

• Each state has its set of permitted IO 
actions 

• Verify endpoint implementation to 
respect valid traces of its EFSM

Server 
Local Protocol

Server.ts
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2⃣ Endpoint API Generation
Local Protocol as Endpoint Finite State Machine (EFSM)

• Transitions represent IO actions, 
either send or receive 

• Each state has its set of permitted IO 
actions 

• Verify endpoint implementation to 
respect valid traces of its EFSM

Server 
EFSM

Server.ts
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API Generation - Design Philosophy
Generate Correct-by-Construction APIs

• We generate a session runtime to execute EFSM 

• Performs I/O action for current state 

• We construct types for injecting business logic 

• What to send? How to handle receive? 

• Developer instantiates session runtime with 
custom implementations

Send Receive

Current 
state: 

S1

socket.send(…)

Next state: S3

R
un
ti
m
e

Terminal
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Developer 
Logic for 

S1

API Generation - Design Philosophy
Generate Correct-by-Construction APIs
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API Generation - Design Philosophy
Generate Correct-by-Construction APIs

• We generate a session runtime to execute EFSM 

• Performs I/O action for current state 

• We construct types for injecting business logic 

• What to send? How to handle receive? 

• Developer instantiates session runtime with 
custom implementations

Send Receive

Current 
state: 

S1

socket.send(…)

Next state: S3

R
un
ti
m
e

Terminal

Channel APIs are not exposed, 
thus channel reuse is  

impossible by construction

Developer 
Logic for 

S1

Developer 
Logic for 

S1
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3⃣ Callback-Style APIs for Static Linearity
API Generation for Node.js Endpoints

• Send = union type of selections 

• Selection = tuple of label, payload, 
successor state 

• Receive = object literal of branches 

• Branch = callback named after the label 

• We generate a factory object with overloads 

• Facilitate auto-completion in IDEs

const handleQuery = Session.Initial({ 
    Query: async (Next, destination) => { 
      /* snip */ 
      if (response.status === "available") { 
        return  

Next.Available([response.quote],  
/* snip */); 

      } else { 
        return 

Next.Full([], handleQuery); 
      } 
    }, 
});
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3⃣ Callback-Style APIs for Static Linearity
API Generation for Node.js Endpoints

• Send = union type of selections 

• Selection = tuple of label, payload, 
successor state 

• Receive = object literal of branches 

• Branch = callback named after the label 

• We generate a factory object with overloads 

• Facilitate auto-completion in IDEs

        /* snip */ 
        return Next.Available([response.quote], Next => ( 
          Next({ 
            Confirm: async (End, credentials) => { 
              // Handle confirmation 
              await confirmBooking(sessionID, credentials); 
              return End(); 
            }, 
            Reject: async (End) => { 
              await release(sessionID); 
              return End(); 
            }, 
          }) 
        )); 
        /* snip */
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3⃣ Callback-Style APIs for Static Linearity
API Generation for Node.js Endpoints

• Send = union type of selections 

• Selection = tuple of label, payload, 
successor state 

• Receive = object literal of branches 

• Branch = callback named after the label 

• We generate a factory object with overloads 

• Facilitate auto-completion in IDEs
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Challenge - Session Types for GUI

• Channel actions triggered by user interaction 

• User clicks button 

• User presses “Enter” on their keyboard 

• User hovers over HTML element, etc. 

• How to guarantee that users respect channel 
linearity?
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Challenge - Session Types for GUI

• Channel actions triggered by user interaction 

• User clicks button 

• User presses “Enter” on their keyboard 

• User hovers over HTML element, etc. 

• How to guarantee that users respect 
channel linearity?
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3⃣ Safe, Interactive Channel Actions
API Generation for Browser Endpoints

• EFSM states = abstract React components 

• Developer inherits and overrides view function 

• Runtime = React component 

• Send = “component factories” 

• Generates a React component that, by construction, 
binds the permitted I/O action to a UI event 

• Receive = named callbacks 

• Override abstract methods

Runtime.tsx

State1.tsx

TripSelection

Implements

Triggers 
state 

transition

Supplies 
allowed 

transitions 
+ 

Renders 
active state
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3⃣ Safe, Interactive Channel Actions
API Generation for Browser Endpoints

• EFSM states = abstract React components 

• Developer inherits and overrides view function 

• Runtime = React component 

• Send = “component factories” 

• Generates a React component that, by construction, 
binds the permitted I/O action to an UI event 

• Receive = named callbacks 

• Override abstract methods

const London = this.Destination(‘onClick', 
  ev => { 
    this.context.setDestination('London'); 
    return ['London']; 
  }); 

return (<div> 
  /* snip */ 
  <London> 
    <Button size="small" color=“primary"> 
      Enquire 
    </Button> 
  </London> 
  /* snip */ 
</div>);
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3⃣ Safe, Interactive Channel Actions
API Generation for Browser Endpoints

• EFSM states = abstract React components 

• Developer inherits and overrides view function 

• Runtime = React component 

• Send = “component factories” 

• Generates a React component that, by construction, 
binds the permitted I/O action to a UI event 

• Receive = named callbacks 

• Override abstract methods

export default class Waiting extends S8 { 

  Available(price: number) { 
    console.log('OK!'); 
    this.context.setPrice(price); 
  } 

  Full() { 
    console.log('Full!'); 
    this.context.setError(/* snip */); 
    this.context.setDestination(''); 
  } 

  // View function 
  render() { /* snip */ } 

}
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3⃣ Error Handling for Web Applications
Session Cancellation

• Session cancellation is unavoidable - e.g. 
browser disconnects prematurely 

• Server signals to other browser roles when a 
browser role disconnects 

• We generate seams for developers to inject 
custom business logic 

• Server = callback function for cleanup 

• Browser = React component

Player1 Player2

GameServer
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3⃣ Error Handling for Web Applications
Session Cancellation

• Session cancellation is unavoidable - e.g. 
browser disconnects prematurely 

• Server signals to other browser roles when a 
browser role disconnects 

• We generate seams for developers to inject 
custom business logic 

• Server = callback function for cleanup 

• Browser = React component

ca
nc
el
(r
ol
e,
 r
ea
so
n)

Update leaderboard - 
Player 1 forfeited

Render UI saying 
opponent forfeited

GameServer
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Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee 
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with 
routing mechanisms
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RouST
A Theory of Routed Multiparty Session Types

Express original 
communication 

using RouST

Prove that RouST 
preserves 
semantics

Define syntax and 
semantics
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RouST - Syntax
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RouST - Semantics
Labelled Transition System (LTS)

p q

s

p q

s

sq!M2

M2

M1
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RouST - Semantics
Labelled Transition System (LTS)
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Soundness and Completeness
Projected Configurations of Global Types

G

T1 …

Global Type

Local Types

Projection

Tn

Configuration
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Soundness and Completeness
Theorem 4.6, see full paper for proof
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RouST
A Theory of Routed Multiparty Session Types

Express original 
communication 

using RouST

Prove that RouST 
preserves 
semantics

Define syntax and 
semantics
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Towards RouST

52

Encoding :: MPST -> Role -> RouST



RouST
A Theory of Routed Multiparty Session Types

Express original 
communication 

using RouST

Prove that RouST 
preserves 
semantics

Define syntax and 
semantics
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RouST - Preservation of Semantics
Theorem 4.12, see full paper for proof
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Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee 
communication-safe web development 

• RouST - a new session type theory that supports multiparty communications with 
routing mechanisms
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Thank you!
Full paper available at 

https://arxiv.org/abs/2101.04622
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