
Communication-Safe Web Programming in
TypeScript with Routed Multiparty Session Types

CC 2021 - March 3, 2021

Anson Miu (1)(2), Francisco Ferreira (1), Nobuko Yoshida (1), Fangyi Zhou (1)

(1) (2)

Communication-Safe Web Programming in
TypeScript with Routed Multiparty Session Types

2

Example: “Travel Agency”
Endpoints interacting over WebSocket connections

3

Example: “Travel Agency”
Endpoints interacting over WebSocket connections

• Traveller asks Server about details for a
particular destination

• If available:

• Server receives seat

• Server responds with price

• Traveller responds with decision

• If Traveller rejects, Server releases seat

• Otherwise, Traveller can try again

4

Example: “Travel Agency”
Potential Communication Errors

• Traveller asks Server about details for a
particular destination

• If available:

• Server reserves seat

• Server responds with price

• Traveller responds with decision

• If Traveller rejects, Server releases seat

• Otherwise, Traveller can try again.

Communication
Mismatch

What if Server sends string, but
Traveller expects number?

5

Example: “Travel Agency”
Potential Communication Errors

• Traveller asks Server about details for a
particular destination

• If available:

• Server reserves seat

• Server responds with price

• Traveller responds with decision

• If Traveller rejects, Server releases seat

• Otherwise, Traveller can try again.

Channel Linearity
Violation

What if Traveller sends query
twice? How many seats will be

reserved?

6

Example: “Travel Agency”
Potential Communication Errors

• Traveller asks Server about details for a
particular destination

• If available:

• Server reserves seat

• Server responds with price

• Traveller responds with decision

• If Traveller rejects, Server releases seat

• Otherwise, Traveller can try again.

Session Cancellation

What if Traveller leaves the session
prematurely before responding to

the Server’s quotation?

7

Communication-Safe Web Programming in
TypeScript with Routed Multiparty Session Types

8

Communication-Safe Web Programming in
TypeScript with Routed Multiparty Session Types

9

Applying Multiparty Session Types
Towards Communication Safety

Global TypeGlobal Type

10

Applying Multiparty Session Types
Towards Communication Safety

Global Type

Server
Local Type

Global Type

Local Types

Projection

Selection

Branching

11

Applying Multiparty Session Types
Towards Communication Safety

Global Type

Server
Local Type

Server.ts

Global Type

Local Types

Endpoint
Implementation

Verify

Projection

12

Applying Multiparty Session Types
Towards Communication Safety

Global Type

Traveller
Local Type

Server
Local Type

Traveller.ts Server.ts

Global Type

Local Types

Endpoint
Implementation

Projection

13

Verify

“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

suggest(string)

Traveller FriendServer

14

“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

suggest(string)

Traveller FriendServer

Recall that WebSockets
define channels between

client and server.

15

“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

Traveller!suggest(string)

Traveller FriendServer

16

“Travel with a Friend”
Extending Travel Agency with Client-to-Client Interactions

How to formalise this
routing mechanism?

Traveller!suggest(string)

Traveller FriendServer

17

Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with
routing mechanisms

18

Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with
routing mechanisms

19

STScript
Session Type API Generation Toolchain for TypeScript

https://github.com/STScript-2020/cc21-artifact

20

1⃣

2⃣

3⃣

1⃣ Specify Communications Aspect
Using the Scribble Protocol Specification Language

type <typescript> “Credentials” from “./Payment” as Cred;
global protocol TravelAgency(role Traveller, role Server) {
 Destination(string) from Traveller to Server;
 choice at Server {
 Available(number) from Server to Traveller;
 choice at Traveller {
 Confirm(Cred) from Traveller to Server;
 } or { Reject() from Traveller to Server; }
 } or {
 Full() from Server to Traveller;
 do FlightService(Traveller, Server);
}}

21

1⃣ Specify Communications Aspect
Using the Scribble Protocol Specification Language

type <typescript> “Credentials” from “./Payment” as Cred;
global protocol TravelAgency(role Traveller, role Server) {
 Destination(string) from Traveller to Server;
 choice at Server {
 Available(number) from Server to Traveller;
 choice at Traveller {
 Confirm(Cred) from Traveller to Server;
 } or { Reject() from Traveller to Server; }
 } or {
 Full() from Server to Traveller;
 do FlightService(Traveller, Server);
}}

22

2⃣ Endpoint API Generation

Global Protocol

Traveller
Local Protocol

Server
Local Protocol

Global Protocol

Local Protocol

Projection

Traveller.ts Server.ts
Endpoint

Implementation

Verify

Local Protocol as Endpoint Finite State Machine (EFSM)

23

2⃣ Endpoint API Generation
Local Protocol as Endpoint Finite State Machine (EFSM)

• Transitions represent IO actions,
either send or receive

• Each state has its set of permitted IO
actions

• Verify endpoint implementation to
respect valid traces of its EFSM

Server
Local Protocol

Server.ts

24

2⃣ Endpoint API Generation
Local Protocol as Endpoint Finite State Machine (EFSM)

• Transitions represent IO actions,
either send or receive

• Each state has its set of permitted IO
actions

• Verify endpoint implementation to
respect valid traces of its EFSM

Server
EFSM

Server.ts

25

API Generation - Design Philosophy
Generate Correct-by-Construction APIs

• We generate a session runtime to execute EFSM

• Performs I/O action for current state

• We construct types for injecting business logic

• What to send? How to handle receive?

• Developer instantiates session runtime with
custom implementations

Send Receive

Current
state:

S1

socket.send(…)

Next state: S3

R
un
ti
m
e

Terminal

26

Developer
Logic for

S1

API Generation - Design Philosophy
Generate Correct-by-Construction APIs

• We generate a session runtime to execute EFSM

• Performs I/O action for current state

• We construct types for injecting business logic

• What to send? How to handle receive?

• Developer instantiates session runtime with
custom implementations

Send Receive

Current
state:

S1

socket.send(…)

Next state: S3

R
un
ti
m
e

Terminal
Developer
Logic for

S1

27

API Generation - Design Philosophy
Generate Correct-by-Construction APIs

• We generate a session runtime to execute EFSM

• Performs I/O action for current state

• We construct types for injecting business logic

• What to send? How to handle receive?

• Developer instantiates session runtime with
custom implementations

Send Receive

Current
state:

S1

socket.send(…)

Next state: S3

R
un
ti
m
e

Terminal

Channel APIs are not exposed,
thus channel reuse is

impossible by construction

Developer
Logic for

S1

Developer
Logic for

S1

28

3⃣ Callback-Style APIs for Static Linearity
API Generation for Node.js Endpoints

• Send = union type of selections

• Selection = tuple of label, payload,
successor state

• Receive = object literal of branches

• Branch = callback named after the label

• We generate a factory object with overloads

• Facilitate auto-completion in IDEs

const handleQuery = Session.Initial({
 Query: async (Next, destination) => {
 /* snip */
 if (response.status === "available") {
 return

Next.Available([response.quote],
/* snip */);

 } else {
 return

Next.Full([], handleQuery);
 }
 },
});

29

3⃣ Callback-Style APIs for Static Linearity
API Generation for Node.js Endpoints

• Send = union type of selections

• Selection = tuple of label, payload,
successor state

• Receive = object literal of branches

• Branch = callback named after the label

• We generate a factory object with overloads

• Facilitate auto-completion in IDEs

 /* snip */
 return Next.Available([response.quote], Next => (
 Next({
 Confirm: async (End, credentials) => {
 // Handle confirmation
 await confirmBooking(sessionID, credentials);
 return End();
 },
 Reject: async (End) => {
 await release(sessionID);
 return End();
 },
 })
));
 /* snip */

30

3⃣ Callback-Style APIs for Static Linearity
API Generation for Node.js Endpoints

• Send = union type of selections

• Selection = tuple of label, payload,
successor state

• Receive = object literal of branches

• Branch = callback named after the label

• We generate a factory object with overloads

• Facilitate auto-completion in IDEs

31

Challenge - Session Types for GUI

• Channel actions triggered by user interaction

• User clicks button

• User presses “Enter” on their keyboard

• User hovers over HTML element, etc.

• How to guarantee that users respect channel
linearity?

32

Challenge - Session Types for GUI

• Channel actions triggered by user interaction

• User clicks button

• User presses “Enter” on their keyboard

• User hovers over HTML element, etc.

• How to guarantee that users respect
channel linearity?

33

3⃣ Safe, Interactive Channel Actions
API Generation for Browser Endpoints

• EFSM states = abstract React components

• Developer inherits and overrides view function

• Runtime = React component

• Send = “component factories”

• Generates a React component that, by construction,
binds the permitted I/O action to a UI event

• Receive = named callbacks

• Override abstract methods

Runtime.tsx

State1.tsx

TripSelection

Implements

Triggers
state

transition

Supplies
allowed

transitions
+

Renders
active state

34

3⃣ Safe, Interactive Channel Actions
API Generation for Browser Endpoints

• EFSM states = abstract React components

• Developer inherits and overrides view function

• Runtime = React component

• Send = “component factories”

• Generates a React component that, by construction,
binds the permitted I/O action to an UI event

• Receive = named callbacks

• Override abstract methods

const London = this.Destination(‘onClick',
 ev => {
 this.context.setDestination('London');
 return ['London'];
 });

return (<div>
 /* snip */
 <London>
 <Button size="small" color=“primary">
 Enquire
 </Button>
 </London>
 /* snip */
</div>);

35

3⃣ Safe, Interactive Channel Actions
API Generation for Browser Endpoints

• EFSM states = abstract React components

• Developer inherits and overrides view function

• Runtime = React component

• Send = “component factories”

• Generates a React component that, by construction,
binds the permitted I/O action to a UI event

• Receive = named callbacks

• Override abstract methods

export default class Waiting extends S8 {

 Available(price: number) {
 console.log('OK!');
 this.context.setPrice(price);
 }

 Full() {
 console.log('Full!');
 this.context.setError(/* snip */);
 this.context.setDestination('');
 }

 // View function
 render() { /* snip */ }

}

36

3⃣ Error Handling for Web Applications
Session Cancellation

• Session cancellation is unavoidable - e.g.
browser disconnects prematurely

• Server signals to other browser roles when a
browser role disconnects

• We generate seams for developers to inject
custom business logic

• Server = callback function for cleanup

• Browser = React component

Player1 Player2

GameServer

37

3⃣ Error Handling for Web Applications
Session Cancellation

• Session cancellation is unavoidable - e.g.
browser disconnects prematurely

• Server signals to other browser roles when a
browser role disconnects

• We generate seams for developers to inject
custom business logic

• Server = callback function for cleanup

• Browser = React component

ca
nc
el
(r
ol
e,
 r
ea
so
n)

GameServer

Player1 Player2

38

3⃣ Error Handling for Web Applications
Session Cancellation

• Session cancellation is unavoidable - e.g.
browser disconnects prematurely

• Server signals to other browser roles when a
browser role disconnects

• We generate seams for developers to inject
custom business logic

• Server = callback function for cleanup

• Browser = React component

ca
nc
el
(r
ol
e,
 r
ea
so
n)

Update leaderboard -
Player 1 forfeited

Render UI saying
opponent forfeited

GameServer

39

Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with
routing mechanisms

40

Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with
routing mechanisms

41

RouST
A Theory of Routed Multiparty Session Types

Express original
communication

using RouST

Prove that RouST
preserves
semantics

Define syntax and
semantics

42

RouST
A Theory of Routed Multiparty Session Types

Express original
communication

using RouST

Prove that RouST
preserves
semantics

Define syntax and
semantics

43

RouST - Syntax

44

RouST - Semantics
Labelled Transition System (LTS)

p q

s

p q

s

sq!M2

M2

M1

45

RouST - Semantics
Labelled Transition System (LTS)

46

Soundness and Completeness
Projected Configurations of Global Types

G

T1 …

Global Type

Local Types

Projection

Tn

Configuration

47

Soundness and Completeness

G

T1 …

Global Type

Local Types

Projection

Tn

G'

T1' … Tn'
l

l

s s'

48

Soundness and Completeness

G

T1 …

Global Type

Local Types

Projection

Tn

G'

T1' … Tn'
l

l

s s'

49

Soundness and Completeness
Theorem 4.6, see full paper for proof

G

T1 …

Global Type

Local Types

Projection

Tn

G'

T1' … Tn'
l

l

s s'

50

RouST
A Theory of Routed Multiparty Session Types

Express original
communication

using RouST

Prove that RouST
preserves
semantics

Define syntax and
semantics

51

Towards RouST

52

Encoding :: MPST -> Role -> RouST

RouST
A Theory of Routed Multiparty Session Types

Express original
communication

using RouST

Prove that RouST
preserves
semantics

Define syntax and
semantics

53

RouST - Preservation of Semantics
Theorem 4.12, see full paper for proof

54

G G'

!G', s"!G, s"

l

!l, s"

Encoding

MPST

RouST

Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with
routing mechanisms

55

Contributions

• STScript - a toolchain that generates TypeScript APIs that statically guarantee
communication-safe web development

• RouST - a new session type theory that supports multiparty communications with
routing mechanisms

56

Thank you!
Full paper available at

https://arxiv.org/abs/2101.04622

57

http://www.apple.com/uk

