Intersection Types and Runtime Errors in the π -Calculus

Ugo Dal Lago U Bologna / Inria Marc de Visme ENS Lyon Damiano Mazza CNRS / U Paris 13 Akira Yoshimizu

Inria

MRG, Imperial College London 3 December 2020

Background

- Intersection types (Coppo, Dezani 1980): statically capture dynamics. Challenge: transport ITS technology to concurrent programs.
- Melliès, Zeilberger (POPL 2015): a type system is a functor.
- M., Pellissier, Vial (POPL 2018): ITSs by change of base (pullback)

The point of these observations is not the reduction of the familiar to the unfamiliar [...] but the extension of the familiar to cover many more cases. — Saunders MacLane

The π -calculus (polyadic, asynchronous, hyperlocalized)

• Processes and reduction:

$$P, Q ::= \mathbf{0} \mid P \mid Q \mid \nu x P \mid \overline{x} \langle \widetilde{y} \rangle \mid \underbrace{x(\widetilde{y}).P \mid !x(\widetilde{y}).P}_{\text{no inputs on fn}(P)}$$

$$\overline{x} \langle \widetilde{y} \rangle \mid x(\widetilde{z}).P \longrightarrow P\{\widetilde{y}/\widetilde{z}\} \mid |\widetilde{y}| = |\widetilde{z}|$$

$$\overline{x} \langle \widetilde{y} \rangle \mid !x(\widetilde{z}).P \longrightarrow P\{\widetilde{y}/\widetilde{z}\} \mid !x(\widetilde{z}).P \mid \widetilde{y}| = |\widetilde{z}|$$

$$\nu x(!x(\widetilde{y}_1).P_1 \mid \dots \mid !x(\widetilde{y}_n).P_n) \longrightarrow \mathbf{0}$$

• Encodable in (differential) linear logic! (Honda, Laurent 2010; Ehrhard, Laurent 2010; de Visme, M. 2017)

Expressiveness

- Non-determinism: $\nu x(\overline{x} \mid x.\overline{a} \mid x.\overline{b})$
- Non-deterministic $\lambda\mu$ -calculus embeds in AHL π .
- Locks:

$$\begin{split} L := & |a(z).\nu v(\overline{p}\langle v\rangle \mid v.\overline{z}\langle z\rangle) \qquad \text{Lock} := \nu a(\overline{a}\langle a\rangle \mid L) \\ P_i := & p(v).Q_i \quad \text{s.t.} \quad Q_i \longrightarrow^* R_i \mid \overline{v}, \; v \not\in \text{fn}(R_i). \end{split}$$
 We have

$$P_1 | \cdots | P_n | \operatorname{Lock} \longrightarrow^* \nu v(P_1 | \cdots | Q_i | \cdots | P_n | \nu a(v.\overline{a}\langle a \rangle | L))$$
$$\longrightarrow^* P_1 | \cdots | R_i | \cdots | P_n | \operatorname{Lock}$$

Runtime errors and good behavior

- Runtime errors (by example):
 - Arity mismatch: $\overline{x}\langle a,b\rangle \mid x(y).P$
 - Failed send: $\nu x \overline{x} \langle a \rangle$
 - Endless wait: $\nu x x(y) P$
 - Dependency cycle: $\nu(x,y)(x.\overline{y} \mid y.\overline{x})$

Definition. A closed process *P* is well-behaved if, for all $P \longrightarrow^* Q$, *Q* has no runtime error and $Q \longrightarrow^* \mathbf{0}$.

• Good behavior is more complex than WN or SN (both Σ_1^0):

Proposition. The set of well-behaved processes is Π_2^0 -complete!

Rudimentary types

Theorem. P typable, $P \longrightarrow^* Q$ implies Q has no arity mismatch.

Simple types

• Types: as before. Typing judgments:

 $\Gamma \vdash P :: \Delta$

- Γ = input declarations: $(x; \tilde{y}) : A$,

 \tilde{y} = output dependencies;

- Δ = output declarations: x : A
- Example: y depends on x in $x.\overline{y}$. May track dependency cycles.

• Enforced by linear logic correctness:

Simple types: the rules

$$\begin{split} \underbrace{\widetilde{(x;\widetilde{y})}:\Gamma\vdash P::\Delta}_{(x;\widetilde{z}):\Gamma\vdash Q::\Delta} \\ \underbrace{\widetilde{(x;\widetilde{y},\widetilde{z})}:\Gamma\vdash P \mid Q::\Delta}_{(x;\widetilde{y},\widetilde{z}):A,\ldots.(w;\widetilde{z},x):B\ldots\vdash P::\Delta,x:A} \\ \frac{\Gamma,(x;\widetilde{y}):A,\ldots.(w;\widetilde{z},x):B\ldots\vdash P::\Delta,x:A}{\Gamma,\ldots.(w;\widetilde{z},\widetilde{y}):B\ldots\vdash\nu xP::\Delta} \ x\not\in\widetilde{y} \\ \\ \frac{\vdash P::y_1:A_1,\ldots,y_n:A_n,\widetilde{z}:\Delta}{\Gamma,(x;\widetilde{z}):(A_1,\ldots,A_n)\vdash \dagger x(y_1,\ldots,y_n).P::\Delta} \end{split}$$

The rules for **0** and output are the same as in rudimentary types, with empty dependencies.

Theorem. P typable, $P \longrightarrow^* Q$ implies that Q has no arity mismatch and no dependency cycle.

Intersection types

• Pre-types:

$$A, B, C ::= \Theta_1 \land \dots \land \Theta_k$$
pre-types $\Theta, \Xi ::= * \mid (A_1, \dots, A_n)$ sequences

• Types = uniform pre-types, *i.e.*, such that $A \frown A$:

$$\frac{\forall \Theta}{\ast \frown \Theta} \qquad \frac{A_i \frown B_i \quad \forall i \in \{1, \dots, n\}}{(A_1, \dots, A_n) \frown (B_1, \dots, B_n)}$$
$$\frac{\Theta_i \frown \Xi_j \quad \forall i \in \{1, \dots, k\}, \ \forall j \in \{1, \dots, p\}}{\Theta_1 \land \dots \land \Theta_k \frown \Xi_1 \land \dots \land \Xi_p}$$

The meaning of types

• Sequences are about arity of channels:

 $\vdash \overline{x}\langle y, z \rangle :: x : (A, B), y : A, z : B$

• Intersections (non-idempotent!) are about potential use:

 $\vdash \overline{x}\langle y \rangle \mid \overline{x}\langle z \rangle :: x : (A) \land (B), y : A, z : B$

• So we may read back usage information:

$$\Gamma, (x; y): (()) \land (\top) \vdash P :: \Delta \implies$$

 \exists execution of P s.t. x used twice as unary input, once receiving a name used once for nullary output, once receiving a name which is not used. These receptions unlock sending on y.

The typing rules (by example)

The rule for restriction is the same as in simple types.

Capturing good behavior

Theorem. A closed process P is typable iff $P \longrightarrow^* \mathbf{0}$.

- A type derivation $\delta :: P$ talks about one possible behavior of P.
- Given $\delta :: P$ and $\rho : P \longrightarrow^* Q$, we may define $\delta \bowtie \rho$ (matching).

Definition. A process *P* is completely typable if

$$\forall \rho : P \longrightarrow^* Q, \ \exists \delta :: P \text{ s.t. } \delta \bowtie \rho.$$

Theorem. Completely typable = well-behaved.

Discussion and perspectives

- Π_2^0 -completeness is an insurmountable obstacle: typing is Σ_1^0 . Our type system does the best one may hope for.
- There are cases however in which all type derivations for a process are captured by a "parametric derivation" (see the paper).
- This suggests incorporating parameters in derivations, in the style of dependent linear PCF (Dal Lago, Gaboardi 2010), so that one derivation captures every behavior of a process.
- Linear approximations for the π -calculus?

Linear approximations

 $\Xi \vdash p \sqsubset P; \Upsilon$ where $\Xi, \Upsilon = \ldots a \sqsubset x \ldots$ with a linear

 $\begin{array}{c} \text{(this is an example of the general rule)} \\ \hline \vdash \overline{a} \langle b_1, b_2 \rangle \sqsubseteq \overline{x} \langle y, y \rangle; b_1 \sqsubseteq y, b_2 \sqsubseteq y \end{array} \qquad \begin{array}{c} \vdash p \sqsubset P; \widetilde{\mathbf{b}} \sqsubseteq \widetilde{y}, \Upsilon \\ \hline a \sqsubset x \vdash a(\widetilde{\mathbf{b}}).p \sqsubset x(\widetilde{y}).P; \Upsilon \end{array} \end{array}$

$$\frac{\vdash p_1 \sqsubset P; \Upsilon_1, \widetilde{\mathbf{b}}_1 \sqsubset \widetilde{y} \quad \dots \quad \vdash p_n \sqsubset P; \Upsilon_n, \widetilde{\mathbf{b}}_n \sqsubset \widetilde{y}}{a_1 \sqsubset x, \dots, a_n \sqsubset x \vdash a_1(\widetilde{\mathbf{b}}_1).p_1 \mid \dots \mid a_n(\widetilde{\mathbf{b}}_n).p_n \sqsubset !x(\widetilde{y}).P; \Upsilon_1, \dots, \Upsilon_n}$$

 $\frac{\Xi_1 \vdash p \sqsubset P; \Upsilon_1 \quad \Xi_2 \vdash q \sqsubset Q; \Upsilon_2}{\Xi_1, \Xi_2 \vdash p \mid q \sqsubset P \mid Q; \Upsilon_1, \Upsilon_2} \qquad \frac{\Xi, \mathbf{a}^- \sqsubset x \vdash p \sqsubset P; \Upsilon, \mathbf{a}^+ \sqsubset x}{\Xi \vdash \nu(\mathbf{a}^-, \mathbf{a}^+) p \sqsubset \nu x P; \Upsilon}$

 $\mathbf{a} \sqsubset x \text{ means } a_1 \sqsubset x, \dots, a_n \sqsubset x \text{ for some } n \ge 0.$ $\widetilde{\mathbf{a}} \sqsubset \widetilde{x} \text{ means } \mathbf{a}_1 \sqsubset x_1, \dots, \mathbf{a}_n \sqsubset x_n \text{ for some } n \ge 0.$