Intersection Types and Runtime Errors
in the 7-Calculus

Ugo Dal Lago U Bologna / Inria
Marc de Visme ENS Lyon
Damiano Mazza CNRS / U Paris 13
Akira Yoshimizu Inria

MRG, Imperial College London
3 December 2020

Background

e Intersection types (Coppo. Dezani 1980): stafically capture dynamics.
Challenge: transport ITS technology to concurrent programs.

e Mellies, Zeilberger (POPL 2015): a type system is a functor.
e M., Pellissier, Vial (POPL 2018): ITSs by change of base (pullback)

pullback poly approx
encoding®(U) U
encoding .]
prog lang linear logic

The point of these observations is not the reduction of the familiar to the unfamiliar . . .]
but the extension of the familiar fo cover many more cases. — Saunders MaclLane

The m-calculus (polyadic, asynchronous, hyperlocalized)

e Processes and reduction:

P,Q:::O‘P|Q‘VxP‘E(@

2({).P (2(3).P

no inputs on fn(P)

Ty |=(2).P — P{y/z} Yl = |7]
£@) 1)L — P/ | E)P 5=
ve(lae(y).PL |- | '2(Yn).Pn) — O

e ENncodable in iferentialy liNnear logic!
(Honda, Laurent 2010; Ehrhard, Laurent 2010; de Visme, M. 2017)

Expressiveness

e Non-determinism: vz(z | z.a | .b)

e Non-deterministic Au-calculus embeds in AHL.

e Locks:
L:=la(z).vo(®) |vE(z) Lock := va(ala) | L)
P=p().Q: st Q; —" Ri|7, v fn(R,).
We have
Py|---| Py | Lock —* vu(Py|--- [Qi |-+ | Pu | va(v.ala) | L))

—* P |---|Ri|--| Py | Lock

Runtime errors and good behavior

e Runtime errors (by example):

- Arity mismatch: z(a,b) | z(y).P

- Failed send: vz z{(a)

- Endless wait: vz z(y).P

- Dependency cycle: v(z,y)(x.y | y.7)

Definition. A closed process P is well-behaved if, forall P —* Q,
@ has no runtime error and —* 0.

e Good behavioris more complex than WN or SN (both X9):

Proposition. The set of well-behaved processes is I15-complete!

Rudimentary types

Types: A, B,C:=(A1,...,A,) Judgments: inpkF P :: outf

'EFP:2A THQ:A Le:AFP:Ax: A
'0: A '-P|Q:A vz P A

CEZ(yr, oo Yn) s (A, Ap),yn c Ay ooy Y s Ay A

=Py Aoy, A, A
Lo (A, .. An) FTz(yr, - ooy yn) P A

Theorem. P typable, P —* @ implies () has no arity mismatch.

Simple types
e Types: as before. Typing judgments:
I'EP: A

o~
.
.

- I' = input declarations: (z;y) : A,
y = oufput dependencies;
- A = oufput declarations: « : A

e Example: y dependson z inx.y. May frack dependency cycles.

nets

e Enforced by linear logic correctness:

Simple types: the rules

—

(x;9): THFP=2A (2;2):TFHQ: A
(x;9,2): THEP|Q: A

A,

I, (x;y) :
r..

Ve

(w:zyx):B...FP:2Ajxz: A 47
(w;z,y): B...FvzP: A vy

Pyt Ay yn s A,z s A
D, (2:2) (A1, Ag) F f2(yn, o yo) P A

The rules for 0 and output are the same as in rudimentary types, with empty dependencies.

Theorem. P typable, P —* @ implies that) has no arity mis-
match and no dependency cycle.

Intersection types

e Pre-types:

A B,C =01 N ---NOy pre-types
O,Z:=x%x|(A1,..., Ap) sequences
e Types = uniform pre-types, i.e., such that A —~ A;

*x —~ © (Al,...,An)/\(Bl,...,Bn)

@i/\Ej \V/iE{l,...,k}, V]E{l,,p}
OLA--AOr ~E1A--AE,

The meaning of types

e Sequences are about arity of channels:

-Z(y,z) sz (A, B),y: A z:B

e Infersections (non-idempotent!) are about potential use:

Fx(y) | T(z) mx: (A)AN(B),y: A, z: B

e SO wWe may read back usage information:

J execution of P s.t. z used twice as
unary input, once receiving a name
Ly (z;y): (O)A(T) FP::A = used once for nullary output, once
receiving a name which is not used.
These receptions unlock sending on y.

The typing rules (by example)

w:TkFO:zZ: T |—f<:13,y>:::13:(A,B)/\A,y:Bout

Py AA | FPay:A ... FP:iy:Ag
(z;0ut(P)\ y) : (A) F z(y).P = A" (25) (A Ao A (Ag) Fla(y).P

lin

(x;2) :AFPuy:C (:U;@):BI—Q::y:Dpa
(x;z,w) : ANBFP|Q:y:CAND

r

(m;z):*l—x.Z::z:Tin*

The rule for restriction is the same as in simple types.

Capturing good behavior

Theorem. A closed process P is typable iff P —* 0.

e A type derivation ¢ :: P talks about one possible behavior of P.
e Givenj :: Pandp: P —* Q, we may define § i p (matfching).
Definition. A process P is completely typable if

Vp: P—"Q, 36 :: Ps.t. dxp.

Theorem. Completely typable = well-behaved.

Discussion and perspectives

o IIY-completeness is an insurmountable obstacle: typing is XY,
Our type system does the best one may hope for.

e There are cases however in which all type derivations for a pro-
cess are captured by a “parametric derivation” (see the paper).

e This suggests incorporating parameters in derivations, in the
style of dependent linear PCF (Dal Lago. Gaboardi 2010), SO that one
derivation captures every behavior of a process.

e Linear approximations for the w-calculus?

Linear approximations

=FpC P;Y where =, YT =...aC x... withalinear

- (this is an example of the general rule) - p ENP; bCy, T
~0C0 @by, bo) CT(y,y); 01 Cy,ba Ty aCxtalb)pCxz(y).P;Y

o CP:Y,biCY ... Fp,C P ,b,C 4
ar L x,...,0an Eml_al(bl)'pl ‘ ‘ Gn(bn)pn L 'x(g)P7T177Tn

—
b
[S—

FpC P;Yy ZabkqgrC Q; Y Ea CaokpC P;Y,a"Cuw
1,22 plgC PlQ; Ty, Ty Erv(@a,at)pCve P Y

(11|~

a::cmeonSalE:c,...,an[a:forsomenzo.
a_ rmeansa; C xq,...,a, C_ z, forsomen > 0.

