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Criticism 2: Session type systems should feature recursion.’

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.
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Multiparty Compatibility: Proves the following threads are multiparty compatible.
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Subtyping: Establishes the following subtype relation (Ue V < Tiff Ue Ve T F).
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Corollary (algorithmic subtyping)
Subtyping is a decidable preorder.

Theorem (algorithmic typing)

[suBsUMPTION]

) ArP:T T<U o
All instances of AP U can be pushed to the bottom of a type derivation.

Theorem (deadlock freedom)
Any race-free multiparty-compatible network satisfies deadlock freedom.

Corollary (substitution principle)

P can replace Q while preserving multiparty compatibility,
whenever T < U, where+ P: Tand+ Q: U.



Now | see! So, what cool things can you do?



user name: | Owner:

Password:
?login_page(app-ID, scope);

ldeny @ |authorise(name, password)

If you have no EasyChair account, create an account
Forgot your password? click here
problems to Iog in? click here

Trusted App:

llogin_page(app-ID, scope);
?deny;!release
+ ?authorise(name, password);
recY. lrelease
@ lrequest(token);
?revoke + ?response(data);Y

Resource:

recX. ?release
+ ?request(token);
Irevoke & !response(data); X




Trusted App:

llogin_page(app-ID, scope);
?deny;'release
+ ?authorise(name, password);
recY.lrelease
@ !request(token);
?revoke + ?response(data);Y

OAuth 2.0 Server:

?initiate(app-ID, scope);
llogin_page(app-ID, scope);
(?deny;!close;!release)

+ ?authorise(name, password);

(!close;!release)

@ lauthorisation_code(code);
?exchange(app-ID, secret, code);
(!close;!release)

@ laccess_token(token)

Untrusted App:

linitiate(add_ID, scope);
?close
+ ?authorisation_code(code);
lexchange(app-ID, secret, code);
?close
+ ?access_token(token);
recY. lrequest(token);
?revoke
+ 7?response(data);Y



Trusted App:

llogin_page(app-ID, scope);
?deny;'release
+ ?authorise(name, password);
recY.lrelease
@ !request(token);
?revoke + ?response(data);Y

OAuth 2.0 Server:

?initiate(app-ID, scope);
llogin_page(app-ID, scope);
(?deny;!close;!release)

+ ?authorise(name, password);

(!close;!release)

@ lauthorisation_code(code);
?exchange(app-ID, secret, code);
(!close;!release)
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Untrusted App:

linitiate(add_ID, scope);
?close
+ ?authorisation_code(code);
lexchange(app-ID, secret, code);
?close
+ ?access_token(token);
recY. lrequest(token);
?revoke

Untrusted App ® OAuth Server < Trusted App

+ 7?response(data);Y




An application that delegates to an Oauth 2.0 server

Resource Untrusted App OAuth Server Owner

initiate(app_ID,scope)
R

begin delegation

login-page (app-ID, scope)

authorize(name, password)

end delegation

authorisation_code(code)

exchange (app-ID, secret, code)

access-token(token)

sion request(token)

choice| at Resource J

response(data)

revoke




Allowing the deputy to make a choice is useful

Resource

‘ Untrust

od App ‘




Internal delegation may liberate multiparty subtyping with roles.

Trusted App: —

Owner!login_page(app-ID, scope);
?deny;'release
+ Owner?authorise(name, password);
recY .lrelease
® Resource!request(token);
?revoke + Resource?response(data);Y

AppZinitiate(app-ID, scope);

Appofe;

Owner'login_page(app-ID, scope);

(?deny;e)oApp;!close;!release)

+ Owner?authorise(name, password);
e)oApp;

('close;!release)

@ Applauthorisation_code(code);
App?exchange(app-ID, secret, code);
(!close;!release)

@ App'access_token(token)

OAuthlinitiate(add_ID, scope);
o<(OOAUth; OAUth.>>O;
?close
+ OAuth?authorisation_code(code);
OAuth'exchange(app-ID, secret, code);
?close
+ OAuth?access_token(token);
recY. OAuth!request(token);
?revoke
+ Resource?response(data);Y
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Question for the Mobility Reading Group: What established
extensions of global types allow the above to be typed and also
guarantee livelock freedom (or, at least, deadlock freedom)?



