
Session Subtyping and Multiparty Compatibility

using Circular Sequents

31st International Conference on Concurrency Theory (CONCUR 2020)
Adapted for Mobility Reading group 22/10/2020.

Ross Horne

Computer Science, University of Luxembourg

1-4 September 2020

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It’s novelty is the use of deep inference
— rules can be applied in any context.

` C
{

T ⊗ (U ` V)
}

` C
{

(T ⊗ U) ` V
}

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

` T , U , Γ

` T ` U , Γ

` T , Γ ` U , ∆

` T ⊗ U , Γ,∆

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It’s novelty is the use of deep inference
— rules can be applied in any context.

` C
{

T ⊗ (U ` V)
}

` C
{

(T ⊗ U) ` V
}

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

` T , U , Γ

` T ` U , Γ

` T , Γ ` U , ∆

` T ⊗ U , Γ,∆

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It’s novelty is the use of deep inference
— rules can be applied in any context.

` C
{

T ⊗ (U ` V)
}

` C
{

(T ⊗ U) ` V
}

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

` T , U , Γ

` T ` U , Γ

` T , Γ ` U , ∆

` T ⊗ U , Γ,∆

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It’s novelty is the use of deep inference
— rules can be applied in any context.

` C
{

T ⊗ (U ` V)
}

` C
{

(T ⊗ U) ` V
}

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

` T , U , Γ

` T ` U , Γ

` T , Γ ` U , ∆

` T ⊗ U , Γ,∆

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It’s novelty is the use of deep inference
— rules can be applied in any context.

` C
{

T ⊗ (U ` V)
}

` C
{

(T ⊗ U) ` V
}

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

` T , U , Γ

` T ` U , Γ

` T , Γ ` U , ∆

` T ⊗ U , Γ,∆

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It’s novelty is the use of deep inference
— rules can be applied in any context.

` C
{

T ⊗ (U ` V)
}

` C
{

(T ⊗ U) ` V
}

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

` T , U , Γ

` T ` U , Γ

` T , Γ ` U , ∆

` T ⊗ U , Γ,∆

[Times]
T , U , Γ `

T ⊗ U , Γ `

[Par]
T , Γ1 ` U , Γ2 `

T ` U , Γ1 , Γ2 `

[OK]

OK , OK , . . . OK `

[Join]
!λj ;Tj , Γ ` for all j ∈ I∨

i∈I

!λj ;Ti , Γ `

[Meet]
?λj ;Tj , Γ ` for some j ∈ I∧

i∈I

?λj ;Ti , Γ `

[Prefix]
T , U , Γ `

!λ;T , ?λ;U , Γ `

[Intr]
I ⊆ J Tk , Uk , Γ ` for all k ∈ I∨

i∈I

!λi ;Ti ,
∧
j∈J

?λj ;Uj , Γ `

[Times]
T , U , Γ `

T ⊗ U , Γ `

[Par]
T , Γ1 ` U , Γ2 `

T ` U , Γ1 , Γ2 `

[OK]

OK , OK , . . . OK `

[Join]
!λj ;Tj , Γ ` for all j ∈ I∨

i∈I

!λj ;Ti , Γ `

[Meet]
?λj ;Tj , Γ ` for some j ∈ I∧

i∈I

?λj ;Ti , Γ `

[Prefix]
T , U , Γ `

!λ;T , ?λ;U , Γ `

[Intr]
I ⊆ J Tk , Uk , Γ ` for all k ∈ I∨

i∈I

!λi ;Ti ,
∧
j∈J

?λj ;Uj , Γ `

[Times]
T , U , Γ `

T ⊗ U , Γ `

[Par]
T , Γ1 ` U , Γ2 `

T ` U , Γ1 , Γ2 `

[OK]

OK , OK , . . . OK `

[Join]
!λj ;Tj , Γ ` for all j ∈ I∨

i∈I

!λj ;Ti , Γ `

[Meet]
?λj ;Tj , Γ ` for some j ∈ I∧

i∈I

?λj ;Ti , Γ `

[Prefix]
T , U , Γ `

!λ;T , ?λ;U , Γ `

[Intr]
I ⊆ J Tk , Uk , Γ ` for all k ∈ I∨

i∈I

!λi ;Ti ,
∧
j∈J

?λj ;Uj , Γ `

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.

[Fix-µ]

[Θ][µt.T , Γ] T
{
µt.T/t

}
, Γ `

[Θ] µt.T , Γ `

[Leaf]

[Θ][Γ] Γ `

1Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.

[Fix-µ]

[Θ][µt.T , Γ] T
{
µt.T/t

}
, Γ `

[Θ] µt.T , Γ `

[Leaf]

[Θ][Γ] Γ `

1Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.

[Fix-µ]

[Θ][µt.T , Γ] T
{
µt.T/t

}
, Γ `

[Θ] µt.T , Γ `

[Leaf]

[Θ][Γ] Γ `

1Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.

[Fix-µ]

[Θ][µt.T , Γ] T
{
µt.T/t

}
, Γ `

[Θ] µt.T , Γ `

[Leaf]

[Θ][Γ] Γ `

1Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.1

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.

[Fix-µ]

[Θ][µt.T , Γ] T
{
µt.T/t

}
, Γ `

[Θ] µt.T , Γ `

[Leaf]

[Θ][Γ] Γ `

1Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations :

U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)

Γ = U , V , T
Γ′ = U , V , !λ1;T

Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

An Example

[Γ′][Γ] Γ `
[Leaf]

[Γ′][Γ] ?λ1;U , V , !λ1;T `
[Prefix]

[Γ] U , V , !λ1;T `
[Fix-µ]

[Γ′′][Γ] Γ `
[Leaf]

[Γ′′][Γ] U , ?λ2;V , !λ2;T `
[Prefix]

[Γ] U , V , !λ2;T `
[Fix-µ]

[Γ] U , V , !λ1;T ∨ !λ2;T `
[Join]

U , V , T `
[Fix-µ]

µu.(?λ1;u) ⊗ µv.(?λ2;v) ⊗ µt.(!λ1;t ∨ !λ2;t) `
[Times]

Abbreviations : U = µu.(?λ1;u)
V = µv.(?λ2;v)
T = µt.(!λ1;t ∨ !λ2;t)
Γ = U , V , T

Γ′ = U , V , !λ1;T
Γ′′ = U , V , !λ2;T

Multiparty Compatibility: Proves the following threads are multiparty compatible.

µY .(?λ1;Y) ‖ µZ .(?λ2;Z) ‖ µX .(!λ1;X ⊕ !λ2;X)

Subtyping: Establishes the following subtype relation (U ⊗ V ≤ T iff U ⊗ V ⊗ T `).

µu.(?λ1;u) ⊗ µv.(?λ2;v) ≤ µt.(?λ1;t ∧ ?λ2;t)

The Cut Elimination “Gold Mine” (again)

Theorem (cut elimination)

The rule

[Cut]

Γ1 , T ` T , Γ2 `

Γ1 , Γ2 `
is admissible in Session.

Corollary (algorithmic subtyping)
Subtyping is a decidable preorder.

Theorem (algorithmic typing)

All instances of

[subsumption]
∆ ` P : T T ≤ U

∆ ` P : U
can be pushed to the bottom of a type derivation.

Theorem (deadlock freedom)
Any race-free multiparty-compatible network satisfies deadlock freedom.

Corollary (substitution principle)
P can replace Q while preserving multiparty compatibility,

whenever T ≤ U, where ` P : T and ` Q : U.

The Cut Elimination “Gold Mine” (again)

Theorem (cut elimination)

The rule

[Cut]

Γ1 , T ` T , Γ2 `

Γ1 , Γ2 `
is admissible in Session.

Corollary (algorithmic subtyping)
Subtyping is a decidable preorder.

Theorem (algorithmic typing)

All instances of

[subsumption]
∆ ` P : T T ≤ U

∆ ` P : U
can be pushed to the bottom of a type derivation.

Theorem (deadlock freedom)
Any race-free multiparty-compatible network satisfies deadlock freedom.

Corollary (substitution principle)
P can replace Q while preserving multiparty compatibility,

whenever T ≤ U, where ` P : T and ` Q : U.

Now I see! So, what cool things can you do?

Owner:

?login page(app ID, scope);
!deny ⊕ !authorise(name, password)

Trusted App:

!login page(app ID, scope);
?deny;!release
+ ?authorise(name, password);
recY . !release

⊕ !request(token);
?revoke + ?response(data);Y

Resource:

recX . ?release
+ ?request(token);

!revoke ⊕ !response(data);X

Trusted App:

!login page(app ID, scope);
?deny;!release
+ ?authorise(name, password);
recY .!release
⊕ !request(token);

?revoke + ?response(data);Y

7→

OAuth 2.0 Server:

?initiate(app ID, scope);
!login page(app ID, scope);
(?deny;!close;!release)
+ ?authorise(name, password);

(!close;!release)
⊕ !authorisation code(code);

?exchange(app ID, secret , code);
(!close;!release)
⊕ !access token(token)

Untrusted App:

!initiate(add ID, scope);
?close
+ ?authorisation code(code);

!exchange(app ID, secret , code);
?close
+ ?access token(token);
recY . !request(token);

?revoke
+ ?response(data);Y

Untrusted App ⊗ OAuth Server ≤ Trusted App

Trusted App:

!login page(app ID, scope);
?deny;!release
+ ?authorise(name, password);
recY .!release
⊕ !request(token);

?revoke + ?response(data);Y

7→

OAuth 2.0 Server:

?initiate(app ID, scope);
!login page(app ID, scope);
(?deny;!close;!release)
+ ?authorise(name, password);

(!close;!release)
⊕ !authorisation code(code);

?exchange(app ID, secret , code);
(!close;!release)
⊕ !access token(token)

Untrusted App:

!initiate(add ID, scope);
?close
+ ?authorisation code(code);

!exchange(app ID, secret , code);
?close
+ ?access token(token);
recY . !request(token);

?revoke
+ ?response(data);YUntrusted App ⊗ OAuth Server ≤ Trusted App

An application that delegates to an Oauth 2.0 server

Resource Untrusted App OAuth Server Owner

initiate(app ID,scope)↔
begin delegation

login page(app ID, scope)

authorize(name, password)

end delegation

authorisation code(code)

exchange(app ID, secret, code)

access token(token)

request(token)

response(data)

recursion

revoke

choice at Resource

Allowing the deputy to make a choice is useful

Resource Untrusted App OAuth Server Owner

initiate(app ID,scope)↔
begin delegation

login page(app ID, scope)

authorize(name, password)

end delegation

authorisation code(code)

exchange(app ID, secret, code)

access token(token)

request(token)

response(data)

recursion

revoke

choice at Resource

choice at Server

no

release

choice at Server

deny

end delegation

error

release

choice at Owner

Internal delegation may liberate multiparty subtyping with roles.

Trusted App:

Owner!login page(app ID, scope);
?deny;!release
+ Owner?authorise(name, password);
recY .!release
⊕ Resource!request(token);

?revoke + Resource?response(data);Y

7→

App?initiate(app ID, scope);
App◦〈〈•;
Owner!login page(app ID, scope);
(?deny;•〉〉◦App;!close;!release)
+ Owner?authorise(name, password);
•〉〉◦App;
(!close;!release)
⊕ App!authorisation code(code);

App?exchange(app ID, secret , code);
(!close;!release)
⊕ App!access token(token)

OAuth!initiate(add ID, scope);
◦〈〈•OAuth; OAuth•〉〉◦;
?close
+ OAuth?authorisation code(code);

OAuth!exchange(app ID, secret , code);
?close
+ OAuth?access token(token);
recY .OAuth!request(token);

?revoke
+ Resource?response(data);Y

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with
rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both
“Kobayashi” and “Padovani” live (LIVE and LIVE+ respectively in
POPL’19). System Session verifies this (but only guarantees deadlock
freedom without further modifications).

µX . (!λ1; X ⊕ !λ2) ‖ µY . (?λ1; Y + ?λ2) ‖ µX . (!λ3; X ⊕ !λ4) ‖ µY . (?λ3; Y + ?λ4)

Question for the Mobility Reading Group: What established
extensions of global types allow the above to be typed and also
guarantee livelock freedom (or, at least, deadlock freedom)?

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with
rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both
“Kobayashi” and “Padovani” live (LIVE and LIVE+ respectively in
POPL’19). System Session verifies this (but only guarantees deadlock
freedom without further modifications).

µX . (!λ1; X ⊕ !λ2) ‖ µY . (?λ1; Y + ?λ2) ‖ µX . (!λ3; X ⊕ !λ4) ‖ µY . (?λ3; Y + ?λ4)

Question for the Mobility Reading Group: What established
extensions of global types allow the above to be typed and also
guarantee livelock freedom (or, at least, deadlock freedom)?

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with
rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both
“Kobayashi” and “Padovani” live (LIVE and LIVE+ respectively in
POPL’19). System Session verifies this (but only guarantees deadlock
freedom without further modifications).

µX . (!λ1; X ⊕ !λ2) ‖ µY . (?λ1; Y + ?λ2) ‖ µX . (!λ3; X ⊕ !λ4) ‖ µY . (?λ3; Y + ?λ4)

Question for the Mobility Reading Group: What established
extensions of global types allow the above to be typed and also
guarantee livelock freedom (or, at least, deadlock freedom)?

