Session Subtyping and Multiparty Compatibility

using Circular Sequents

31st International Conference on Concurrency Theory (CONCUR 2020)
Adapted for Mobility Reading group 22/10/2020.

Ross Horne

Computer Science, University of Luxembourg

1-4 September 2020

Criticism 1: Deep Inference.

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It's novelty is the use of deep inference
— rules can be applied in any context.

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over

the past 20 years. Enables the design of FC{To (U V))
analytic proof systems for non-commutative _—
logics. It's novelty is the use of deep inference FC{(TeU)® V)
— rules can be applied in any context.

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the
calculus of structures.”

The calculus of structures: Developed over

the pa§t 20 years. Enables the design of ‘ FC[Te(UmV))
analytic proof systems for non-commutative _—
logics. It's novelty is the use of deep inference FC{(TeU)m V}

— rules can be applied in any context.

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

Criticism 1: Deep Inference.

“I must confess we were a little bit hampered by our lack of familiarity with the

calculus of structures.”

The calculus of structures: Developed over
the past 20 years. Enables the design of
analytic proof systems for non-commutative
logics. It's novelty is the use of deep inference
— rules can be applied in any context.

The sequent calculus: The original analytic
proof calculus of Gentzen. Published in
1934, so is widely understood. Rules are
applied to the root connective of a formula
selected from a sequence of formulae.

FC[Te (URV))
FC{(TeU)B V)
FT,U,T FT.T FU,A
FT®U,T FToU,T A

[TiMes] [PaR]
T,U. T+ T,Ii+ U,k

[OK]
OK, OK,...OK |

[TiMes] [PaR]

[OK]
T,U, Tk T.He U, T2k
- = OK, 0K, ...OKFK

TeU, Ik T3U, M, Mok
[JoiN] [Meer]
W;Tj, T+ foralljel 25T, T forsomejel

\ 1T, T NPT TH

iel iel

[PREFIX]
T,U, -

AT, 22U, Tk

[TiMes] [PaR]

[OK]
T,U,TF T,Ti+ U,T2r
[OK, OK,...OK}
TeU, I+ THU, M, Mok
[Jon] [MEEeT]
W;Tj, T+ foralljel 25T, T forsomejel
\ 1T, T NPT TH
iel iel
[PREFIX]
T,U, T+
AT, 22U, Tk

[INTR]

Icd Tix,Ug, T+ forallkel

\ T, A2y, e

iel jed

Criticism 2: Session type systems should feature recursion.’

Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.’

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.’

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.’

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

Criticism 2: Session type systems should feature recursion.’

Observation 1: Most session calculi are restricted to a regular setting — a bounded
number of single threaded participants.

Observation 2: In the regular setting, we can use equirecursion from type theory — fixed
points are equivalent to their infinite unfoldings.

Observation 3: In proof theory, such regular recursive proofs are circular proofs.

Design choice: Apply an algorithmic approach to equirecursive subtyping, due to Pierce
and Sangiorgi, to make proofs in the sequent calculus circular.

[Fix-p]
[© [ut.T, I T4}, T F

[O]utT, T+

[LeaF]
[e1rire

Thanks to discussions with Mariangiola Dezani-Ciancaglini and Paola Giannini.

An Example

[Times]
Hu.(?21;u) @ pv.(?22;v) @ pt.(1A4;t v gt +

Abbreviations :

An Example

U,V.Tr [Fxeu]
Hu.(?21;u) @ pv.(?22;v) @ pt.(1A4;t v Lag;t) +

[Times]

Abbreviations : U= uu.(?21;u)
V= puv.(?12;v)
T= pt(124;tV1251)

An Example

[r]U,V,!/H;TV!/lz;TD-
Fix-
U,V.Tr [Fxeu]

Hu.(?21;u) @ pv.(?22;v) @ pt.(1A4;t v Lag;t) +

Abbreviations :

[Jo]
[Times]
U= uu(?21;u)
= uv.(?22;v)
= ut(A;tv 1Ia5t)
r= u,v,T

An Example

Fix- Fix-,
oV, Tr (MU, V, T+ 0][d
OIN
[r]U,V,!/H;TV!/lz;TD-
U,V.Tr [Fxeu]

[Times]
pu.(?21;u) @ pv.(?22;v) @ pt.(1A4;t v gt +

Abbreviations : U= puu.(?21;u)
= uv.(?22;v)
= ut.(12;tv 1)
r= u,v,T

An Example

P PREFIX
MM 74U, V. g Tr [FHEF'X] [0, 22V, s+ {F]]
. -
MoV e [r]u,v,ug;n[J : K
OIN
[F] u,v, !/11;TV !/12;T F
U,V.Tr [Fxeu]
L TiMES
pu.(?21;u) @ pv.(?22;v) @ pt.(1A4;t v Lagst) + [|
Abbreviations : U= puu.(?21;u)
V= puv.(?12;v)
T=pt(;tv 125t)
r= u,v,T
M= u,V,la,T

M= u,v, T

An Example

) Y
[rre [Lerr] - [LeaF]
’ ; : [Prerx] ” - - [Prerix]
[r][r]?/hyU,V,!/lth— F] [r][r]U’?AZYV’!AZVT'_ [F]
L 1X-,
FU, v, T [Focu [r]u,v,uz;n[J ' K
OIN
MU, V, 4TV T r
U.V.Tr [Foxn]
Vv, _
uu.(?21;u) ® pv.(?22;v) @ (14t v Lgit) + [Times]
Abbreviations : U= puu.(?24;u)
V= /lV.(?/lg;V)
T= pt(latv i)
r= u,v,T
M= u,Vv, T

= u,Vv, T

An Example

L .
[rre [Lerr] - [LeaF]
’ ; : [Prerx] 7 - - [Prerix]
ML 20, v, T [Fix-u] M7V, ?222;V, 1T+ -
MU, V, T r o MUV T]|x,1
MU, V, 4TV T r o
U.V.Tr [Foxn]
LV, s
uu.(?21;u) ® pv.(?22;v) @ (14t v Lgit) + [Times]
Abbreviations : U= puu.(?24;u)
V= /lV.(?/lg;V)
T= pt(latv i)
r= u,v,T
M= u,Vv, T

"= u,v,axT
Multiparty Compatibility: Proves the following threads are multiparty compatible.

wY.22:Y) | uZ.(242:2) |l pX(124:X @ 12;X)

An Example
W [Lear] W [Lear]
OO 5 DA
MoV e MUV pTr
MUV TVt [Jond
U,V, T+
pu.(?21;u) @ pv.(?22;v) @ pt.(1A4;t v Lagst) +

[PreFIX]

[Times]

Abbreviations : U= puu.(?21;u)
V= puv.(?12;v)
T= pt(124;tV1251)
r= u,v,T
M= u,Vv, T
"= u,v,axT

Multiparty Compatibility: Proves the following threads are multiparty compatible.

/JY.(?/h;Y) I /JZ.(?/lg;Z) I /JX.(!/h;XGB!/lg;X)

Subtyping: Establishes the following subtype relation (Ue V < Tiff Ue Ve T F).

pu(?a;u) o pv.(P2;v) < pk (P24t A ?A051)

The Cut Elimination “Gold Mine” (again)

Theorem (cut elimination)
[Cur]
I'1 s T T) I'2 Fo L i .
The rule ————— — is admissible in Session.
M,MoF

The Cut Elimination “Gold Mine” (again)

Theorem (cut elimination)
[Cur] B
F1 s Tr T N F2 Fo L i .
The rule ————— — is admissible in Session.
M,MoF

Corollary (algorithmic subtyping)
Subtyping is a decidable preorder.

Theorem (algorithmic typing)

[suBsUMPTION]

) ArP:T T<U o
All instances of AP U can be pushed to the bottom of a type derivation.

Theorem (deadlock freedom)
Any race-free multiparty-compatible network satisfies deadlock freedom.

Corollary (substitution principle)

P can replace Q while preserving multiparty compatibility,
whenever T < U, where+ P: Tand+ Q: U.

Now | see! So, what cool things can you do?

user name: | Owner:

Password:
?login_page(app-ID, scope);

ldeny @ |authorise(name, password)

If you have no EasyChair account, create an account
Forgot your password? click here
problems to Iog in? click here

Trusted App:

llogin_page(app-ID, scope);
?deny;!release
+ ?authorise(name, password);
recY. lrelease
@ lrequest(token);
?revoke + ?response(data);Y

Resource:

recX. ?release
+ ?request(token);
Irevoke & !response(data); X

Trusted App:

llogin_page(app-ID, scope);
?deny;'release
+ ?authorise(name, password);
recY.lrelease
@ !request(token);
?revoke + ?response(data);Y

OAuth 2.0 Server:

?initiate(app-ID, scope);
llogin_page(app-ID, scope);
(?deny;!close;!release)

+ ?authorise(name, password);

(!close;!release)

@ lauthorisation_code(code);
?exchange(app-ID, secret, code);
(!close;!release)

@ laccess_token(token)

Untrusted App:

linitiate(add_ID, scope);
?close
+ ?authorisation_code(code);
lexchange(app-ID, secret, code);
?close
+ ?access_token(token);
recY. lrequest(token);
?revoke
+ 7?response(data);Y

Trusted App:

llogin_page(app-ID, scope);
?deny;'release
+ ?authorise(name, password);
recY.lrelease
@ !request(token);
?revoke + ?response(data);Y

OAuth 2.0 Server:

?initiate(app-ID, scope);
llogin_page(app-ID, scope);
(?deny;!close;!release)

+ ?authorise(name, password);

(!close;!release)

@ lauthorisation_code(code);
?exchange(app-ID, secret, code);
(!close;!release)

@ laccess_token(token)

Untrusted App:

linitiate(add_ID, scope);
?close
+ ?authorisation_code(code);
lexchange(app-ID, secret, code);
?close
+ ?access_token(token);
recY. lrequest(token);
?revoke

Untrusted App ® OAuth Server < Trusted App

+ 7?response(data);Y

An application that delegates to an Oauth 2.0 server

Resource Untrusted App OAuth Server Owner

initiate(app_ID,scope)
R

begin delegation

login-page (app-ID, scope)

authorize(name, password)

end delegation

authorisation_code(code)

exchange (app-ID, secret, code)

access-token(token)

sion request(token)

choice| at Resource J

response(data)

revoke

Allowing the deputy to make a choice is useful

Resource

‘ Untrust

od App ‘

Internal delegation may liberate multiparty subtyping with roles.

Trusted App: —

Owner!login_page(app-ID, scope);
?deny;'release
+ Owner?authorise(name, password);
recY .lrelease
® Resource!request(token);
?revoke + Resource?response(data);Y

AppZinitiate(app-ID, scope);

Appofe;

Owner'login_page(app-ID, scope);

(?deny;e)oApp;!close;!release)

+ Owner?authorise(name, password);
e)oApp;

('close;!release)

@ Applauthorisation_code(code);
App?exchange(app-ID, secret, code);
(!close;!release)

@ App'access_token(token)

OAuthlinitiate(add_ID, scope);
o<(OOAUth; OAUth.>>O;
?close
+ OAuth?authorisation_code(code);
OAuth'exchange(app-ID, secret, code);
?close
+ OAuth?access_token(token);
recY. OAuth!request(token);
?revoke
+ Resource?response(data);Y

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with
rich notions of multiparty compatibility and subtyping.

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with
rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both
“Kobayashi” and “Padovani” live (LIVE and LIVE+ respectively in
POPL19). System Session verifies this (but only guarantees deadlock
freedom without further modifications).

uX. (!/11 X @ !/12) || Y. (?/11; Y + ?/12) [| X. (!/13; X& !/14) || Y. (?/13; Y + ?/14)

Conclusion and discussion

Conclusion: Non-commutative logic + race-freedom provides us with
rich notions of multiparty compatibility and subtyping.

Discussion: The follow has no global type, but is deadlock free and both
“Kobayashi” and “Padovani” live (LIVE and LIVE+ respectively in
POPL19). System Session verifies this (but only guarantees deadlock
freedom without further modifications).

uX. (!/11 X @ !/12) || Y. (?/11; Y + ?/12) [| X. (!/13; X& !/14) || Y. (?/13; Y + ?/14)

Question for the Mobility Reading Group: What established
extensions of global types allow the above to be typed and also
guarantee livelock freedom (or, at least, deadlock freedom)?

