Effect handler oriented programming

Sam Lindley
The University of Edinburgh and Imperial College London

18th February 2020

Part |

Prologue

CEK

RT::Z:TI Lin h S Machine

Query (Server)
Shredding http://www.links-lang.org
Lo . CPS
Linking theory to practice Translation
DATABASE for the web EFFECT (Client)
Language- INTEGRATION HANDLERS
Integrated
Query
@ o0 @ Row-based
Effects
Provenance
'WEB INTERACTIVE : .
i DEVELOPMENT PROGRAMMING With thanRs to Simon Fowler
HTML +
antiquotes

Notebook -
Programming ﬁ 5

‘ TryLinks ;ﬁ
=

Formlets
Model-
View-
Update

Part Il

Effect handler oriented programming

Effects

Programs as black boxes (Church-Turing model)?

Effects

Programs must interact with their environment

Effects

Programs must interact with their environment

Effects are pervasive
> input/output
user interaction

» concurrency
web applications
» distribution
cloud computing
» exceptions
fault tolerance
» choice
backtracking search

Effects

Programs must interact with their environment

Effects are pervasive
> input/output
user interaction

» concurrency
web applications

» distribution
cloud computing

» exceptions
fault tolerance

» choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

Deep theory g Gordon Plotkin i Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Effect handlers

=
Deep theory s Gordon Plotkin | Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and user-defined interpretation of effects in general

Effect handlers

.
Deep theory s Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009
Composable and user-defined interpretation of effects in general

Give programmer direct access to environment
(c.f. resumable exceptions, monads, delimited control)

Effect handlers

@
Deep theory s Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009
Composable and user-defined interpretation of effects in general
Give programmer direct access to environment

Growing industrial interest (c.f. resumable exceptions, monads, delimited control)

JavaScript Ul lib d by > 1 milli bsit

'i React avascrip ibrary (used by million websites)
Pyro robabilistic programming language (statistical inference

GitHub Semantic Code analysis library (> 4.5 million Python repositories)

Example 1: choice and failure

Effect signature
{choose : 1 = Bool, fail : a.1 = a}

Example 1: choice and failure
Effect signature
{choose : 1 = Bool, fail : a.1 = a}

Drunk coin tossing

toss () = if choose () then Heads else Tails

drunkToss () = if choose () then
if choose () then Heads else Tails
else

fail ()

drunkTosses n = if n =0 then []
else drunkToss () :: drunkTosses (n — 1)

Example 1: choice and failure
Handlers
maybeFail = — exception handler

return x — Justx
(fail ()) + Nothing

Example 1: choice and failure

Handlers
maybeFail = — exception handler
return x — Justx handle 42 with maybeFail = Just42

(fail ()) + Nothing handle fail () with maybeFail = Nothing

Example 1: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) + Nothing

trueChoice = — linear handler
return x — X
(choose () — r) + rTrue

handle 42 with maybeFail = Just 42
handle fail () with maybeFail = Nothing

Example 1: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) + Nothing

trueChoice = — linear handler
return x — X
(choose () — r) + rTrue

handle 42 with maybeFail = Just 42
handle fail () with maybeFail = Nothing

handle 42 with trueChoice = 42
handle toss () with trueChoice = Heads

Example 1: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) + Nothing

trueChoice = — linear handler
return x — X
(choose () — r) + rTrue

allChoices = — non-linear handler
return x — [x]
(choose () — r) + r True + rFalse

handle 42 with maybeFail = Just 42
handle fail () with maybeFail = Nothing

handle 42 with trueChoice = 42
handle toss () with trueChoice = Heads

Example 1: choice and failure
Handlers

maybeFail = — exception handler
returnx — Justx
(fail ()) + Nothing

trueChoice = — linear handler
return x — X
(choose () — r) + rTrue

allChoices = — non-linear handler
return x — [x]
(choose () — r) + r True + rFalse

handle 42 with maybeFail = Just 42
handle fail () with maybeFail = Nothing

handle 42 with trueChoice = 42
handle toss () with trueChoice = Heads

handle 42 with allChoices = [42]
handle toss () with allChoices = [Heads, Tails]

Example 1: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail = Just 42
(fail ()) + Nothing handle fail () with maybeFail = Nothing
trueChoice = — linear handler
return x — X handle 42 with trueChoice = 42
(choose () — r) + rTrue handle toss () with trueChoice = Heads
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices = [42]

(choose () — r) + rTrue ++ rFalse handle toss () with allChoices = [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =

Example 1: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail = Just 42
(fail ()) + Nothing handle fail () with maybeFail = Nothing
trueChoice = — linear handler
return x — X handle 42 with trueChoice = 42
(choose () — r) + rTrue handle toss () with trueChoice = Heads
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices = [42]

(choose () — r) + rTrue ++ rFalse handle toss () with allChoices = [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =
[Just [Heads, Heads], Just [Heads, Tails|, Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing, Nothing]

Example 1: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail = Just 42
(fail ()) + Nothing handle fail () with maybeFail = Nothing
trueChoice = — linear handler
return x — X handle 42 with trueChoice = 42
(choose () — r) + rTrue handle toss () with trueChoice = Heads
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices = [42]

(choose () — r) + rTrue ++ rFalse handle toss () with allChoices = [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =
[Just [Heads, Heads], Just [Heads, Tails|, Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing, Nothing]

handle (handle drunkTosses 2 with allChoices) with maybeFail —-

Example 1: choice and failure

Handlers
maybeFail = — exception handler
returnx — Justx handle 42 with maybeFail = Just 42
(fail ()) + Nothing handle fail () with maybeFail = Nothing
trueChoice = — linear handler
return x — X handle 42 with trueChoice = 42
(choose () — r) + rTrue handle toss () with trueChoice = Heads
allChoices = — non-linear handler
return x — [x] handle 42 with allChoices = [42]

(choose () — r) + rTrue ++ rFalse handle toss () with allChoices = [Heads, Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =
[Just [Heads, Heads], Just [Heads, Tails|, Nothing,
Just [Tails, Heads], Just [Tails, Tails], Nothing, Nothing]

handle (handle drunkTosses 2 with allChoices) with maybeFail = Nothing

Small-step operational semantics for (deep) effect handlers

Reduction rules

letx=VinN ~ N[V/x]
handle V with H ~ N [V/x]
handle E[op V] with H ~+ Noo[V/p, (Ax.handle E[x] with H)/r], op# £

where H = return x — Nyet
(op1p— r) = Nop,

(opkp = r) = Nop,

Evaluation contexts

Eu=[]|letx=~Ein N | handle £ with H

Example 2: cooperative concurrency (static)

Effect signature
{yield : 1 = 1}

Example 2: cooperative concurrency (static)

Effect signature
{yield : 1 = 1}

Two cooperative lightweight threads

tA() = print ("AL ") yield (); print (A2 ")
tB() = print ("B1 ");yield (); print ("B2 ")

Example 2: cooperative concurrency (static)

Effect signature
{yield : 1 = 1}

Two cooperative lightweight threads

tA() = print ("AL ") yield (); print (A2 ")
tB() = print ("B1 ");yield (); print ("B2 ")

Handler — parameterised handler
coop ([]) = coop (r::rs) =
return () — () return () — rrs()

(vield () = r') = r'[1() (vield () = r') = r(rs ++[r']) ()

Example 2: cooperative concurrency (static)

Effect signature
{yield : 1 = 1}

Two cooperative lightweight threads

tA() = print ("AL ") yield (); print (A2 ")
tB() = print ("B1 ");yield (); print ("B2 ")

Handler — parameterised handler
coop ([]) = coop (r::rs) =
return () — () return () — rrs()
(vield () = r') = r'[1() (vield () = r') = r(rs +[r']) ()
Helpers

coopWith t rs () = handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

Example 2: cooperative concurrency (static)

Effect signature
{yield : 1 = 1}

Two cooperative lightweight threads

tA() = print ("AL ") yield (); print (A2 ")
tB() = print ("B1 ");yield (); print ("B2 ")

Handler — parameterised handler
coop ([]) = coop (r::rs) =
return () — () return () — rrs()
(vield () = r') = r'[1() (vield () = r') = r(rs +[r']) ()
Helpers

coopWith t rs () = handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] = ()
Al B1 A2 B2

Small-step operational semantics for parameterised effect handlers

Reduction rules

let x=VinN ~ N[V/x]
handle V with HW ~ N[V /x, W/H]
handle E[op V] with HW ~ No[V//p, W/h, (Ahx.handle E[x] with Hh)/r], op#&

where H h = return x — Nyet
(op1p—r) = Nop,

(opkp = r) = Nop,

Evaluation contexts

E:x=[]|let x=CEin N | handle £ with HW

Small-step operational semantics for parameterised effect handlers

Reduction rules

let x=VinN ~ N[V/x]
handle V with HW ~ N[V /x, W/H]
handle E[op V] with HW ~ No[V//p, W/h, (Ahx.handle E[x] with Hh)/r], op#&

where H h = return x — Nyet
(op1p—r) = Nop,

(opkp = r) = Nop,
Evaluation contexts

E:x=[]|let x=CEin N | handle £ with HW

Exercise: express parameterised handlers as non-parameterised handlers

Example 3: cooperative concurrency (dynamic)
Effect signature — recursive effect signature

Co = {yield: 1 =1, fork: (1 — [Co]l) = 1}

Example 3: cooperative concurrency (dynamic)
Effect signature — recursive effect signature
Co = {yield: 1 =1, fork: (1 — [Co]l) = 1}
A single cooperative program

main () = print “M1 "; fork (A().print "Al "; yield (); print “A2 ");
print “M2 "; fork (A().print “B1 "; yield (); print “B2 "); print “M3 "

Example 3: cooperative concurrency (dynamic)
Effect signature — recursive effect signature

Co = {yield: 1 =1, fork: (1 — [Co]l) = 1}
A single cooperative program

main () = print “M1 "; fork (A().print "Al "; yield (); print “A2 ");
print “M2 "; fork (A().print “B1 "; yield (); print “B2 "); print “M3 "

Parameterised handler and helpers

coop ([]) = coop(r::rs) =
return () — () return () — rrs()
{yield() = ') = ']) {yield () = ') = r(rs +[F']) ()

(forkt — r')y +— coopWitht[r']() (forkt — r') +— coopWitht(r::rs++[r'])()

coopWith t rs () = handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

Example 3: cooperative concurrency (dynamic)
Effect signature — recursive effect signature

Co = {yield: 1 =1, fork: (1 — [Co]l) = 1}
A single cooperative program

main () = print “M1 "; fork (A().print "Al "; yield (); print “A2 ");
print “M2 "; fork (A().print “B1 "; yield (); print “B2 "); print “M3 "

Parameterised handler and helpers

coop ([]) = coop(r::rs) =
return () — () return () — rrs()
{yield() = ') = ']) {yield () = ') = r(rs +[F']) ()

(forkt — r')y +— coopWitht[r']() (forkt — r') +— coopWitht(r::rs++[r'])()

coopWith t rs () = handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [main] = ()
M1 Al M2 B1 A2 M3 B2

Example 3: cooperative concurrency (dynamic)
Effect signature — recursive effect signature

Co = {yield: 1 =1, fork: (1 — [Co]l) = 1}
A single cooperative program

main () = print “M1 "; fork (A().print "Al "; yield (); print “A2 ");
print “M2 "; fork (A().print “B1 "; yield (); print “B2 "); print “M3 "

Parameterised handler and helpers

coop ([]) = coop(r::rs) =
return () — () return () — rrs()
(yield () = r') = r'[1 () (yield () = r') = r(rs ++[F]) ()

(forkt = r')y > r'[coopWitht]() (forkt — r') — r'(r:: rs ++ [coopWith t]) ()

coopWith t rs () = handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

Example 3: cooperative concurrency (dynamic)
Effect signature — recursive effect signature

Co = {yield: 1 =1, fork: (1 — [Co]l) = 1}
A single cooperative program

main () = print “M1 "; fork (A().print "Al "; yield (); print “A2 ");
print “M2 "; fork (A().print “B1 "; yield (); print “B2 "); print “M3 "

Parameterised handler and helpers

coop ([]) = coop(r::rs) =
return () — () return () — rrs()
(yield () = r') = r'[1 () (yield () = r') = r(rs ++[F]) ()

(forkt = r')y > r'[coopWitht]() (forkt — r') — r'(r:: rs ++ [coopWith t]) ()

coopWith t rs () = handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [main] = ()
M1 M2 M3 Al B1 A2 B2

Example 4: pipes

Effect signatures

Sender = {send : Nat = 1} Receiver = {receive : 1 = Nat}

Example 4: pipes

Effect signatures
Sender = {send : Nat = 1}
A producer and a consumer

nats n = send n; nats (n + 1)

Receiver = {receive : 1 = Nat}

grabANat () = receive ()

Example 4: pipes

Effect signatures
Sender = {send : Nat = 1} Receiver = {receive : 1 = Nat}
A producer and a consumer
nats n = send n; nats (n + 1) grabANat () = receive ()
Pipes and copipes as shallow handlers
pipe p ¢ = handle’ ¢ () with copipe ¢ p = handle' p () with

return x — X return x = X
(receive () — r) +— copiperp (send n — r) > piper(A().cn)

Example 4: pipes

Effect signatures
Sender = {send : Nat = 1} Receiver = {receive : 1 = Nat}
A producer and a consumer
nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p ¢ = handle’ ¢ () with copipe ¢ p = handle' p () with
return x = X return x = X
(receive () — r) +— copiperp (send n — r) > piper(A().cn)

pipe (A().nats 0) grabANat ~~T copipe (Ax.x) (A().nats0)
~T pipe (A().nats1) (A().0) ~* 0

Example 4: pipes

Effect signatures
Sender = {send : Nat = 1} Receiver = {receive : 1 = Nat}
A producer and a consumer
nats n = send n; nats (n + 1) grabANat () = receive ()

Pipes and copipes as shallow handlers

pipe p ¢ = handle’ ¢ () with copipe ¢ p = handle' p () with
return x = X return x = X
(receive () — r) +— copiperp (send n — r) > piper(A().cn)

pipe (A().nats 0) grabANat ~~T copipe (Ax.x) (A().nats0)
~T pipe (A().nats1) (A().0) ~* 0

Exercise: implement pipes using deep handlers

Small-step operational semantics for shallow effect handlers

Reduction rules

let x=VinN ~ N[V/X]
handle’ V with H ~> Nye:[V//x]
handle’ E[op V] with H ~ Nop[V/p, Ox.E[X])/r], op# &

where H = return x — Nyet
{oprp—r) = Nop,

(opkp = r) = Nop,

Evaluation contexts

E:=[]|letx=Ein N | handle' £ with H

Small-step operational semantics for shallow effect handlers

Reduction rules

let x=VinN ~ N[V/X]
handle’ V with H ~> Nye:[V//x]
handle’ E[op V] with H ~ Nop[V/p, Ox.E[X])/r], op# &

where H = return x — Nyet
{oprp—r) = Nop,

(opkp = r) = Nop,
Evaluation contexts

E:=[]|letx=Ein N | handle' £ with H

Exercise: express shallow handlers as deep handlers

Built-in effects

Console I/0O
Console = {inch : 1 = char
ouch : char = 1}
print s = map (Ac.ouch ¢) s; ()
State

State = {new : a. a = Ref a,
write : a. (Refa x a) = 1,
read : a. Ref a = a}

Example 5: actors

Process ids
Pid a = Ref (List a)

Effect signature

Actor a = {self : 1 = Pida,
spawn : b. (1 — [Actor b]1) = Pid b,
send : b. (b x Pidb) =1,

recv : 1= a}

Example 5: actors

Process ids
Pid a = Ref (List a)

Effect signature

Actor a = {self : 1 = Pida,
spawn : b. (1 — [Actor b]1) = Pid b,
send : b. (b x Pidb) =1,
recv : 1= a}

An actor chain

spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (A().let s = recv () in print “.";send (s, p))) (n — 1)

chain n = spawnMany (self ()) n;let s = recv () in prints

Example 5: actors

Actors via cooperative concurrency

act mine =
return () — ()
(self () — r) — r mine mine
(spawn you — r) — let yours = new [] in

fork (A\().act yours (you ())); r mine yours
(send (m, yours) — r) +— let ms = read yours in
write (yours, ms + [m]); r mine ()
(recv () — r) — case read mine of
(] — yield (); r mine (recv ())
(m :: ms) — write (mine, ms); r mine m

Example 5: actors

Actors via cooperative concurrency

act mine =
return () — ()
(self () — r) — r mine mine
(spawn you — r) — let yours = new [] in

fork (A\().act yours (you ())); r mine yours
(send (m, yours) — r) +— let ms = read yours in
write (yours, ms + [m]); r mine ()
(recv () — r) — case read mine of
(] — yield (); r mine (recv ())
(m :: ms) — write (mine, ms); r mine m

cooperate [handle chain 64 with act (new [])] = ()

Effect handler oriented programming languages

Eff
Frank

Helium

Links
Koka
Multicore OCaml

https://www.eff-lang.org/
https://github.com /frank-lang/frank
https://bitbucket.org/pl-uwr /helium

https://www.links-lang.org/
https://github.com /koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore /wiki

https://www.eff-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki

Effect handlers — some of my contributions

Handlers in action (ICFP 2013)
with Kammar and Oury

Effect handlers in Links (TyDe 2016 / JFP 2020)
with Hillerstrom
Frank programming language (POPL 2017 / JFP 2020)
with Convent, McBride, and McLaughlin
Expressive power of effect handlers (ICFP 2017 / JFP 2019)
with Forster, Kammar, and Pretnar
Continuation-passing style for effect handlers (FSCD 2017 / JFP 2020)
with Atkey, Hillerstrom, and Sivaramakrishnan
Shallow effect handlers (APLAS 2018 / JFP 2020)
with Hillerstrom

Linear effect handlers for session exceptions (POPL 2019)
with Decova, Fowler, and Morris

Scalability challenges

Modularity — effect typing
» Effect encapsulation
» Linearity
» Generativity
» Indexed effects
» Equations

Efficiency — compilation techniques
» Segmented stacks

(Multicore OCaml / C library)

» Continuation Passing Style
(JavaScript backends)

» Fusion (Haskell libraries / Eff)
» Staging (Scala Effekt library)

New directions

Effect handlers for Wasm
add effect handlers once and for all — avoid pitfalls of JavaScript

Asynchronous effects
pre-emptive concurrency; reactive programming

Gradually typed effect handlers
transition mainstream languages towards effect typing

Hardware capabilities as dynamic effects
safe effect handlers in C? efficient implementation?

Lexically scoped effect handlers
improved hygiene? improved performance? improved reasoning?

Resources

Jeremy Yallop's effects bibliography
https://github.com /yallop/effects-bibliography

Matija Pretnar's tutorial
“An introduction to algebraic effects and handlers”,
MFPS 2015

Andrej Bauer's tutorial
“What is algebraic about algebraic effects and handlers?”,
Dagstuhl and OPLSS 2018

https://github.com/yallop/effects-bibliography

Part Il

Bonus slides

Example 6: effect pollution
Effect signatures

Receiver = {receive : 1 = Nat} Failure = {fail : a.1 = a}

Example 6: effect pollution
Effect signatures

Receiver = {receive : 1 = Nat} Failure = {fail : a.1 = a}
Handlers
receives ([]) = receives (n:: ns) =
return x — X return x = X
(receive () — r) > fail () (receive () = r) +> rnsn
maybeFail =
return x — Just x

(fail () = r) + Nothing

Example 6: effect pollution
Effect signatures

Receiver = {receive : 1 = Nat} Failure = {fail : a.1 = a}
Handlers
receives ([]) = receives (n:: ns) =
return x — X return x = X
(receive () — r) > fail () (receive () = r) +> rnsn
maybeFail =
return x — Just x

(fail () = r) + Nothing

bad ns t = handle (handle t () with receives ns) with maybeFail

Example 6: effect pollution
Effect signatures

Receiver = {receive : 1 = Nat} Failure = {fail : a.1 = a}
Handlers
receives ([]) = receives (n:: ns) =
return x — X return x = X
(receive () — r) > fail () (receive () = r) +> rnsn
maybeFail =
return x — Just x

(fail () = r) + Nothing

bad ns t = handle (handle t () with receives ns) with maybeFail

bad [1, 2] (A().receive () + fail ()) = Nothing

Example 7: counting

Predicates as higher order functions

Pred = (Nat — Bool) — Bool

Signature of a counting function

count : ((Nat — Bool) — Bool) — Nat

Exclusive or
count (Av.if v 0 then not (v 1) else v 1) =2

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

Example 7: counting
Counting with a choice handler

count : ((Nat — Bool) — Bool) — Nat

count = Ap.handle p (_.choose ()) with
return x — if x then 1 else 0
(choose () — r) + rTrue + r False

Exclusive or

count (Av.if v 0 then not (v 1) else v 1)

	Prologue
	Effect handler oriented programming
	Bonus slides

