Effpi

concurrent programming with
dependent behavioural types

Alceste Scalas Imperial College
(with Elias Benussi & Nobuko Yoshida) London

University of Novi Sad — 17 September 2018

http:/mrg.doc.ic.ac.uk

NEWS

The paper Multiparty
asynchronous session types by
Kohei Honda, Nobuko Yoshida,
and Marco Carbone, published in
POPL 2008 has been awarded the
ACM SIGPLAN Most Influential
POPL Paper Award today at POPL
2018,

»more
10 Jan 2018

Estafet has published a page on
their usage of the Scribble
language developed in our group
with RedHat and other industry
partners.

»more

25Sep 2017

Nick spoke at Golang UK 2017 on

applying behavioural types to
verifv concurrent Go proarams.

Tt-calculus, Session Types research at Imperial College

'ty Research Group

SELECTED
PUBLICATIONS

2018

Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : A Static

Verification Framework for Message Passing in Go using Behavioural Types.

To appear inICSE 2018 .

Bernardo Toninho , Nobuko Yoshida : Depending On Session Typed Process.

To appear in FoSSaCS 2018 .

Bernardo Toninho , Nobuko Yoshida : On Polymorphic Sessions And
Functions: A Talk of Two (Fully Abstract) Encodings. To appear in ESOP
2018.

Rumyana Neykova , Raymond Hu , Nobuko Yoshida , Fahd Abdeljallal :
Session Type Providers: Compile-time API Generation for Distributed
Protocols with Interaction Refinements in F#. To appear in CC 2018 .

Post-docs:
Simon CASTELLAN

David CASTRO
Francisco FERREIRA
Raymond HU
Rumyana NEYKOVA
Nicholas NG
Alceste SCALAS
PhD Students:
Assel ALTAYEVA

. Juliana FRANCO

™ Eva GRAVERSEN

-
POPL 2008 MOST INFLUENTIAL PAPER AWARD)|

%) SIGPLAN

8 Most Influential Paper Award

POPL 200
a, Nobuko Yoshida and Marco Carbone

Kohei Hond

Multiparty asynchronous session types

www.scribble.org

Home GettingStarted ~ Downloads Documentation v Community +

Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol

represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to
expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks

Describe ¢ Verify oy Project X Implement = Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, o Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (o type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and () statically verify the code againstthe particular endpoint, to

protocol projection. ensure it correctly

implements the expected
behaviour.

OIlllIle tOO]. . http://scribble.doc.ic.ac.uk/

module examples;

- global protocol HelloWorld(role Me, role World) {
hello() from Me to World;
-~ choice at World {
goodMorningl() from World to Mej
- Yor{
goodMorningl() from World to Mej
}
}

Load a sample B Check Protocol: examples.HellowWorld Role: Me Project

Generate Graph

OOI Collaboration

OOL ocran Osservatony Intriative

1« TCS’16: Monitoring Networks through Multiparty Session Types. Laura Bocchi ,

. Tzu-Chun Chen , Romain Demangeon , Kohei Honda , Nobuko Yoshida

\, e LMCS’16: Multiparty Session Actors. Rumyana Neykova, Nobuko Yoshida

‘ « FMSD’15: Practical interruptible conversations: Distributed dynamic verification

‘ with multiparty session types and Python. Romain Demangeon , Kohei Honda ,
Raymond Hu , Rumyana Neykova , Nobuko Yoshida

* TGC’13: The Scribble Protocol Language. Nobuko Yoshida , Raymond Hu ,
Rumyana Neykova , Nicholas Ng

End-to-End Switching Programme by DCC

1 Estafet

- Innovate | Deliver | Transform

1. All design work takes place in ABACUS,
DCC's enterprise architecture tool. This
can export standard XMl files

(an open standard for UMLS) 5 (-
2. XMl is converted into exception report and
send back to DCC

OpenTracing format for
consumption by managed service

{}_,,

4. Model holds types 5. Scribble compiler 6. Issues hlghllghted H
rather than instances to identifies |nconS|s‘tency,. graphically in EC|Ipse
understand behaviour change & design flaws |

LD

OPENTRACING

3. OpenTracing files are

combined to build a
model in Scribble

www.estafet.com Estafet Managed Service

End-to-End Switching Programme by DCC

1 Estafet

‘o Innovate | Deliver | Transform

Caveats:

1. Using earlier implementation of
Scribble (CDL), because we
already have those tools

2. Using earlier plugin to Eclipse -
we'd want to improve this

3. We're not going via OpenTracing
- this is part of the bid costs

7. Generate

exception report and
send back to DCC

Scope of the demo

T |

OPENTRACING

3. OpenTracing files are

combined to build a
model in Scribble

4. Model holds types
rather than instances to
understand behaviour

5. Scribble compiler | 6. Issues hlghllghted
identifies inconsistency, | graphically in Ecllpse
change & design flaws |

www.estafet.com Estafet Managed Service

&

\ cC’18

A Session Type Provider

Compile-Time API Generation of Distributed Protocols with Refinements in F#

Rumyana Neykova Raymond Hu
Imperial College London Imperial College London
United Kingdom United Kingdom
Abstract

‘We present a library for the specification and implementa-
tion of distributed protocols in native F# (and other NET
languages) based on multiparty session types (MPST). There
are two main contributions. Our library is the first practi-
cal development of MPST to support what we refer to as
interaction efinements: ollcton offeatures elated o the
 pr such as
(v;lue constraints) and message-value dependent control
Tow. A well-typed endpoint program using our library is
ranteed to perform only compliant session 1/0 actions
~ the refined protocol, up to premature termination.
* our library is developed s a session type provider,

Nobuko Yoshida Fahd Abdeljallal
Imperial College London Imperial College London
United Kingdom United Kingdom

1 Introduction
Type providers (20, 27) are a .NET feature for a form of
compile-time meta programming, designed to bridge be-
tween programming in statically typed languages such as
F# and C#, and working with so-called information spaces—
structured data sources such as SQL databases or XML data.
A type provider works as a compiler plugin that performs
on-demand generation of types: it takes a schema for an
external information space, and generates types that allow
the data to be manipulated via a strongly-typed interface,
with benefits such as static error detection and IDE auto-
completion. For example, an instantiation of the in-built
type provider for WSDL Web services [6] may look like

2 H®

’ @ Graydon Hoare

graydon_pub

(This stuff is _fantastic_)

LR TS

shots fired @zeeshanlakhani - Mar 12
Replying to @graydon_pub @dsyme
Awesome!

Brendan Zabarauskas @brendanzab -
Replying to @graydon_pub

This stuff fills me with hope!

Ryan Riley @panesofglass - Mar 12
Replying to @graydon_pub

This is amazing! | guess | need to switct

Xchange

®»

D6 Behavioural Type-Based o2
Static Verification Framework
for

[(]

. l

<
«»
cu/D

>3

Y 6@)@ S OO 8
g)
G ?%)
® 7 .

Bernardo o5t de
Tonimho

Imperial College
London

Home Collegeand Campus Science [EFTEEIIRY Health pusiness
GOLA'\& UK CONFERENGE Go concurrency verification research at DoC

168 17+ & 18WAUG UST 2017 grabs headline
g currenc

. rrates a
the morning paper |

g GncUTEnCy Wi
e

tured in the
thich
teresting

A static veri ion fr: k for SuBSCRIBE easily
passing in Go using behavioural types e of the
JANUARY 25, 2018 - L (Principles

Home About InfoQ QR Editions Subscribe

s Concurreny,Programming Languages

n framework for message passing in Go using
behavioural types Lange et al., ICSE 18

With thanks to Alexis Richardson who first forwarded this paper to me. el
We're. jumpmx um.d t0 ICSE 18 now, and a paper that has b«n accepted L
r. It fits with
ARCHIVES
exploring this week Ihnuq,h 501 thought I'd cover it now. We've seen
e B

verification techniques applied in the context of Rust and J ript,
looked at the integration of linear types in Haskell, and Iodly iathe MOST READ 1N THE
turn of Go! LAST FEW DAYS.

Selected Publications 2017/2018

» [LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.

» [CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type Providers:
Compile-time APl Generation for Distributed Protocols with Interaction Refinements in F#.
» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of Two
(Fully Abstract) Encodings.

» [ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz Ziarek:
A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems.

» [ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming..

» [COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based library
with polarities and lenses.

» [FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.

» [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.

» [POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

Selected Publications 2017/2018

» [LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.

» [CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type Providers:
Compile-time API Generation for Distributed Protocols with Interaction Refinements in F#.

» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.

» [ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of Two
(Fully Abstract) Encodings.

» [ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz Ziarek:
A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems.

» [ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming.

» [COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based library
with polarities and lenses.

» [FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.

» [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.

» [POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

Effpi

concurrent programming with
dependent behavioural types

Alceste Scalas Imperial College
(with Elias Benussi & Nobuko Yoshida) London

University of Novi Sad — 17 September 2018

Introduction
[Jele}

Example: payment service with auditing

A scenario in message-passing concurrency

A payment service should implement the following specification:

1. wait to receive a payment request

2. then, either:

2.1 reject the payment, or
2.2 report the payment to an audit service, and then accept it

3. restart from point 1

Introduction
(o] le}

Example: payment service with auditing

Demo!

4/19

Introduction
[e]e]]

What is the Dotty / Scala 3 compiler saying?

found:

required:

Out[ActorRef[Result], Accepted]

Out [ActorRef [Result] (pay.replyTo), Rejected]

Out [ActorRef [Audit[_]] (aud), Audit[Pay(pay)l] >>:
Out [ActorRef [Result] (pay.replyTo), Accepted]

Introduction
[J

Behind the scenes

What you have seen is based on:

» a concurrent functional calculus

» equipped with a novel type system:

» behavioural types (inspired by m-calculus theory)
» dependent function types (inspired by Dotty / Scala 3)

» implemented in Dotty / Scala 3 (via deep embedding)

» also offering a simplified actor-based API
» with a runtime supporting highly concurrent applications

6/19

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(
send(ponge, self, A_.(

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(
send(ponge, self, A_.(
recv(self, Areply.(

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(
send(ponge, self, A_.(
recv(self, Areply.(
end)))))

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(reqc, "Hello!", A_.(

end))))) end)))))

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(reqc, "Hello!", A_.(
end))))) end)))))

let pingpong = Acl .Ac?.(pmge'r cl c2 | ponger c,?)

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(reqc, "Hello!", A_.(
end))))) end)))))

let pingpong = Acl .Ac?.(pmge'r cl c2 | ponger c,?)

let main = let c1 =chan(); let c2 = chan(); pingpong c1 c2

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(reqc, "Hello!", A_.(
end))))) end)))))

let pingpong = Acl .Ac?.(pmge'r cl c2 | ponger c,?)

let main = let c1 =chan(); let c2 = chan(); pingpong c1 c2

» A-terms model abstract processes

S » Continuations are expressed as A-terms (monadic style)

Types
[J

How to type a process calculus
For typing, we use a context I" and channel types. E.g.:
I = z:str, y:c°[str]
Therefore, we have classic typing judgements:

[- "Hello" ++x : str

8/19

Types
[J

How to type a process calculus
For typing, we use a context I" and channel types. E.g.:
I = z:str, y:c°[str]
Therefore, we have classic typing judgements:

[- "Hello" ++x : str

How do we type communication? E.g., if t = send(y, z,A_.end)

Classic approach: T' = t : proc (“tis a well-typed process in I"")

8/19

Types
[J

How to type a process calculus
For typing, we use a context I" and channel types. E.g.:
I = z:str, y:c°[str]
Therefore, we have classic typing judgements:

[- "Hello" ++x : str

How do we type communication? E.g., if t = send(y, z,A_.end)

Classic approach: T' = t : proc (“tis a well-typed process in I"")

Our approach: -1t : T (“t behaves as T in ')

8/19

Types
[J

How to type a process calculus
For typing, we use a context I" and channel types. E.g.:
I = z:str, y:c°[str]
Therefore, we have classic typing judgements:

[- "Hello" ++x : str

How do we type communication? E.g., if t = send(y, z,A_.end)

Classic approach: T' = t : proc (“tis a well-typed process in I"")

Our approach: -1t : T (“t behaves as T in ')
'-T<

proc (“Tis a refined process type”)

Behavioural types

Some examples:

z:str, y:c®[str] + send(y,z,A_.end) : T

9/19

Behavioural types

Some examples:

z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

9/19

Behavioural types
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T’

9/19

Behavioural types
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

9/19

Behavioural types
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?

S

9/19

Behavioural types
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?
N\ Yes — almost!

9/19

Behavioural types
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]
@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?
Yes — almost!

N

If a term t has type T’ above, we know that:
1. tis an abstract process. ..
2. that takes a string and a channel. ..
3. sends some string on some channel, then terminates

9/19

Behavioural types
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]
@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?
Yes — almost!

N

If a term t has type T’ above, we know that:
1. tis an abstract process. ..
2. that takes a string and a channel. ..
3. sends some string on some channel, then terminates
Here's a term with the same type T’, but different behaviour:

Az.Ay.(let z = chan(); send(z, "Hello!",A_.end))

9/19

Behavioural types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

10/19

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

10/19

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

10/19

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

We can have multiple levels of refinement:
@ +Ax.Ay.send(y, z,A_.end) : T”

10/19

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

We can have multiple levels of refinement:
@ +Ax.Ay.send(y,z,A_.end) : T < T’

10/19

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

We can have multiple levels of refinement:
@ + Az Ay.send(y, z,A_.end) : T < T’ < c°[none] — str — proc

10/19

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:
Ty o= T(z:..) TI(y:...) o[y, z, [z, TT(z:...)nil | |

“Take z and y; use y send z; use x to receive some z; and terminate”

11/19

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:
Ty = T(z:..)T(y:...) o[y, x, i[z, TT(z:...)nil | |
“Take z and y; use y send z; use z to receive some z; and terminate”
Ty = M(z:...)i[x, TT(y:...)o|y, str, nil] |

“Take x; use z to input some y; use y to send a string; and terminate”

11/19

Types as behavioural specifications: examples
Types can provide accurate behavioural specifications. E.g.:
Ty = T(z:..)T(y:...) o[y, x, i[z, TT(z:...)nil | |
“Take z and y; use y send z; use z to receive some z; and terminate”
Ty = M(z:...)i[x, TT(y:...)o|y, str, nil] |

“Take x; use z to input some y; use y to send a string; and terminate”

> T and T, are respectively the types of the pinger and ponger processes

11/19

Types as behavioural specifications: examples
Types can provide accurate behavioural specifications. E.g.:
Ty = T(z:..)T(y:...) o[y, x, i[z, TT(z:...)nil | |
“Take z and y; use y send z; use z to receive some z; and terminate”
Ty = M(z:...)i[x, TT(y:...)o|y, str, nil] |

“Take x; use z to input some y; use y to send a string; and terminate”

> T and T, are respectively the types of the pinger and ponger processes

T3 = M.)T(y...)p[Tizy, Toy]

“Take z and y; use them to apply T1 and T; run such behaviours in parallel”

11/19

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

Ty o= T(z:..) TI(y:...) o[y, z, [z, TT(z:...)nil | |

“Take z and y; use y send z; use x to receive some z; and terminate”

To = T(z:...)i[z, TT(y:...) o[y, str, nil] |

“Take x; use z to input some y; use y to send a string; and terminate”

> T and T, are respectively the types of the pinger and ponger processes

T3 = M.)T(y...)p[Tizy, Toy]

“Take z and y; use them to apply T1 and T; run such behaviours in parallel”

> T3 is the type of the pingpong process

11/19

Properties
[

Types as behavioural specifications (cont'd)

Type checking guarantees type safety

> E.g.: no strings can be sent on channels carrying integers

12 /19

Properties
[

Types as behavioural specifications (cont'd)

Type checking guarantees type safety

> E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

» E.g., the pingpong type: TI(z:...)T(y:...)p[Tazy, Toy |

12 /19

Properties
[

Types as behavioural specifications (cont'd)

Type checking guarantees type safety

> E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

» E.g., the pingpong type: TI(z:...)T(y:...)p[Tazy, Toy |

...and they can model races on shared channels, and deadlocks

12 /19

Properties
[

Types as behavioural specifications (cont'd)

Type checking guarantees type safety

> E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

» E.g., the pingpong type: TI(z:...)T(y:...)p[Tazy, Toy |
...and they can model races on shared channels, and deadlocks
» Give a labelled semantics to a type T

@ » Verify safety/liveness properties of T via model checking
S
» Show that if +~t:T holds, then t “inherits” T's properties

12 /19

Properties
[

Types as behavioural specifications (cont'd)

Type checking guarantees type safety

> E.g.: no strings can be sent on channels carrying integers

But our types also allow for rich behavioural specifications that
can be complicated, especially when composed. . .

» E.g., the pingpong type: TI(z:...)T(y:...)p[Tazy, Toy |

...and they can model races on shared channels, and deadlocks

» Give a labelled semantics to a type T
@ » Verify safety/liveness properties of T via model checking
©S

» Show that if +~t:T holds, then t “inherits” T's properties

Model checking is decidable for T, but not for t (Goltz'90; Esparza'97)

12 /19

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:
» execute user-supplied functions (e.g., Amazon AWS Lambda)
» perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

13 /19

Verified mobile code
Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:
» execute user-supplied functions (e.g., Amazon AWS Lambda)
» perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

@ In our framework, if a program thunk is received from a channel
9 of type c'[T], we can deduce its behaviour by inspecting T

D

13/19

Verified mobile code
Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

» execute user-supplied functions (e.g., Amazon AWS Lambda)
» perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

@ In our framework, if a program thunk is received from a channel
& of type c'[T], we can deduce its behaviour by inspecting T

Eg,if T = T(a:cfint])T’

» we know that the thunk needs a channel z carrying strings
» from T’, we can deduce if and how the thunk uses z

» from T’, we can ensure that the thunk is not a forkbomb

13 /19

Implementation
00

From theory to Dotty / Scala3

We directly translate our types in Dotty:

TT(z:str) TT(y:c°[str]) o[y, z, nil]
I

(x: String, y:0Chan[String]) => Out[y.type, x.type, Nil]

14 /19

Implementation
00

From theory to Dotty / Scala3

We directly translate our types in Dotty:

TT(z:str) TT(y:c°[str]) o[y, z, nil]
I

(x: String, y:0Chan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:
» calling send(...) yields an object of type Out[...]
» the object describes (does not perform!) the desired output
» the object is interpreted by a runtime system. ..

» ...that performs the actual output

14 /19

Implementation
oe

From theory to Dotty / Scala3

Demo!

Implementation
[J

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. ..
... but the opening example was actor-based!

16 /19

Implementation
[J

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. ..
... but the opening example was actor-based!

» An actor is a process with an implicit input channel

» The channel acts as a FIFO mailbox (as in the Akka framework)

, //@

» The actor DSL is syntactic sugar on the process DSL

Payoffs:
» we have very little actor-specific code

» we preserve the connection to the underlying theory

16 /19

Implementation
[1]

How can we run our DSLs?

def payment(aud: ActorRef[Audit[_11): Actor[Pay, _1 =
forever {
read { pay: Pay =
if (pay.amount > 42000) {
send(pay.replyTo, Rejected())
} else {
send(aud, Audit(pay)) >>
send(pay.replyTo, Accepted())
+
+
H

Naive approach: run each actor/process in a dedicated thread

17 /19

Implementation
[1]

How can we run our DSLs?

def payment(aud: ActorRef[Audit[_11): Actor[Pay, _1 =
forever {
read { pay: Pay =
if (pay.amount > 42000) {
send(pay.replyTo, Rejected())
} else {
send(aud, Audit(pay)) >>
send(pay.replyTo, Accepted())
+
+
H

Naive approach: run each actor/process in a dedicated thread

As in our A-calculus, continuations are A-terms (closures)

For better scalability, we can:
» schedule closures to run on a limited number of threads
» unschedule closures that are waiting for input

17 /19

Implementation
oe

Scalability and performance

10*

2

Time (milliseconds)
g

Ping-pong

—- akka
statemachinemultistep
—— runnerimproved

10* 102 10°
Number of pairs

10¢

10°

Time (milliseconds)

10*

Streaming ring

The general performance is not too far from Akka

4 x Intel Core i7-4790 @ 3.60GHz; 16 GB RAM

» Main source of overhead: DSL interpretation

—- akka [
statemachinemultistep !
—— runnerimproved !
1
!
!
!
1
!
/
/7
7/
7/
-~ ——
~ .~
A —— P -
10* 102 10° 10* 10°
Number of ring members
Ubuntu 16.04; Java 1.8.0.181; Dotty 0.9.0-RC1; Scala 2.12.6
18

19

Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

» with process-based and actor-based APlIs

» with a runtime supporting highly concurrent applications

Theoretical foundations:

» a concurrent functional calculus
» equipped with a novel type system:

» behavioural types (inspired by 7-calculus theory)
» dependent function types (inspired by Dotty / Scala 3)

» verify the behaviour of processes by model checking types

19/19

Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

» with process-based and actor-based APlIs

» with a runtime supporting highly concurrent applications

Theoretical foundations:

» a concurrent functional calculus
» equipped with a novel type system:
» behavioural types (inspired by 7-calculus theory)
» dependent function types (inspired by Dotty / Scala 3)

» verify the behaviour of processes by model checking types

Work in progress:
» Dotty compiler plugin to verify type-level properties via
model checking, using mCRL2

19/19

Appendix

Some references

@ D. Sangiorgi and D. Walker, The 7t-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

A. lgarashi and N. Kobayashi, “A generic type system for the 7t-calculus,” TCS,
vol. 311, no. 1, 2004.

N. Yoshida and M. Hennessy, “Assigning types to processes,” Inf. Comput.,
vol. 174, no. 2, 2002.

N. Yoshida, “Channel dependent types for higher-order mobile processes,” in
POPL, 2004.

M. Hennessy, J. Rathke, and N. Yoshida, “safeDpi: a language for controlling
mobile code,” Acta Inf., vol. 42, no. 4-5, pp. 227-290, 2005.

D. Ancona et al., “Behavioral Types in Programming Languages,” Foundations
and Trends in Programming Languages, vol. 3(2-3), 2017.

N. Amin, S. Griitter, M. Odersky, T. Rompf, and S. Stucki, “The essence of
dependent object types,” in A List of Successes That Can Change the World -
Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, 2016.

) & &) O

L. Cardelli, S. Martini, J. Mitchell, and A. Scedrov, “An extension of System F
with subtyping,” Information and Computation, vol. 109, no. 1, 1994.

	Introduction
	Example: payment with auditing
	Overview

	Calculus
	The calculus

	Types
	Typing a process calculus
	Dependent behavioural types

	Properties
	Properties
	Mobile code

	Implementation
	Embedding
	Actor-based DSL
	Runtime

	Conclusion
	Appendix
	References
	References

