Imperial College
London

Distributed Programming with Role-Parametric
Multiparty Session Types in Go

Statically-Typed APIls for Dynamically-Instantiated Communication Structures

David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, Nobuko Yoshida

http://mrg.doc.ic.ac.uk

A concurrent file downloader in Go

Threads (goroutines)

e Master
e nof HTTP Fetchers

Fetcher

/

\

Master Fetcher

Master send URL/offset to n Fetchers

Fetchers send HTTP requests x n s | /ATTP GET
Fetchers receive HTTP replies x n '
Master receive data from n Fetchers

W=

Fetcher

A concurrent file downloader

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

A concurrent file downloader in Go

Threads (goroutines)

e Master
e nof HTTP Fetchers

In summary

e Message passing over channels
e Shared memory channels
e HTTP over TCP channels

Fetcher

/

Master

A concurrent file downloader

\

Fetcher

HTTP GET
. n Fetchers

Fetcher

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

The Go Programming Language

e Statically typed, compiled
e Concurrent
e Goroutines: lightweight threads
e Channels: process calculi inspired communication
e Robust standard library
e For TCP/HTTP transport etc.
e Popular for Cloud Native Computing
e Scalable, distributed systems (uservices)
e Concurrency: Inherent asynchrony of distrib. Interactions

Exam ples: Containers Orchestration Distributed Tracing

& 1. JAEGER

docker kubernetes —

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Distributed programming with Go

Go channels: Homogeneously typed (chan T)

e Cannot specify direction of communication
e e.9. SEND then RECEIVE
e Cannot specify casualty of communication across channels

Distributed TCP/HTTP channels: Generally untyped
Challenges

e Debugging (with concurrency) is difficult [Go user survey 2016]
e Language + library provide not much assistance

How to ensure communication safety & correctness in distrib. sys. in Go?

We offer a solution to the challenges in Multiparty Session Types

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Multiparty Session Types in a nutshell

Typing discipline for structured communication (POPL’08)
e Statically detect communication errors, deadlocks

G
Global type (or communication protocol) Projection
e Describes overall communication structure | . |
e \Well-formedness checks 1 2 3
Local types Type-check
e Obtained by projection onto each role Pl [Pa] [P

e |ocalised view at each endpoint
Processes Traditional top-down

C g . distributed view of MPST
e Endpoint implementations
e Type-check against its local types

7 i http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrent file downloader protocol

Global protocol (for 1 Fetcher)

Fetch(url) from M to F;

HTTP(req) from F to Server; F \ -

HTTP(reply) from Server to F; T

Result(data) from F to M;

Local protocol @ Master

Fetch(url) to F;

HTTP GET

Result(data) from F;

Local protocol @ Fetcher

Fetch(url) from M; A concurrent file downloader

HTTP(req) to Server;
HTTP(reply) from Server;

Result(data) to M;
7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrent file downloader protocol

Global protocol (for n Fetchers)

Fetch(url) from M to F1; Fetch(url) from M to F2; ...

HTTP(req) from F1 to Server; HTTP(req) from F2 to Server; ... F

HTTP(reply) from Server to F1; HTTP(reply) from Server to F2; ...

Result(data) from F1 to M; Result(data) from F2 to M; ...

\/

Local protocol @ Master

HTTP GET

Fetch(url) to F1; Fetch(url) to F2; n Fetchefs

Result(data) from F1l; Result(data) from F2; ...

Local protocol @ Fetcher .

Fetch(url) from M;

Fetcher 1 ... Fetcher n A concurrent file downloader

HTTP(req) to Server; protocols are the same!
HTTP(reply) from Server;

Result(data) to M;
7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Role-Parametric Multiparty Session Types

When number of participants changes

e Global protocol is different
e Despite core communication structure mostly the same

Intuition: Specify one global protocol and use forn=1or2or ...

e JStatically guarantee comm. safety, deadlock freedom as original MPST
e Dynamically instantiated communication structure
e Role parameterised by an index, e.g. F[1..n] = F[1]...F[n]

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Revised Concurrent file downloader protocol

Global protocol (parametric over n Fetchers)

foreach F[i:1..n]

{ Fetch(url) from M to F[i]; F

HTTP(req) from F[i] to Server;

\/

HTTP(reply) from Server to F[i];

Result(data) from F[i] to M; }

Local protocol @ Master HTTP GET

. nFetchers
foreach F[i:1..n]

{ Fetch(url) to F[i]; Result(data) from F[i]; }

F

Local protocol @ Fetcher [1..n]

A concurrent file downloader

Fetch(url) from M; HTTP(req) to Server;

HTTP(reply) from Server; Result(data) to M;

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Role variant

Role variant are unique kinds of endpoints
{M, F[1..n], Server}

HTTP HEAD
F

N
8

. n Fetchers HTTP GET

If F[1] sends an extra request
HTTP HEAD to Server to get total size
Then acts as a normal F

The role variants are:

{M, F[1], F[2..n], Server}
— F[1] and F[2. .n] are different endpoints
Inference of role variants (indices): formulated as SMT constraints for Z3

F

A concurrent file downloader (v2)

7 i http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

The Scribble-Go framework

Scribble project (scribble.orq)

Protocol specification language & verification framework

Practical incarnation of (original) MPST

Collaboration with industry: RedHat, Cognizant, OOl

Python [rRv’13], Java [FASE’16,17], Scala [EcOOP'16,17], Erlang [cc'17], F# [cC18]

Scribble-Go

e New theoretical & implementation extension of Scribble
e Adds role-parametric protocol support
e Endpoint APl code generation for message passing programming

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk
http://scribble.org

Scribble-Go workflow

Input protocol

Role-parametric
global protocol

Projection

N =

=

(&

using Scribble +
Z3 SMT solver

| Role-variant

specific FSM

Typed API
generation

~

Endpoint program

>

User implementation
(native Go programming)

Scribble-Go framework

Transport-independent
Endpoint API

Write a role-parametric global protocol

Select endpoint role variant to implement (e.g. Fetcher)

Use Scribble-Go to project and generate Endpoint API
Implement endpoint (e.g. Fetcher[3]) using the Endpoint API

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Role-variant local protocol as FSM*

Local protocol @ Master M’O

foreach F[i:1..n]

{ Fetch(url) to F[i]; Result(data) from F[i]; } a& F[i] ! Fetch(url)

F[1..n]

F[i] ? Result(datd)

Local protocol @ Fetcher[1..n]

M ? Fetch(url)
Fetch(url) from M; HTTP(req) to Server;

HTTP(reply) from Server; Result(data) to M;
Server ! HTTP(req)

Server ? HTTP(reply)

M ? Result(data)
*More accurately, Communicating FSM

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Endpoint APl generation and usage

FSMs from local protocols — Message passing API

e Fluent-style
e Every state is a unique type (struct)
e Method calls (communication) returns next state
e Type information can be leveraged by IDEs func dot2(n2 0.2) M End {

e “dot-driven” content assist & auto complete Sl

func doM2(m2 *M_2) M _End {
if m3 := m2.F_1_to k.|

O Scatter: t2

func doM2(m2 *M_2) M _End {
if m3 := m2.F_1_to_k.Scatter. _

@ Job(a [JJob) *M_3

func doM2(m2 *M_2, meta *Meta) M_End {

if m3 := m2.F_1_to_k.Scatter.Job(split(meta)); m3.Err != nil

} else {
return m3.F_1_to_k.Gather.

} @ Data(a [|Data) M_End

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Endpoint API generation

e Generated APl is transport independent
e Presented as generic message passing communication methods
e Lightweight runtime abstracts:
e Shared memory transport (~Go channels)
e TCP transport (via wrapper of Go’s net package)

e Also provides channel passing communication!
e Over shared memory transport
e Transparent to user

— Send Protocol@Role as payload in Scribble
Message(Protocol@Role) from Alice to Bob;

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Evaluation: runtime overhead

Sos

+J
807
@

X 0.6/

0.5

Shared memory transport

" o |

O 1.0

+J

© 0.9

Yos
=
$0.7

()]
0.6

0.5

TCP transport
—-— One-to-Many

' -==- Many-to-One
—— Many-to-Many

1 2 3 4 5 6 7 8 9 10 11

Parameter k value

Relative ratio: execution runtime compared to native

' —-— One-to-Many
' ---- Many-to-One
— Many-to-Many
1 2 3 4 5 6 7 8 9 10 11
Parameter k value
1.0 = same as native

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Evaluation: expressiveness

Pt Sc Ga FE |Pt Sc Ga FE Pipe MS PP Rec Del
1. One-to-Many (§6.1) ® O _ % 4. Pipeline (§4) (] &
Q 2 2. Many-to-One (§6.1) ® O = & 5. Ring (§3;4)) ® O o ©o
v g 3. Many-to-Many (§ 6.1) ® 0 O S R Hadamard (§4) | @]
ol ™
G Above, O are possible alt. implementations & ; %/éii}}‘]((?lﬁ) ¢ o 0 ¢ o
9. Pget? (O is the difference between the two versions in § 3.2; § 3.3) o0 o [®
10. Vickrey auction (Supplement, § IV.1.2) o0 0 o0 o [J
11. Jacobi solution of discrete Poisson equation. [Bejleri et al. 2009] o0 o o0 ® ®
12. n-body simulation (based on Ring) [Bejleri et al. 2009] 5) ® ©o o O
2 13. Iterative linear equation solver (based on Mesh) [Ng and Yoshida 2015] | @ @ ® 6 o ®
2 14. k-nucleotide [Gouy 2017] (§6.1) o o0
S 15, regex-redux [Gouy 2017] (§6.1))
'8 16. spectral-norm [Gouy 2017] (§6.1) o o0 ® ®
< 17. Fibonacci [Lange et al. 2017] [o
18. Quote-Request [Austin et al. 2004; Ng and Yoshida 2015] ® 06 o @ ®
19. P2P multiplayer game [Scalas et al. 2017] [® O ® & o
20. Web Crawler [Akhmadeev 2016; Neykova and Yoshida 2017] o0 0 o0
21. n-buyers [Coppo et al. 2016; Honda et al. 2016] o @ o e o

Pt: point-to-point; Sc: Scatter; Ga: Gather; FE: Foreach; Pipe: Pipeline; MS: MS choices; PP: PP choices; Rec: Recursion; Del: Delegation
Fig. 15. Role-parametric protocols for communication patterns, topologies and applications in Scribble-Go.
7 i http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Related work

Parameterised MPST [Denielou et al., LMCS'12], Pabble [Ng et al. SOCA, cC’15]

e Single combined local protocol
e Unsuitable for distributed programming
e Or requires special runtime to handle indices (e.g. MPI)

Verification of msg-passing Go programs [Ng et al., CC’16; Lange et al. POPL’17, ICSE’18]

e Bottom-up approach (type inference)
e No assistance to programmers
e Limited to Go channel communication; no channel passing support

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Conclusion

Scribble-Go: A framework for communication-safe distributed programming

e Based on Role-Parameterised Multiparty Session Types

e Number of roles dynamically instantiated

e Statically guarantees communication safety, deadlock freedom
e Tool chain

e Input role-parameterised global protocol

e Generates type-safe, transport independent Msg passing API

e Comm. safety guaranteed by using APl+standard Go type checking
e Evaluation: Framework is expressive, minimal runtime overhead

7 i http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Omitted details

Projection, role inference, well-formedness check
— Decidable!
Linearity

e Ensures a session runs from start to finish (no early termination)
e Channels are not re-used

— Simple runtime check; but could be static
Error handling
e Idiomatic Go style -- natural to Go developers
Go runtime optimisations

e Many lessons learned (ask me about it!)

7 I http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

