
http://mrg.doc.ic.ac.uk

Distributed Programming with Role-Parametric
Multiparty Session Types in Go
Statically-Typed APIs for Dynamically-Instantiated Communication Structures

David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, Nobuko Yoshida

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

A concurrent file downloader in Go

Master

Fetcher

Fetcher

Fetcher

.

.

.

HTTP
Server

n Fetchers

A concurrent file downloader

Threads (goroutines)
● Master
● n of HTTP Fetchers

1. Master send URL/offset to n Fetchers
2. Fetchers send HTTP requests x n
3. Fetchers receive HTTP replies x n
4. Master receive data from n Fetchers

HTTP GET

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

A concurrent file downloader in Go

Master

Fetcher

Fetcher

Fetcher

.

.

.

HTTP
Server

n Fetchers

A concurrent file downloader

Threads (goroutines)
● Master
● n of HTTP Fetchers

In summary
● Message passing over channels

● Shared memory channels
● HTTP over TCP channels

HTTP GET

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

The Go Programming Language
● Statically typed, compiled
● Concurrent

● Goroutines: lightweight threads
● Channels: process calculi inspired communication

● Robust standard library
● For TCP/HTTP transport etc.

● Popular for Cloud Native Computing
● Scalable, distributed systems (µservices)
● Concurrency: Inherent asynchrony of distrib. Interactions

Examples: Containers Orchestration Distributed Tracing

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Distributed programming with Go
Go channels: Homogeneously typed (chan T)

● Cannot specify direction of communication
● e.g. SEND then RECEIVE

● Cannot specify casualty of communication across channels
Distributed TCP/HTTP channels: Generally untyped
Challenges
● Debugging (with concurrency) is difficult [Go user survey 2016]
● Language + library provide not much assistance

How to ensure communication safety & correctness in distrib. sys. in Go?
We offer a solution to the challenges in Multiparty Session Types

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Multiparty Session Types in a nutshell
Typing discipline for structured communication (POPL’08)
● Statically detect communication errors, deadlocks

Global type (or communication protocol)
● Describes overall communication structure
● Well-formedness checks

Local types
● Obtained by projection onto each role
● Localised view at each endpoint

Processes
● Endpoint implementations
● Type-check against its local types

G

L1 L2 L3

P1 P2 P3

Traditional top-down
distributed view of MPST

Projection

Type-check

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrent file downloader protocol
Global protocol (for 1 Fetcher)

Fetch(url) from M to F;

HTTP(req) from F to Server;

HTTP(reply) from Server to F;

Result(data) from F to M;

Local protocol @ Master
Fetch(url) to F;

Result(data) from F;

Local protocol @ Fetcher
Fetch(url) from M;

HTTP(req) to Server;

HTTP(reply) from Server;

Result(data) to M;

M

F

F

F

.

.

.

HTTP
Server

n Fetchers

A concurrent file downloader

HTTP GET

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrent file downloader protocol
Global protocol (for n Fetchers)

Fetch(url) from M to F1; Fetch(url) from M to F2; ...

HTTP(req) from F1 to Server; HTTP(req) from F2 to Server; ...

HTTP(reply) from Server to F1; HTTP(reply) from Server to F2; ...

Result(data) from F1 to M; Result(data) from F2 to M; ...

Local protocol @ Master
Fetch(url) to F1; Fetch(url) to F2; ...

Result(data) from F1; Result(data) from F2; ...

Local protocol @ Fetcher
Fetch(url) from M;

HTTP(req) to Server;

HTTP(reply) from Server;

Result(data) to M;

M

F

F

F

.

.

.

HTTP
Server

n Fetchers

A concurrent file downloader

HTTP GET

Fetcher 1 … Fetcher n
protocols are the same!

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Role-Parametric Multiparty Session Types
When number of participants changes
● Global protocol is different
● Despite core communication structure mostly the same

Intuition: Specify one global protocol and use for n = 1 or 2 or …
● Statically guarantee comm. safety, deadlock freedom as original MPST
● Dynamically instantiated communication structure

● Role parameterised by an index, e.g. F[1..n] = F[1]...F[n]

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Revised Concurrent file downloader protocol
Global protocol (parametric over n Fetchers)

foreach F[i:1..n]

{ Fetch(url) from M to F[i];

 HTTP(req) from F[i] to Server;

 HTTP(reply) from Server to F[i];

 Result(data) from F[i] to M; }

Local protocol @ Master
foreach F[i:1..n]

{ Fetch(url) to F[i]; Result(data) from F[i]; }

Local protocol @ Fetcher [1..n]
Fetch(url) from M; HTTP(req) to Server;

HTTP(reply) from Server; Result(data) to M;

M

F

F

F

.

.

.

HTTP
Server

n Fetchers

A concurrent file downloader

HTTP GET

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Role variant
Role variant are unique kinds of endpoints

{ M, F[1..n], Server }

If F[1] sends an extra request
HTTP HEAD to Server to get total size
Then acts as a normal F

The role variants are:
{ M, F[1], F[2..n], Server }

→ F[1] and F[2..n] are different endpoints
Inference of role variants (indices): formulated as SMT constraints for Z3

M

F

F

F

.

.

.

HTTP
Server

n Fetchers

A concurrent file downloader (v2)

HTTP GET

HTTP HEAD

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

The Scribble-Go framework
Scribble project (scribble.org)
● Protocol specification language & verification framework
● Practical incarnation of (original) MPST
● Collaboration with industry: RedHat, Cognizant, OOI
● Python [RV’13], Java [FASE’16,‘17], Scala [ECOOP’16,‘17], Erlang [CC’17], F# [CC’18]

Scribble-Go

● New theoretical & implementation extension of Scribble
● Adds role-parametric protocol support
● Endpoint API code generation for message passing programming

http://mrg.doc.ic.ac.uk
http://scribble.org

http://mrg.doc.ic.ac.uk

Scribble-Go framework

User implementation
(native Go programming)

Scribble-Go workflow

Role-parametric
global protocol

Role-variant
specific FSM

Transport-independent
Endpoint API

Projection

Endpoint program

Typed API
generation

Input protocol

using Scribble +
Z3 SMT solver

1. Write a role-parametric global protocol
2. Select endpoint role variant to implement (e.g. Fetcher)
3. Use Scribble-Go to project and generate Endpoint API
4. Implement endpoint (e.g. Fetcher[3]) using the Endpoint API

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Role-variant local protocol as FSM*
Local protocol @ Master

foreach F[i:1..n]

{ Fetch(url) to F[i]; Result(data) from F[i]; }

Local protocol @ Fetcher[1..n]
Fetch(url) from M; HTTP(req) to Server;

HTTP(reply) from Server; Result(data) to M;

*More accurately, Communicating FSM

M ? Fetch(url)

Server ! HTTP(req)

Server ? HTTP(reply)

M ? Result(data)

F[i] ! Fetch(url)

F[i] ? Result(data)

M

F[1..n]

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Endpoint API generation and usage
FSMs from local protocols → Message passing API
● Fluent-style

● Every state is a unique type (struct)
● Method calls (communication) returns next state

● Type information can be leveraged by IDEs
● “dot-driven” content assist & auto complete

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Endpoint API generation
● Generated API is transport independent

● Presented as generic message passing communication methods
● Lightweight runtime abstracts:

● Shared memory transport (~Go channels)
● TCP transport (via wrapper of Go’s net package)

● Also provides channel passing communication!
● Over shared memory transport
● Transparent to user

→ Send Protocol@Role as payload in Scribble
Message(Protocol@Role) from Alice to Bob;

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Evaluation: runtime overhead
Shared memory transport TCP transport

Relative ratio: execution runtime compared to native
1.0 = same as native

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Evaluation: expressiveness

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Related work
Parameterised MPST [Denielou et al., LMCS’12], Pabble [Ng et al. SOCA, CC’15]

● Single combined local protocol
● Unsuitable for distributed programming
● Or requires special runtime to handle indices (e.g. MPI)

Verification of msg-passing Go programs [Ng et al., CC’16; Lange et al. POPL’17, ICSE’18]

● Bottom-up approach (type inference)
● No assistance to programmers

● Limited to Go channel communication; no channel passing support

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Conclusion
Scribble-Go: A framework for communication-safe distributed programming
● Based on Role-Parameterised Multiparty Session Types

● Number of roles dynamically instantiated
● Statically guarantees communication safety, deadlock freedom

● Tool chain
● Input role-parameterised global protocol
● Generates type-safe, transport independent Msg passing API
● Comm. safety guaranteed by using API+standard Go type checking

● Evaluation: Framework is expressive, minimal runtime overhead

http://mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Omitted details
Projection, role inference, well-formedness check

→ Decidable!
Linearity
● Ensures a session runs from start to finish (no early termination)
● Channels are not re-used

→ Simple runtime check; but could be static
Error handling
● Idiomatic Go style -- natural to Go developers

Go runtime optimisations
● Many lessons learned (ask me about it!)

http://mrg.doc.ic.ac.uk

