Effpi

concurrent programming with
dependent behavioural types

Alceste Scalas Imperial College
with Elias Benussi & Nobuko Yoshida London

VeTSS PhD school / FMATS workshop
Microsoft Research Cambridge, 25 September 2018

Problem
[J

The problem

Languages and toolkits for message-passing concurrent
programming provide intuitive high-level abstractions

» e.g., actors, channels, processes (Akka, Erlang, Go, ...)

... but do not allow to verify code against behavioural specs
» risks: protocol violations, deadlocks, starvation, ...
» issues found at run-time, hence expensive to fix

» can vehicle attacks: e.g., data breaches, DoS

Problem
[J

The problem and our solution

Languages and toolkits for message-passing concurrent
programming provide intuitive high-level abstractions

» e.g., actors, channels, processes (Akka, Erlang, Go, ...)

... but do not allow to verify code against behavioural specs
» risks: protocol violations, deadlocks, starvation, ...
» issues found at run-time, hence expensive to fix

» can vehicle attacks: e.g., data breaches, DoS

Our solution: Effpi, a toolkit for strongly-typed concurrent
programming in Dotty (a.k.a. Scala 3)

» using types as behavioural specifications

» and type-level model checking to verify code properties

Introduction
[Jele}

Example: payment service with auditing

A payment service should implement the following specification:

1. wait to receive a payment request

2. then, either:

2.1 reject the payment, or
2.2 report the payment to an audit service, and then accept it

3. continue from point 1

Introduction
(o] le}

Example: payment service with auditing

Demo!

Introduction
[e]e]]

What is the Dotty / Scala 3 compiler saying?

found: Out[ActorRef[Result], Accepted]

required: Out[ActorRef [Result] (pay.replyTo), Rejected]

Out [ActorRef [Audit[_]] (aud), Audit[Pay(pay)l] >>:
Out [ActorRef [Result] (pay.replyTo), Accepted]

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

6/17

Calculus
[J

A A-calculus with communication & concurrency
Example: a pinger process sends a communication channel to

a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(
send(ponge, self, A_.(

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(
send(ponge, self, A_.(
recv(self, Areply.(

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(
send(ponge, self, A_.(
recv(self, Areply.(
end)))))

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(regc, "Hello!", A_.(

end))))) end)))))

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(regc, "Hello!", A_.(
end))))) end)))))

let pingpong = Acl .Ac?.(pinger cl c¢2 | ponger 02)

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(regc, "Hello!", A_.(
end))))) end)))))

let pingpong = Acl .Ac?.(pinger cl c¢2 | ponger 02)

let main = let cI = chan(); let ¢2 = chan(); pingpong c1 c2

6/17

Calculus
[J

A A-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = Aself . Apongc.(let ponger = Aself .(
send(ponge, self, A_.(recv(self, Arege.(
recv(self, Areply.(send(regc, "Hello!", A_.(
end))))) end)))))

let pingpong = Acl .Ac?.(pinger cl c¢2 | ponger 02)

let main = let cI = chan(); let ¢2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order 7t-calculus

» A-terms model abstract processes

, //@

» Continuations are expressed as A-terms
6/17

How to type a process calculus
For typing, we use a context I' with channel types. E.g.:
I = z:str, y:c°[str]
Typing judgements are (partly) standard:

[- "Hello" ++x : str

How to type a process calculus
For typing, we use a context I' with channel types. E.g.:
I = z:str, y:c°[str]
Typing judgements are (partly) standard:

[- "Hello" ++x : str

How do we type communication? E.g., if t = send(y, z,A_.end)

Classic approach: T' = t : proc (“tis a well-typed process in I"")

How to type a process calculus
For typing, we use a context I' with channel types. E.g.:
I = z:str, y:c°[str]
Typing judgements are (partly) standard:

[- "Hello" ++x : str

How do we type communication? E.g., if t = send(y, z,A_.end)

Classic approach: T' = t : proc (“tis a well-typed process in I"")

Our approach: -1t : T (“t behaves as T in ')

How to type a process calculus
For typing, we use a context I' with channel types. E.g.:
I = z:str, y:c°[str]
Typing judgements are (partly) standard:

[- "Hello" ++x : str

How do we type communication? E.g., if t = send(y, z,A_.end)

Classic approach: T' = t : proc (“tis a well-typed process in I"")

Our approach: -1t : T (“t behaves as T in ')
'-T<

proc (“Tis a refined process type”)

Behavioural types (inspired by 7t-calculus theory)

Some examples:

z:str, y:c®[str] + send(y,z,A_.end) : T

Behavioural types (inspired by 7t-calculus theory)

Some examples:

z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

Behavioural types (inspired by 7t-calculus theory)
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T’

Behavioural types (inspired by 7t-calculus theory)
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

Behavioural types (inspired by 7t-calculus theory)
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]

@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?

N

Behavioural types (inspired by 7t-calculus theory)
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]
@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?
Yes — almost!

N

Behavioural types (inspired by 7t-calculus theory)
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]
@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?
Yes — almost!

N

If a term t has type T’ above, we know that:
1. tis an abstract process. ..
2. that takes a string and a channel. ..
3. sends some string on some channel, then terminates

Behavioural types (inspired by 7t-calculus theory)
Some examples:
z:str, y:c®[str] + send(y,z,A_.end) : T =o0[c®[str], str, nil]
@ + Az.Ay.send(y,z,A_.end) : T =str->c°[str] > T

@ Can we use types to specify and verify process behaviours?
Yes — almost!

N

If a term t has type T’ above, we know that:
1. tis an abstract process. ..
2. that takes a string and a channel. ..
3. sends some string on some channel, then terminates

Here's a term with the same type T’, but different behaviour:

Az.Ay.(let z = chan(); send(z, "Hello!",A_.end))

Behavioural types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

We can have multiple levels of refinement:
@ +Ax.Ay.send(y, z,A_.end) : T”

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

We can have multiple levels of refinement:
@ +Ax.Ay.send(y,z,A_.end) : T < T’

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T" = str > c°[str] — o[c°[str], str, nil]

@ Introduce dependent function types (adapted from Dotty / Scala 3):
M(z:Ty)To where the return type T, can refer to z

E.g., if term t has type T” = T1(x:str) TT(y:c°[str]) o[y, =, nil]
1. tis an abstract process. ..

2. that takes a string x and a channel y. ..

3. sends x on channel y, then terminates

We can have multiple levels of refinement:
@ + Az Ay.send(y, z,A_.end) : T < T’ < c°[none] — str — proc

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:
Ty o= T(z:..) TI(y:...) o[y, z, [z, TT(z:...)nil | |

“Take z and y; use y send z; use x to receive some z; and terminate”

10/17

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:
Ty = T(z:..)T(y:...) o[y, x, i[z, TT(z:...)nil | |
“Take z and y; use y send z; use x to receive some z; and terminate”
To = T(z:...)i[x, TT(y:...)o|y, str, nil] |

“Take z; use z to input some y; use y to send a string; and terminate”

10/17

Types as behavioural specifications: examples
Types can provide accurate behavioural specifications. E.g.:
Ty = T(z:..)T(y:...) o[y, x, i[z, TT(z:...)nil | |
“Take z and y; use y send z; use z to receive some z; and terminate”
To = T(z:...)i[x, TT(y:...)o|y, str, nil] |

“Take z; use z to input some y; use y to send a string; and terminate”

> T and T, are respectively the types of the pinger and ponger processes

10/17

Types as behavioural specifications: examples
Types can provide accurate behavioural specifications. E.g.:
Ty = T(z:..)T(y:...) o[y, x, i[z, TT(z:...)nil | |
“Take z and y; use y send z; use z to receive some z; and terminate”
To = T(z:...)i[x, TT(y:...)o|y, str, nil] |

“Take z; use z to input some y; use y to send a string; and terminate”

> T and T, are respectively the types of the pinger and ponger processes

T3 = M.)T(y...)p[Tizy, Ty

“Take z and y; use them to apply T1 and T; run such behaviours in parallel”

10/17

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

Ty o= T(z:..) TI(y:...) o[y, z, [z, TT(z:...)nil | |

“Take z and y; use y send z; use x to receive some z; and terminate”

To = T(z:...)i[z, TT(y:...) o[y, str,nil] |

“Take z; use z to input some y; use y to send a string; and terminate”

> T and T, are respectively the types of the pinger and ponger processes

T3 = M.)T(y...)p[Tizy, Ty

“Take z and y; use them to apply T1 and T; run such behaviours in parallel”

> T3 is the type of the pingpong process

10/17

Types as behavioural specifications (cont'd)

Type checking guarantees type safety. ..

> E.g.: no strings can be sent on channels carrying integers

11/17

Types as behavioural specifications (cont'd)

Type checking guarantees type safety. ..

> E.g.: no strings can be sent on channels carrying integers

...and conformance with rich behavioural specifications — that
can be complicated, especially when composed

» E.g., the pingpong type: TI(z:...)T(y:...)p[Thzy, Toy |

Types can model races on shared channels, and deadlocks!

11/17

Types as behavioural specifications (cont'd)
Type checking guarantees type safety. ..

> E.g.: no strings can be sent on channels carrying integers

...and conformance with rich behavioural specifications — that
can be complicated, especially when composed

» E.g., the pingpong type: TI(z:...)T(y:...)p[Thzy, Toy |
Types can model races on shared channels, and deadlocks!

Verification via “type-level symbolic execution”

» Give a labelled semantics to a type T

, //@

» Model check the safety/liveness properties of T
» Show how, if +1t:T holds, then t “inherits” T's properties

11 /17

Types as behavioural specifications (cont'd)
Type checking guarantees type safety. ..

> E.g.: no strings can be sent on channels carrying integers

...and conformance with rich behavioural specifications — that
can be complicated, especially when composed

» E.g., the pingpong type: TI(z:...)T(y:...)p[Thzy, Toy |
Types can model races on shared channels, and deadlocks!

Verification via “type-level symbolic execution”

» Give a labelled semantics to a type T

, //@

» Model check the safety/liveness properties of T
» Show how, if +1t:T holds, then t “inherits” T's properties

Model checking is decidable for T, but not for t (Goltz'90; Esparza'97)

11 /17

Implementation
[e}

From theory to Dotty / Scala3

We directly translate our types in Dotty / Scala 3:

TT(z:str) TT(y:c°[str]) o[y, z, nil]
I

(x: String, y:0Chan[String]) => Out[y.type, x.type, Nil]

12 /17

Implementation
[e}

From theory to Dotty / Scala3

We directly translate our types in Dotty / Scala 3:

TT(z:str) TT(y:c°[str]) o[y, z, nil]
I

(x: String, y:0Chan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:
» calling send(...) yields an object of type Out[...]
» the object describes (does not perform!) the desired output
» the object is interpreted by a runtime system. ..

» ...that performs the actual output

12 /17

Implementation
(o] J

From theory to Dotty / Scala3

Demo!

13 /17

Implementation
o

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. ..
... but the opening example was actor-based!

14 /17

Implementation
o

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. ..
... but the opening example was actor-based!

» An actor is a process with an implicit input channel

» The channel acts as a FIFO mailbox (as in the Akka framework)

, //@

» The actor DSL is syntactic sugar on the process DSL

Payoffs:
» we have almost no actor-specific code

» we preserve the connection to the underlying theory

14 /17

Implementation
@0

How can we run our DSLs?

def payment(aud: ActorRef[Audit[_11): Actor[Pay, _1 =
forever {
read { pay: Pay =
if (pay.amount > 42000) {
send(pay.replyTo, Rejected())
} else {
send(aud, Audit(pay)) >>
send(pay.replyTo, Accepted())
+
+
H

Naive approach: run each actor/process in a dedicated thread

Implementation
@0

How can we run our DSLs?

def payment(aud: ActorRef[Audit[_11): Actor[Pay, _1 =
forever {
read { pay: Pay =
if (pay.amount > 42000) {
send(pay.replyTo, Rejected())
} else {
send(aud, Audit(pay)) >>
send(pay.replyTo, Accepted())
+
+
H

Naive approach: run each actor/process in a dedicated thread

As in our A-calculus, continuations are A-terms (closures)

For better scalability, we can:
» schedule closures to run on a limited number of threads
» unschedule closures that are waiting for input

Implementation
(o] J

Scalability and performance

Ping-pong (lower is better) Streaming ring (lower is better)

Number of pairs

Number of ring members

The general performance is not too far from Akka

» main source of overhead: DSL interpretation

s
—- Akka 1079 o Akka [
10° Effpi with channel FSM Effpi with channel FSM /
—e— Effpi —e— Effpi]
1
!
3 108 3 !
e 2 i
S S 10 !
3 3 /
a a
= = /
E10? £ j
P P
£ £
F =
10t =
10° 4 S0 e
. -
10* 102 10° 10* 10° 10t 102 10° 10* 10°

4 x Intel Core i7-4790 @ 3.60GHz; 16 GB RAM; Ubuntu 16.04; Java 1.8.0_181; Dotty 0.9.0-RC1; Scala 2.12.6; Akka 2.5.16

16

17

Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

» with process-based and actor-based APlIs

» with a runtime supporting highly concurrent applications

Theoretical foundations:

» a concurrent functional calculus
» equipped with a novel type system, blending:
» behavioural types (inspired by 7-calculus theory)
» dependent function types (inspired by Dotty / Scala 3)

» verify the behaviour of processes by model checking types

Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

» with process-based and actor-based APlIs

» with a runtime supporting highly concurrent applications

Theoretical foundations:

» a concurrent functional calculus
» equipped with a novel type system, blending:
» behavioural types (inspired by 7-calculus theory)
» dependent function types (inspired by Dotty / Scala 3)

» verify the behaviour of processes by model checking types

Work in progress:
» Dotty compiler plugin to verify type-level properties via
model checking, using mCRL2

17 /17

Appendix

Some references

@ D. Sangiorgi and D. Walker, The 7t-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

A. lgarashi and N. Kobayashi, “A generic type system for the 7t-calculus,” TCS,
vol. 311, no. 1, 2004.

N. Yoshida and M. Hennessy, “Assigning types to processes,” Inf. Comput.,
vol. 174, no. 2, 2002.

N. Yoshida, “Channel dependent types for higher-order mobile processes,” in
POPL, 2004.

M. Hennessy, J. Rathke, and N. Yoshida, “safeDpi: a language for controlling
mobile code,” Acta Inf., vol. 42, no. 4-5, pp. 227-290, 2005.

D. Ancona et al., “Behavioral Types in Programming Languages,” Foundations
and Trends in Programming Languages, vol. 3(2-3), 2017.

N. Amin, S. Griitter, M. Odersky, T. Rompf, and S. Stucki, “The essence of
dependent object types,” in A List of Successes That Can Change the World -
Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, 2016.

) & &) O

L. Cardelli, S. Martini, J. Mitchell, and A. Scedrov, “An extension of System F
with subtyping,” Information and Computation, vol. 109, no. 1, 1994.

Mobile code
L]

Verified mobile code
Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:
» execute user-supplied functions (e.g., Amazon AWS Lambda)
» perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

Mobile code
L]

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

» execute user-supplied functions (e.g., Amazon AWS Lambda)
» perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

@ In our theory, if a program thunk is received from a channel of
type c'[T], we can deduce its behaviour by inspecting T

»

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:
» execute user-supplied functions (e.g., Amazon AWS Lambda)
» perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

@ In our theory, if a program thunk is received from a channel of
S type c'[T], we can deduce its behaviour by inspecting T

Eg,if T = T(a:cfint])T’

» we know that the thunk needs a channel z carrying strings
» from T’, we can deduce if and how the thunk uses z

» from T’, we can ensure that the thunk is not a forkbomb

	Problem
	Problem

	Introduction
	Example: payment with auditing

	Calculus
	The calculus

	Types
	Typing a process calculus
	Dependent behavioural types

	Properties
	Properties

	Implementation
	Embedding
	Actor-based DSL
	Runtime

	Conclusion
	Appendix
	References
	References

	Mobile code
	Mobile code

