
Effpi

concurrent programming with
dependent behavioural types

Alceste Scalas
with Elias Benussi & Nobuko Yoshida

VeTSS PhD school / FMATS workshop
Microsoft Research Cambridge, 25 September 2018

Problem Introduction Calculus Types Properties Implementation Conclusion

The problem

Languages and toolkits for message-passing concurrent
programming provide intuitive high-level abstractions

▸ e.g., actors, channels, processes (Akka, Erlang, Go, . . .)

. . . but do not allow to verify code against behavioural specs

▸ risks: protocol violations, deadlocks, starvation, . . .

▸ issues found at run-time, hence expensive to fix

▸ can vehicle attacks: e.g., data breaches, DoS

Our solution: Effpi, a toolkit for strongly-typed concurrent
programming in Dotty (a.k.a. Scala 3)

▸ using types as behavioural specifications

▸ and type-level model checking to verify code properties

2 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

The problem and our solution

Languages and toolkits for message-passing concurrent
programming provide intuitive high-level abstractions

▸ e.g., actors, channels, processes (Akka, Erlang, Go, . . .)

. . . but do not allow to verify code against behavioural specs

▸ risks: protocol violations, deadlocks, starvation, . . .

▸ issues found at run-time, hence expensive to fix

▸ can vehicle attacks: e.g., data breaches, DoS

Our solution: Effpi, a toolkit for strongly-typed concurrent
programming in Dotty (a.k.a. Scala 3)

▸ using types as behavioural specifications

▸ and type-level model checking to verify code properties

2 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Example: payment service with auditing

A payment service should implement the following specification:

1. wait to receive a payment request

2. then, either:

2.1 reject the payment, or
2.2 report the payment to an audit service, and then accept it

3. continue from point 1

3 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Example: payment service with auditing

Demo!

4 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

What is the Dotty / Scala 3 compiler saying?

found: Out[ActorRef[Result], Accepted]

required: Out[ActorRef[Result](pay.replyTo), Rejected]

∣

Out[ActorRef[Audit[]](aud), Audit[Pay(pay)]] >>:

Out[ActorRef[Result](pay.replyTo), Accepted]

5 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(

send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(

recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(

end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(
send(reqc, "Hello!", λ .(

end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms

6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A λ-calculus with communication & concurrency

Example: a pinger process sends a communication channel to
a ponger process, who uses the channel to reply "Hello!"

let pinger = λself .λpongc .(
send(pongc, self , λ .(
recv(self , λreply .(
end)))))

let ponger = λself .(
recv(self , λreqc .(

send(reqc, "Hello!", λ .(
end)))))

let pingpong = λc1 .λc2 .(pinger c1 c2 ∣∣ ponger c2)

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π-calculus

▸ λ-terms model abstract processes

▸ Continuations are expressed as λ-terms
6 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ with channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Typing judgements are (partly) standard:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

7 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ with channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Typing judgements are (partly) standard:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

7 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ with channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Typing judgements are (partly) standard:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

7 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

How to type a process calculus

For typing, we use a context Γ with channel types. E.g.:

Γ = x ∶ str , y ∶ co[str]

Typing judgements are (partly) standard:

Γ ⊢ "Hello " ++ x ∶ str

How do we type communication? E.g., if t = send(y , x ,λ .end)

Classic approach: Γ ⊢ t ∶ proc (“t is a well-typed process in Γ”)

Our approach: Γ ⊢ t ∶ T (“ t behaves as T in Γ ”)

Γ ⊢ T ⩽ proc (“ T is a refined process type ”)

7 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T

= o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′

= str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?

Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types (inspired by π-calculus theory)

Some examples:

x ∶ str , y ∶ co[str] ⊢ send(y , x ,λ .end) ∶ T = o[co[str], str, nil]

∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′ = str→ co[str]→ T

Can we use types to specify and verify process behaviours?
Yes — almost!

If a term t has type T ′ above, we know that:

1. t is an abstract process. . .

2. that takes a string and a channel. . .

3. sends some string on some channel, then terminates

Here’s a term with the same type T ′, but different behaviour:

λx .λy .(let z = chan(); send(z ,"Hello!",λ .end))

8 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types

and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

9 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

9 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

9 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′

⩽ T ′ ⩽ co[none]→ str→ proc

9 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′

⩽ co[none]→ str→ proc

9 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Behavioural types and dependent function types

This type is not very precise: e.g., it does not track channel use

T ′ = str → co[str] → o[co[str], str, nil]

Introduce dependent function types (adapted from Dotty / Scala 3):

Π(x ∶T1)T2 where the return type T2 can refer to x

E.g., if term t has type T ′′ = Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

1. t is an abstract process. . .

2. that takes a string x and a channel y . . .

3. sends x on channel y , then terminates

We can have multiple levels of refinement:
∅ ⊢ λx .λy .send(y , x ,λ .end) ∶ T ′′ ⩽ T ′ ⩽ co[none]→ str→ proc

9 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

10 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

10 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

10 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

10 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

T1 = Π(x ∶. . .) Π(y ∶. . .) o[y , x , i[x , Π(z ∶. . .)nil]]

“Take x and y ; use y send x ; use x to receive some z ; and terminate”

T2 = Π(x ∶. . .) i[x , Π(y ∶. . .)o[y , str,nil]]

“Take x ; use x to input some y ; use y to send a string; and terminate”

▸ T1 and T2 are respectively the types of the pinger and ponger processes

T3 = Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

“Take x and y ; use them to apply T1 and T2; run such behaviours in parallel”

▸ T3 is the type of the pingpong process

10 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety. . .

▸ E.g.: no strings can be sent on channels carrying integers

. . . and conformance with rich behavioural specifications — that
can be complicated, especially when composed

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

Types can model races on shared channels, and deadlocks!

Verification via “type-level symbolic execution”

▸ Give a labelled semantics to a type T

▸ Model check the safety/liveness properties of T

▸ Show how, if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

11 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety. . .

▸ E.g.: no strings can be sent on channels carrying integers

. . . and conformance with rich behavioural specifications — that
can be complicated, especially when composed

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

Types can model races on shared channels, and deadlocks!

Verification via “type-level symbolic execution”

▸ Give a labelled semantics to a type T

▸ Model check the safety/liveness properties of T

▸ Show how, if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

11 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety. . .

▸ E.g.: no strings can be sent on channels carrying integers

. . . and conformance with rich behavioural specifications — that
can be complicated, especially when composed

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

Types can model races on shared channels, and deadlocks!

Verification via “type-level symbolic execution”

▸ Give a labelled semantics to a type T

▸ Model check the safety/liveness properties of T

▸ Show how, if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

11 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Types as behavioural specifications (cont’d)

Type checking guarantees type safety. . .

▸ E.g.: no strings can be sent on channels carrying integers

. . . and conformance with rich behavioural specifications — that
can be complicated, especially when composed

▸ E.g., the pingpong type: Π(x ∶. . .) Π(y ∶. . .) p[T1 x y , T2 y]

Types can model races on shared channels, and deadlocks!

Verification via “type-level symbolic execution”

▸ Give a labelled semantics to a type T

▸ Model check the safety/liveness properties of T

▸ Show how, if ⊢ t ∶ T holds, then t “inherits” T ’s properties

Model checking is decidable for T , but not for t (Goltz’90; Esparza’97)

11 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

From theory to Dotty / Scala3

We directly translate our types in Dotty / Scala 3:

Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

⇓

(x: String, y: OChan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:

▸ calling send(...) yields an object of type Out[...]

▸ the object describes (does not perform!) the desired output

▸ the object is interpreted by a runtime system. . .

▸ . . . that performs the actual output

12 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

From theory to Dotty / Scala3

We directly translate our types in Dotty / Scala 3:

Π(x ∶str) Π(y ∶co[str]) o[y , x , nil]

⇓

(x: String, y: OChan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:

▸ calling send(...) yields an object of type Out[...]

▸ the object describes (does not perform!) the desired output

▸ the object is interpreted by a runtime system. . .

▸ . . . that performs the actual output

12 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

From theory to Dotty / Scala3

Demo!

13 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. . .
. . . but the opening example was actor-based!

▸ An actor is a process with an implicit input channel

▸ The channel acts as a FIFO mailbox (as in the Akka framework)

▸ The actor DSL is syntactic sugar on the process DSL

Payoffs:

▸ we have almost no actor-specific code

▸ we preserve the connection to the underlying theory

14 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

A simplified actor-based DSL

We have discussed a process-based calculus and DSL. . .
. . . but the opening example was actor-based!

▸ An actor is a process with an implicit input channel

▸ The channel acts as a FIFO mailbox (as in the Akka framework)

▸ The actor DSL is syntactic sugar on the process DSL

Payoffs:

▸ we have almost no actor-specific code

▸ we preserve the connection to the underlying theory

14 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

How can we run our DSLs?

Naive approach: run each actor/process in a dedicated thread

As in our λ-calculus, continuations are λ-terms (closures)

For better scalability, we can:

▸ schedule closures to run on a limited number of threads
▸ unschedule closures that are waiting for input

15 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

How can we run our DSLs?

Naive approach: run each actor/process in a dedicated thread

As in our λ-calculus, continuations are λ-terms (closures)

For better scalability, we can:

▸ schedule closures to run on a limited number of threads
▸ unschedule closures that are waiting for input

15 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Scalability and performance

Ping-pong (lower is better)

101 102 103 104 105

Number of pairs

101

102

103

104

T
im

e
 (

m
ill

is
e
co

n
d
s)

Akka

Effpi with channel FSM

Effpi

Streaming ring (lower is better)

101 102 103 104 105

Number of ring members

103

104

105

T
im

e
 (

m
ill

is
e
co

n
d
s)

Akka

Effpi with channel FSM

Effpi

The general performance is not too far from Akka

▸ main source of overhead: DSL interpretation

4 × Intel Core i7-4790 @ 3.60GHz; 16 GB RAM; Ubuntu 16.04; Java 1.8.0 181; Dotty 0.9.0-RC1; Scala 2.12.6; Akka 2.5.16

16 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

▸ with process-based and actor-based APIs

▸ with a runtime supporting highly concurrent applications

Theoretical foundations:

▸ a concurrent functional calculus
▸ equipped with a novel type system, blending:

▸ behavioural types (inspired by π-calculus theory)
▸ dependent function types (inspired by Dotty / Scala 3)

▸ verify the behaviour of processes by model checking types

Work in progress:

▸ Dotty compiler plugin to verify type-level properties via
model checking, using mCRL2

17 / 17

Problem Introduction Calculus Types Properties Implementation Conclusion

Conclusion

Effpi is an experimental framework for strongly-typed
concurrent programming in Dotty / Scala 3

▸ with process-based and actor-based APIs

▸ with a runtime supporting highly concurrent applications

Theoretical foundations:

▸ a concurrent functional calculus
▸ equipped with a novel type system, blending:

▸ behavioural types (inspired by π-calculus theory)
▸ dependent function types (inspired by Dotty / Scala 3)

▸ verify the behaviour of processes by model checking types

Work in progress:

▸ Dotty compiler plugin to verify type-level properties via
model checking, using mCRL2

17 / 17

Appendix

References Mobile code

Some references

D. Sangiorgi and D. Walker, The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

A. Igarashi and N. Kobayashi, “A generic type system for the π-calculus,” TCS,
vol. 311, no. 1, 2004.

N. Yoshida and M. Hennessy, “Assigning types to processes,” Inf. Comput.,
vol. 174, no. 2, 2002.

N. Yoshida, “Channel dependent types for higher-order mobile processes,” in
POPL, 2004.

M. Hennessy, J. Rathke, and N. Yoshida, “safeDpi: a language for controlling
mobile code,” Acta Inf., vol. 42, no. 4-5, pp. 227–290, 2005.

D. Ancona et al., “Behavioral Types in Programming Languages,” Foundations
and Trends in Programming Languages, vol. 3(2-3), 2017.

N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki, “The essence of
dependent object types,” in A List of Successes That Can Change the World -
Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, 2016.

L. Cardelli, S. Martini, J. Mitchell, and A. Scedrov, “An extension of System F
with subtyping,” Information and Computation, vol. 109, no. 1, 1994.

2 / 3

References Mobile code

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

▸ execute user-supplied functions (e.g., Amazon AWS Lambda)

▸ perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our theory, if a program thunk is received from a channel of
type ci[T], we can deduce its behaviour by inspecting T

E.g., if T = Π(x ∶cio[int])T ′

▸ we know that the thunk needs a channel x carrying strings

▸ from T ′, we can deduce if and how the thunk uses x

▸ from T ′, we can ensure that the thunk is not a forkbomb

3 / 3

References Mobile code

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

▸ execute user-supplied functions (e.g., Amazon AWS Lambda)

▸ perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our theory, if a program thunk is received from a channel of
type ci[T], we can deduce its behaviour by inspecting T

E.g., if T = Π(x ∶cio[int])T ′

▸ we know that the thunk needs a channel x carrying strings

▸ from T ′, we can deduce if and how the thunk uses x

▸ from T ′, we can ensure that the thunk is not a forkbomb

3 / 3

References Mobile code

Verified mobile code

Modern distributed programming toolkits allow to send/receive
program thunks, e.g. to:

▸ execute user-supplied functions (e.g., Amazon AWS Lambda)

▸ perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our theory, if a program thunk is received from a channel of
type ci[T], we can deduce its behaviour by inspecting T

E.g., if T = Π(x ∶cio[int])T ′

▸ we know that the thunk needs a channel x carrying strings

▸ from T ′, we can deduce if and how the thunk uses x

▸ from T ′, we can ensure that the thunk is not a forkbomb

3 / 3

	Problem
	Problem

	Introduction
	Example: payment with auditing

	Calculus
	The calculus

	Types
	Typing a process calculus
	Dependent behavioural types

	Properties
	Properties

	Implementation
	Embedding
	Actor-based DSL
	Runtime

	Conclusion
	Appendix
	References
	References

	Mobile code
	Mobile code

