Effpi

concurrent programming with dependent behavioural types

Alceste Scalas with Elias Benussi & Nobuko Yoshida Imperial College London

VeTSS PhD school / FMATS workshop Microsoft Research Cambridge, 25 September 2018

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
•	000	0	0000	0	00000	

The problem

Languages and toolkits for message-passing concurrent programming provide intuitive high-level abstractions

- e.g., actors, channels, processes (Akka, Erlang, Go, ...)
- ... but do not allow to verify code against behavioural specs
 - risks: protocol violations, deadlocks, starvation, ...
 - issues found at run-time, hence expensive to fix
 - can vehicle attacks: e.g., data breaches, DoS

The problem and our solution

Languages and toolkits for message-passing concurrent programming provide intuitive high-level abstractions

- e.g., actors, channels, processes (Akka, Erlang, Go, ...)
- ... but do not allow to verify code against behavioural specs
 - risks: protocol violations, deadlocks, starvation, ...
 - issues found at run-time, hence expensive to fix
 - can vehicle attacks: e.g., data breaches, DoS

Our solution: Effpi, a toolkit for strongly-typed concurrent programming in Dotty (a.k.a. Scala 3)

- using types as behavioural specifications
- and type-level model checking to verify code properties

Example: payment service with auditing

A payment service should implement the following specification:

- 1. wait to receive a payment request
- 2. then, either:
 - 2.1 reject the payment, or
 - 2.2 report the payment to an audit service, and then accept it
- **3.** continue from point 1

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
	000					

Example: payment service with auditing

Demo!

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
	000					

What is the Dotty / Scala 3 compiler saying?

found: Out[ActorRef[Result], Accepted]

required: Out[ActorRef[Result](pay.replyTo), Rejected]
|
Out[ActorRef[Audit[_]](aud), Audit[Pay(pay)]] >>:
 Out[ActorRef[Result](pay.replyTo), Accepted]

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* process sends a communication channel to

a ponger process, who uses the channel to reply "Hello!"

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

let pinger = λ self. λ pongc.(

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

let pinger = λ self. λ pongc.(send(pongc, self, λ_{-} .(

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

```
let pinger = \lambdaself.\lambdapongc.(
send(pongc, self, \lambda_{-}.(
recv(self, \lambdareply.(
```

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

```
let pinger = \lambdaself.\lambdapongc.(
send(pongc, self, \lambda_{-}.(
recv(self, \lambdareply.(
end )))))
```

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

let pinger =
$$\lambda self .\lambda pongc.($$

send(pongc, self, $\lambda_{-}.($
recv(self, $\lambda reply.($
end)))))

let ponger = \lambda self.(
 recv(self, \lambda reqc.(
 send(reqc, "Hello!", \lambda_.(
 end)))))

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

let pinger = λ self. λ pongc.(send(pongc, self, λ_{-} .(recv(self, λ reply.(end))))) let ponger = λself.(
 recv(self, λreqc.(
 send(reqc, "Hello!", λ_..(
 end)))))

let pingpong = $\lambda c1 . \lambda c2 . (pinger c1 c2 \parallel ponger c2)$

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

let pingpong = $\lambda c1 . \lambda c2 . (pinger c1 c2 \parallel ponger c2)$

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
		•				

Example: a *pinger* **process** sends a **communication channel** to a *ponger* process, who uses the channel to reply "Hello!"

let pingpong = $\lambda c1 . \lambda c2 . (pinger c1 c2 \parallel ponger c2)$

let main = let c1 = chan(); let c2 = chan(); pingpong c1 c2

Monadic encoding of the higher-order π -calculus

- λ-terms model abstract processes
- Continuations are expressed as λ-terms

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
0	000	0	0000	0	00000	

For typing, we use a context Γ with **channel types**. E.g.:

 $\Gamma = x: \operatorname{str}, y: \operatorname{c^o}[\operatorname{str}]$

Typing judgements are (partly) standard:

 $\Gamma \vdash$ "Hello" ++ x : str

0 000 0 0000 0 00000	Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
	0	000	0	0000	0	00000	

For typing, we use a context Γ with **channel types**. E.g.:

 $\Gamma = x: \operatorname{str}, y: \operatorname{c^o}[\operatorname{str}]$

Typing judgements are (partly) standard:

```
\Gamma \vdash "Hello" ++ x : str
```

How do we **type communication?** E.g., if $t = send(y, x, \lambda_-.end)$

Classic approach: $\Gamma \vdash t$: **proc** ("t is a well-typed process in Γ ")

O 000 O 0000 O 00000	Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
	0	000	0	0000	0	00000	

For typing, we use a context Γ with **channel types**. E.g.:

 $\Gamma = x: \operatorname{str}, y: \operatorname{c^o}[\operatorname{str}]$

Typing judgements are (partly) standard:

```
\Gamma \vdash "Hello" ++ x : str
```

How do we **type communication?** E.g., if $t = send(y, x, \lambda_-.end)$

Classic approach: $\Gamma \vdash t$: proc ("t is a well-typed process in Γ ")

0 000 0 0000 0 00000	Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
	0	000	0	0000	0	00000	

For typing, we use a context Γ with **channel types**. E.g.:

 $\Gamma = x: \operatorname{str}, y: \operatorname{c^o}[\operatorname{str}]$

Typing judgements are (partly) standard:

```
\Gamma \vdash "Hello" ++ x : str
```

How do we **type communication?** E.g., if $t = send(y, x, \lambda_{-}.end)$

Classic approach: $\Gamma \vdash t$: **proc** ("t is a well-typed process in Γ ")

Our approach: $\Gamma \vdash t : T$ ("t behaves as T in Γ ") $\Gamma \vdash T \leq proc$ ("T is a refined process type")

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
			0000			

Behavioural types (inspired by *π*-calculus theory)

Some examples:

 $x: str, y: c^{o}[str] \vdash send(y, x, \lambda_{-}.end) : T$

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
			0000			

Behavioural types (inspired by π-calculus theory)

Some examples:

 $x: str, y: c^{o}[str] \vdash send(y, x, \lambda_{-}.end)$: $T = o[c^{o}[str], str, nil]$

Behavioural types (inspired by *π*-calculus theory)

Some examples:

 $x: \operatorname{str}, y: \operatorname{co}[\operatorname{str}] \vdash \operatorname{send}(y, x, \lambda_{-}, \operatorname{end}) : \mathsf{T} = \operatorname{o}[\operatorname{co}[\operatorname{str}], \operatorname{str}, \operatorname{nil}]$

 $\varnothing \vdash \lambda x . \lambda y . \mathbf{send}(y, x, \lambda_{-}. \mathbf{end}) : \mathsf{T}'$

Some examples:

 $x: \operatorname{str}, y: \operatorname{co}[\operatorname{str}] \vdash \operatorname{send}(y, x, \lambda_{-}, \operatorname{end}) : \mathsf{T} = \operatorname{o}[\operatorname{co}[\operatorname{str}], \operatorname{str}, \operatorname{nil}]$

 $\varnothing \vdash \lambda x . \lambda y . \mathbf{send}(y, x, \lambda_{-}. \mathbf{end}) : \mathsf{T}' = \mathsf{str} \to \mathsf{c}^{\mathsf{o}}[\mathsf{str}] \to \mathsf{T}$

Behavioural types (inspired by *π*-calculus theory)

Some examples:

 $x: str, y: c^{o}[str] \vdash send(y, x, \lambda_{-}.end) : T = o[c^{o}[str], str, nil]$

 $\varnothing \vdash \lambda x . \lambda y . \mathbf{send}(y, x, \lambda_{-}. \mathbf{end}) : \mathsf{T}' = \mathsf{str} \to \mathsf{c}^{\mathsf{o}}[\mathsf{str}] \to \mathsf{T}$

Can we use types to specify and verify process behaviours?

Behavioural types (inspired by *π*-calculus theory)

Some examples:

 $x: str, y: c^{o}[str] \vdash send(y, x, \lambda_{-}, end) : T = o[c^{o}[str], str, nil]$

 $\emptyset \vdash \lambda x.\lambda y.\operatorname{send}(y, x, \lambda_{-}.\operatorname{end}) : \mathsf{T}' = \mathsf{str} \to \mathsf{c}^{\mathsf{o}}[\mathsf{str}] \to \mathsf{T}$

Can we **use types** to **specify** and **verify process behaviours**? Yes — almost!
 Problem
 Introduction
 Calculus
 Types
 Properties
 Implementation
 Conclusion

 0
 000
 0
 0000
 0
 00000
 0
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Behavioural types (inspired by π-calculus theory)

Some examples:

 $x: str, y: c^{o}[str] \vdash send(y, x, \lambda_{-}.end)$: $T = o[c^{o}[str], str, nil]$

 $\emptyset \vdash \lambda x.\lambda y.\operatorname{send}(y, x, \lambda_{-}.\operatorname{end}) : \mathsf{T}' = \mathsf{str} \to \mathsf{c}^{\mathsf{o}}[\mathsf{str}] \to \mathsf{T}$

Can we **use types** to **specify** and **verify process behaviours**? Yes — almost!

If a term t has type T' above, we know that:

- 1. t is an abstract process...
- 2. that takes a string and a channel...
- 3. sends some string on some channel, then terminates

 Problem
 Introduction
 Calculus
 Types
 Properties
 Implementation
 Conclusion

 0
 000
 0
 0000
 0
 00000
 0
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Behavioural types (inspired by π-calculus theory)

Some examples:

 $x: str, y: c^{o}[str] \vdash send(y, x, \lambda_{-}.end)$: $T = o[c^{o}[str], str, nil]$

 $\emptyset \ \vdash \ \lambda x . \lambda y . \mathbf{send}(y, x, \lambda_{-}. \mathbf{end}) \ : \ \mathsf{T}' = \mathsf{str} \to \mathsf{c}^{\mathsf{o}}[\mathsf{str}] \to \mathsf{T}$

Can we **use types** to **specify** and **verify process behaviours**? **Yes — almost!**

If a term t has type T' above, we know that:

- 1. t is an abstract process...
- 2. that takes a string and a channel...
- 3. sends some string on some channel, then terminates

Here's a term with the same type T', but different behaviour:

 $\lambda x . \lambda y . ($ let z =chan(); send $(z, "Hello!", \lambda_-.end))$

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
0	000	0	○○●○	0	00000	

Behavioural types

This type is not very precise: e.g., it does not track channel use

 $T' = str \rightarrow c^{o}[str] \rightarrow o[c^{o}[str], str, nil]$

Problem	Introduction	Calculus	Types	Properties	Implementa	tion Conclusion
0	000	0	○○●○	0	00000	
Beha	vioural ty	pes and	depe	ndent	function	types

This type is not very precise: e.g., it **does not track channel use**

 $T' = str \rightarrow c^{o}[str] \rightarrow o[c^{o}[str], str, nil]$

Introduce **dependent function types** (adapted from Dotty / Scala 3): $\Pi(x:T_1)T_2$ where the return type T_2 can refer to x

Problem Introduction Calculus Types Properties Implementation Conclusion

This type is not very precise: e.g., it does not track channel use

 $T' = str \rightarrow c^{o}[str] \rightarrow o[c^{o}[str], str, nil]$

E.g., if term t has type $T'' = \Pi(x:str) \Pi(y:c^{o}[str]) o[y, x, nil]$

- 1. t is an abstract process...
- **2.** that takes a string x and a channel y...
- **3.** sends x on channel y, then terminates

Problem Introduction Calculus Types Properties Implementation Conclusion

This type is not very precise: e.g., it does not track channel use

 $T' = str \rightarrow c^{o}[str] \rightarrow o[c^{o}[str], str, nil]$

E.g., if term t has type $T'' = \Pi(x:str) \Pi(y:c^{o}[str]) o[y, x, nil]$

- 1. t is an abstract process...
- **2.** that takes a string x and a channel y...
- **3.** sends x on channel y, then terminates

We can have multiple **levels of refinement**: $\emptyset \vdash \lambda x . \lambda y . \text{send}(y, x, \lambda_-. \text{end}) : \mathsf{T}''$

Problem Introduction Calculus Types Properties Implementation Conclusion

This type is not very precise: e.g., it does not track channel use

 $T' = str \rightarrow c^{o}[str] \rightarrow o[c^{o}[str], str, nil]$

E.g., if term t has type $T'' = \Pi(x:str) \Pi(y:c^{o}[str]) o[y, x, nil]$

- 1. t is an abstract process...
- **2.** that takes a string x and a channel y...
- **3.** sends x on channel y, then terminates

We can have multiple **levels of refinement**: $\emptyset \vdash \lambda x . \lambda y . \text{send}(y, x, \lambda_-. \text{end}) : \mathsf{T}'' \leq \mathsf{T}'$

Problem Introduction Calculus Types of the properties Implementation Conclusion of the properties of t

This type is not very precise: e.g., it does not track channel use

 $T' = str \rightarrow c^{o}[str] \rightarrow o[c^{o}[str], str, nil]$

E.g., if term t has type $T'' = \Pi(x:str) \Pi(y:c^o[str]) o[y, x, nil]$

- 1. t is an abstract process...
- **2.** that takes a string x and a channel y...
- **3.** sends x on channel y, then terminates

We can have multiple **levels of refinement**: $\emptyset \vdash \lambda x . \lambda y . \text{send}(y, x, \lambda_-. \text{end}) : \mathsf{T}'' \leq \mathsf{T}' \leq \mathsf{c}^{\mathsf{o}}[\mathsf{none}] \rightarrow \mathsf{str} \rightarrow \mathbf{proc}$

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
0	000	0	0000	0	00000	

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

 $\mathsf{T}_1 = \Pi(x:\ldots) \Pi(y:\ldots) \operatorname{o}[y, x, \operatorname{i}[x, \Pi(z:\ldots) \operatorname{nil}]]$

"Take x and y; use y send x; use x to receive some z; and terminate"

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
			0000			

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

 $\mathsf{T}_1 = \Pi(x:\ldots) \Pi(y:\ldots) \mathsf{o}[y, x, \mathsf{i}[x, \Pi(z:\ldots) \mathsf{nil}]]$

"Take x and y; use y send x; use x to receive some z; and terminate"

 $\mathsf{T}_2 = \Pi(x:\ldots) \mathbf{i}[x, \Pi(y:\ldots) \mathbf{o}[y, \mathsf{str}, \mathsf{nil}]]$

"Take x; use x to input some y; use y to send a string; and terminate"

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
			0000			

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

 $\mathsf{T}_1 = \Pi(x:\ldots) \Pi(y:\ldots) \mathsf{o}[y, x, \mathsf{i}[x, \Pi(z:\ldots) \mathsf{nil}]]$

"Take x and y; use y send x; use x to receive some z; and terminate"

 $\mathsf{T}_2 = \Pi(x:\ldots) \mathbf{i}[x, \Pi(y:\ldots) \mathbf{o}[y, \mathsf{str}, \mathsf{nil}]]$

"Take x; use x to input some y; use y to send a string; and terminate"

• T_1 and T_2 are respectively the types of the *pinger* and *ponger* processes
Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
			0000			

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

 $\mathsf{T}_1 = \Pi(x:\ldots) \Pi(y:\ldots) \mathsf{o}[y, x, \mathsf{i}[x, \Pi(z:\ldots) \mathsf{nil}]]$

"Take x and y; use y send x; use x to receive some z; and terminate"

$$T_2 = \Pi(x:\ldots) i[x, \Pi(y:\ldots) o[y, str, nil]]$$

"Take x; use x to input some y; use y to send a string; and terminate"

• T_1 and T_2 are respectively the types of the *pinger* and *ponger* processes

$$\mathsf{T}_3 = \Pi(x:\ldots) \Pi(y:\ldots) \mathbf{p}[\mathsf{T}_1 x y, \mathsf{T}_2 y]$$

"Take x and y; use them to apply T_1 and T_2 ; run such behaviours in parallel"

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
			0000			

Types as behavioural specifications: examples

Types can provide accurate behavioural specifications. E.g.:

 $\mathsf{T}_1 = \Pi(x:\ldots) \Pi(y:\ldots) \operatorname{o}[y, x, \operatorname{i}[x, \Pi(z:\ldots) \operatorname{nil}]]$

"Take x and y; use y send x; use x to receive some z; and terminate"

$$T_2 = \Pi(x:\ldots) i[x, \Pi(y:\ldots) o[y, str, nil]]$$

"Take x; use x to input some y; use y to send a string; and terminate"

• T_1 and T_2 are respectively the types of the *pinger* and *ponger* processes

$$\mathsf{T}_3 = \Pi(x:\ldots) \Pi(y:\ldots) \mathbf{p}[\mathsf{T}_1 x y , \mathsf{T}_2 y]$$

"Take x and y; use them to apply T_1 and T_2 ; run such behaviours in parallel"

T₃ is the type of the *pingpong* process

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
0	000			•		

Type checking guarantees type safety...

• E.g.: no strings can be sent on channels carrying integers

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
				•		

Type checking guarantees type safety...

• E.g.: no strings can be sent on channels carrying integers

 \dots and conformance with **rich behavioural specifications** — that can be **complicated**, especially when **composed**

• E.g., the *pingpong* type: $\Pi(x:...) \Pi(y:...) \mathbf{p}[\mathsf{T}_1 x y, \mathsf{T}_2 y]$

Types can model races on shared channels, and deadlocks!

Type checking guarantees type safety...

• E.g.: no strings can be sent on channels carrying integers

 \ldots and conformance with rich behavioural specifications — that can be ${\bf complicated},$ especially when ${\bf composed}$

• E.g., the *pingpong* type: $\Pi(x:...) \Pi(y:...) \mathbf{p}[\mathsf{T}_1 x y, \mathsf{T}_2 y]$

Types can model races on shared channels, and deadlocks!

- Verification via "type-level symbolic execution"
 - Give a labelled semantics to a type T
 - Model check the safety/liveness properties of T
 - Show how, if $\vdash t:T$ holds, then t "inherits" T's properties

Type checking guarantees type safety...

• E.g.: no strings can be sent on channels carrying integers

 \ldots and conformance with rich behavioural specifications — that can be ${\bf complicated},$ especially when ${\bf composed}$

• E.g., the *pingpong* type: $\Pi(x:...) \Pi(y:...) p[T_1 x y, T_2 y]$

Types can model races on shared channels, and deadlocks!

- Verification via "type-level symbolic execution"
 - Give a labelled semantics to a type T
 - Model check the safety/liveness properties of T
 - Show how, if $\vdash t:T$ holds, then t "inherits" T's properties

Model checking is decidable for T, but not for t (Goltz'90; Esparza'97)

 Problem
 Introduction
 Calculus
 Types
 Properties
 Implementation
 Conclusion

 0
 000
 0
 0000
 0
 0000
 0
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

From theory to Dotty / Scala3

We directly translate our types in Dotty / Scala 3:

 $\Pi(x:\mathsf{str}) \Pi(y:\mathsf{c}^{\mathsf{o}}[\mathsf{str}]) \mathsf{o}[y, x, \mathsf{nil}]$ \Downarrow

(x:String, y:OChan[String]) => Out[y.type, x.type, Nil]

ProblemIntroductionCalculusTypesPropertiesImplementationConclusion0000000000000000000

From theory to Dotty / Scala3

We directly translate our types in Dotty / Scala 3:

 $\Pi(x:\mathsf{str}) \Pi(y:\mathsf{c}^{\mathsf{o}}[\mathsf{str}]) \mathsf{o}[y, x, \mathsf{nil}]$ \Downarrow

(x:String, y:OChan[String]) => Out[y.type, x.type, Nil]

We implement our calculus as a deeply-embedded DSL. E.g.:

- calling send(...) yields an object of type Out[...]
- the object describes (does not perform!) the desired output
- the object is interpreted by a runtime system...
- ... that performs the actual output

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
					00000	

From theory to Dotty / Scala3

Demo!

Problem	Introduction	Calculus	Types 0000	Properties	Implementation	Conclusion
0	000	0	0000	0	00000	

A simplified actor-based DSL

We have discussed a **process-based calculus and DSL**... ...but the opening example was **actor-based!**

Problem 0	Introduction	Calculus 0	Types 0000	Properties 0	Implementation	Conclusion

A simplified actor-based DSL

We have discussed a **process-based calculus and DSL**... ...but the opening example was **actor-based!**

- An actor is a process with an implicit input channel
- Bother the channel acts as a **FIFO mailbox** (as in the Akka framework)
 - The actor DSL is syntactic sugar on the process DSL

Payoffs:

- we have almost no actor-specific code
- we preserve the connection to the underlying theory

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
					00000	

How can we run our DSLs?

Naive approach: run each actor/process in a dedicated thread

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
					00000	

How can we run our DSLs?

Naive approach: run each actor/process in a dedicated thread

As in our λ -calculus, **continuations are** λ -**terms** (closures)

For better scalability, we can:

- schedule closures to run on a limited number of threads
- unschedule closures that are waiting for input

Scalability and performance

The general performance is not too far from Akka

main source of overhead: DSL interpretation

4 × Intel Core i7-4790 @ 3.60GHz; 16 GB RAM; Ubuntu 16.04; Java 1.8.0_181; Dotty 0.9.0-RC1; Scala 2.12.6; Akka 2.5.16

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion
0	000	0	0000	0	00000	

Conclusion

Effpi is an experimental framework for strongly-typed concurrent programming in Dotty / Scala 3

- with process-based and actor-based APIs
- with a runtime supporting highly concurrent applications

Theoretical foundations:

- a concurrent functional calculus
- equipped with a novel type system, blending:
 - **behavioural types** (inspired by π -calculus theory)
 - dependent function types (inspired by Dotty / Scala 3)
- verify the behaviour of processes by model checking types

Problem	Introduction	Calculus	Types	Properties	Implementation	Conclusion

Conclusion

Effpi is an experimental framework for **strongly-typed concurrent programming** in **Dotty / Scala 3**

- with process-based and actor-based APIs
- with a runtime supporting highly concurrent applications

Theoretical foundations:

- a concurrent functional calculus
- equipped with a novel type system, blending:
 - **behavioural types** (inspired by π -calculus theory)
 - dependent function types (inspired by Dotty / Scala 3)
- verify the behaviour of processes by model checking types

Work in progress:

 Dotty compiler plugin to verify type-level properties via model checking, using mCRL2

Appendix

Some references

- D. Sangiorgi and D. Walker, *The π-calculus: a Theory of Mobile Processes*. Cambridge University Press, 2001.
- A. Igarashi and N. Kobayashi, "A generic type system for the π-calculus," *TCS*, vol. 311, no. 1, 2004.
- N. Yoshida and M. Hennessy, "Assigning types to processes," *Inf. Comput.*, vol. 174, no. 2, 2002.
- N. Yoshida, "Channel dependent types for higher-order mobile processes," in POPL, 2004.
- M. Hennessy, J. Rathke, and N. Yoshida, "safeDpi: a language for controlling mobile code," *Acta Inf.*, vol. 42, no. 4-5, pp. 227–290, 2005.
- D. Ancona et al., "Behavioral Types in Programming Languages," Foundations and Trends in Programming Languages, vol. 3(2-3), 2017.

N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki, "The essence of dependent object types," in *A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday*, 2016.

L. Cardelli, S. Martini, J. Mitchell, and A. Scedrov, "An extension of System F with subtyping," *Information and Computation*, vol. 109, no. 1, 1994.

Verified mobile code

Modern distributed programming toolkits allow to send/receive **program thunks**, e.g. to:

- execute user-supplied functions (e.g., Amazon AWS Lambda)
- perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

Verified mobile code

Modern distributed programming toolkits allow to send/receive **program thunks**, e.g. to:

- execute user-supplied functions (e.g., Amazon AWS Lambda)
- perform remote updates of running code (e.g., Erlang)

How can we verify that the received thunks behave correctly?

In our theory, if a **program thunk** is received from a channel of type $c^i[T]$, we can **deduce its behaviour** by inspecting T

Verified mobile code

Modern distributed programming toolkits allow to send/receive program thunks, e.g. to:

- execute user-supplied functions (e.g., Amazon AWS Lambda)
- perform remote updates of running code (e.g., Erlang) How can we verify that the received thunks behave correctly?

In our theory, if a **program thunk** is received from a channel of type cⁱ[T], we can **deduce its behaviour** by inspecting T

E.g., if $T = \Pi(x:c^{io}[int])T'$

- we know that the thunk **needs a channel** x carrying strings
- from T', we can deduce **if and how** the thunk uses x
- from T', we can ensure that the thunk is not a **forkbomb**