A Session Type Provider

Compile-Time APl Generation of Distributed Protocols with Refinements in F#

Rumyana Neykova Raymond Hu Nobuko Yoshida Fahd Abdeljallal

Imperial College
London

http://mrg.doc.ic.ac.uk

T-calculus, S

NEWS

The paper Multivarty
asynchronous session 1ypes by
Kchei Honde, Nobuko Yoshida,
and Marco Carbone, published in
FOPL 2008 has been awarded the
ACIN SIGPLAN Most Influential
POPL Paper Award today at POPL
2018.

o MCre

10Jan 2018

Fstafet has pub'ished a page on
their usage of the Scribble
language daveloped in our group
with RedHat and other Industry
partners.

LA &8
258ep 2017

Nick spoke 2t Golang UK 2017 on
applyirg dbehevioura' types to

A//oéi/iz‘y Research Group

on lypes research at Imperial College

SELECTED
PUBLICATIONS

2018

Julien Lange , Nicholas Ng, Bernardo Toninho , Nobuko Yaoshida : A Static
Verification Framework for M

To appeer inICSE 2018 .

Bernardo Toninho , Nobuke Yoshida :
To appear in FaSSaCS 20718 .

Jepending On Sess

on Polymorphic Sessions And

To appear in ESOP

Bernardo Toninho , Nobuko Yoshida :
Functions: A Talk of Two (Fully Abstrz

2018.

T,J ‘ncod ngs

Rumyana Neykova , Raymond Hu , Nobuko Yoshida, Fahd Abdeljalla :
Session Type Providers: Compile-time API Generation for Distribute
Protocols -action Refinements in F£. To appear inCC 2018 -

with Inte

essage Passing In Go using Behavioural Types.

lon Typed Process.

Post-docs:

Simon CASTELLAN

David CASTRO

Raymond HU

Nicholas NG

Alceste SCALAS

PhD Students:

Assel ALTAYEVA

~rancisco FERREIRA

Rumyana NEYKOVA

verify concurrent Go proarams. J U [I a ﬂ a I: RA N CO
| Eva GRAVERSEN

http://mrg.doc.ic.ac.uk

POPL 2008 MOST INFLUENTIAL PAPER AWARD

=) SIGPLAN

OPL 2008 Most Influential Paper Award

»

' e
Kohei Honda, Nobuko Yoshida and Marco Carbon

Multiparty asynchronous session types

Ocean Observatories Initiative E

OOl aims: to deploy an infrastructure (global network) to
expand the scientists’ ability to remotely study the ocean

Usage: Integrate real-time data acquisition, processing
and data storage for ocean research,...

Scribble - Proving a distributed design

1 Estafet

= Innovate | Deliver | Transform

1. All design work takes place in ABACUS, V7

DCC's enterprise architecture tool. This s

can export standard XMl files ABACUS

(an open standard for UMLS) 7 Generate

2. XMl is converted into exception report and
OpenTracing format for send back to DCC

consumption by managed service

T e

OPENTRACING

3. OpenTracing files are 4. Model holds types 5. Scribble compiler 6 Issues hnghlughted
combined to build a rather than instances to identifies mconsnstency, graphically in Eclupse
model in Scribble understand behaviour change & design flaws ! '

......................

\www.estafet.com Estafet Managed Service j

Interactions with Industries

Strange Loop

A

= y

SEPTEMBER 15-17 2016 PEABCDY OPERAHOUSE / ST, LOUIS, MO

!

L

s, Adam Bowen ©adamnbowen : Sep 15 .
m | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

rocking on

DoC researcher to speak at Golang UK conference , |
i about static deadlock detection in

oy

w
g UK Conference

DoC researcher to speak at industry-focused Golang UK Ol have %0 84d corsent Th G |
conference on results of concurrency research e O a

Interactions with Industries

6 days ago - 6:30 PM
Session Types with Fahd Abdeljallal

ol

43 Members

Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... Lzaznmore

Current State

* behaviors can be composed both sequentially
and concurrently

Dr. Roland Kuhn » effects are not yet tracked

@rolandiUMRESSEAC of Actyx » Scribble generator for Scala not yet there

* theoretical work at Imperial College, London
(Prof. Nobuko Yoshida & Alceste Scalas)
actyx

Behavioural Type-Based
Static Verification Framework
for

Imperial College
London

Home College and Campus Science W Health Business |Search here... m

Go concurrency verification research at DoC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)"”.

I

the morning paper

an interesting/influential /important paper [rom the world of CS every weekday morning, as selected by Adrian Colyer

Home About InfoQ QR Editions Subscribe

A static verification framework for message susscrise
passing in Go using behavioural types R
JANUARY 25, 2018 _

tags: Concurrency, Programming Languages
never miss an issue! The

- - . . X) Morning Paper delivered
A static verification framework for message passing in Go using

behavioural types Lange et al., ICSE 18

straight to your inbox

With thanks to Alexis Richardson who first forwarded this paper to me. SEARCH

|t'/pe and press enfer

We're jumping chead to ICSE 18 now, and a paper that has been accepted

for publication there later this year. It fits with the theme we’ve heen
ARCHIVES

exploring this week though, so I thought I'd cover it now. We've seen

verification techniques applied in the context of Rust and JavaScript, Ll &

looked at the integration of lincar types in Haskell, and today it is the MOST READ IN THE

turn of Go! LAST FEW DAYS
- —

Selected Publications 2017/2018

» [LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Dlstrlbuted
Processes.

» [CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time AP| Generation for Distributed Protocols with Interaction
Refinements in F#.

» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.

» [ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.

» [ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.

» [ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming..

» [COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

» [FOSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
» [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
» [POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

Selected Publications £017/2018

> [LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.

> [CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time API Generation for Distributed Protocols with Interaction
Refinements in F#.

» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.

» [ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.

> [ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.

> [ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming.

- [COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

> [FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
> [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
» [POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

&

. cCc18 |

A Session Type Provider
Compile-Time API Generation of Distributed Protocols with Refinements in Fe#
Rumyana Neykova Raymond Hu Nobuko Yoshida Fahd Abdeljallal
Imperial College London Imperial College London Imperial College London Imperial College London
United Kingdom United Kingdom United Kingdom Unsted Kingdom
Abstract 1 Introduction

We present a lbrary for the specification and implementa-
tion of distributed protocols in native F# (and other NET
languagres) based on multiparty session types (MPST). There
are two maln contributions, Our library is the first practs-
cal development of MPST to support what we refer to as
interaction refinements: a collection of features related to the
refinement of protocols, such as message-type refinements
(value constraints) and message-value dependent control
“ow. A well-typed endpoint program using our library is
~anteed to perform only compliant session 1/O actions

v the refined protocol, up to premature termination.

' our library is developed as a session type provider,

Type providers |20, 27] are a NET feature for a form of
compile-time meta programming, designed to bridge be-
tween programming in statically typed languages such as
F# and Cs, and working with so-called information spaces—
structured data sources such as SQL databases or XML data
A type provider works as a compiler plugin that performs
on-demand generation of types it takes a schema for an
external information space, and generates types that allow
the data to be manipulated via a strongly-typed interface,
with benefits such as static error detection and IDE auto-
completion. For example, an instantiation of the in-built
type provider for WSDL Web services [6] may look like

’ @ Graydon Hoare

Ggraydon_pub

(Thls stuff is _fantastic_)

31 PM - 11 Mar 2018

O YT)

shots fired @zeeshanlakhani - Mar 12
Replying to @graydon_pub @dsyme

Awesomel!

Brendan Zabarauskas @brendanzab -
Replying to @graydon_pub
This stuff fills me with hopel!

Ryan Riley @panesofglass - Mar 12
Replying to @graydon_pub
This is amazing! | guess | need to switch

A Session Type Provider

Compile-Time APl Generation of Distributed Protocols with Refinements in F#

Rumyana Neykova Raymond Hu Nobuko Yoshida Fahd Abdeljallal

Imperial College
London

14

Part One
Type Providers

15

Type Providers

Problem: Languages do not integrate information
- We need to bring information into the language

PLDI’16

Types from data: Making structured data first-class citizens in F#

Tomas Petricek Gustavo Guerra Don Syme
University of Cambridge Microsoft Corporation, London Microsoft Research, Cambridge
tomas@tomasp.net gustavo@codebeside.org dsyme@microsoft.com
Abstract let doc = Http.Request("http://api.owm.org/7q=NYC")

Most modern applications interact with external services and match JsonValue.Parse(doc) with

access data in structured formats such as XML, JSON and | Record(root) RO .

CSV. Static type systems do not understand such formats, match Map find "main" root with

often making data access more cumbersome. Should we give | Record(main) — .

up and leave the messy world of external data to dynamic match Map find "te'“_p" main with

typing and runtime checks? Of course, not! | Number(num) — printfn "Lovely %f!" num

| We present F# Data, a library that integrates external | - —>.fai.lw’rt"h "Incorrect formft")
structured data into F#. As most real-world data does not |- —>‘fa|.Iwuth Incorrect format
16 _ — failwith "Incorrect format"

come with an exglicit schema, we develog a Shﬁ inference |

e !
10T m!\%bv" ﬂ‘l&

let doc = Http.Request("http://api.owm.org/?q=NYC") | type W = JsonPravider{"http://api.owm.org/7q=NYC"}
match JsonValue. Parse(doc) with printfn "Lovely %f!" (W.GetSample().Main. Temp)

| Record(root) —
match Map.find "main" root with z all data is typed
| Record(main)
match Map.find "temp" main with @ Ooh-demand generation
| Number(num) — printfn "Lovely %f!" num _
| _ — failwith "Incorrect format" o aUtOCOmplethn
| _ — failwith "Incorrect format" :
| _ — failwith "Incorrect format" B baCkg round type'CheCkmg

WorldBank Type Providers

|

1ot data = WorldBank.GetDataContext()

data.|
J» Countries
Jo Regions
J» Servicelccation
@ _GCetCountries
@ _GetCountry k

@ _CetRegicon

© _CetRegions

| " IDE/PROGRAM i

oF
SRS NI PR = B A ARy
/ /)

19

A generalisation to distributed protocols requires

o a notion of schema for structured interactions between services

o an understanding of how to extract the localised behaviour for
each services

20

Part Two
Session T'ypes

21

22

Multiparty Asynchronous Session Types

Kohel Honda Nobuko Yoshida Marco Carbone
Queen Mary, University of London Imperial College London Queen Mary, University of London

kohei @dcs.qmul.ac.uk

Abstract

Communication is becoming one ol the central elements in soft-
ware development. As a potental typed foundation for structured
communication-centred programming, scssion types have been
studicd over the last decade for a wide range of process caleuli and
programming languages, focussing on hinary (two-party) scssions.
This work extends the foregoing theories of binary session types
to multiparty, asynchronous sessions, which often arise in practical
communication-centred applications. Presented as a typed calculus
for mobile processes, the theory introduces a new notion of types in
which intcractions involving multiple peers are directly ahstracted
as a global scenario. Global types retain a friendly type syntax of
hinary session types while capturing complex causal chains of mul-
liparty asynchronous interactions. A global type plays the role of a
shared agreement among communicalion peers, and 1s used as a ba-

mie ok AR Al Ant terna Aladllins theassadh (s meatastiam Aanta dnm Al daal

yoshida@doc.ic.ac.uk

carbonem@dcs.gmul.ac.uk

vices (Carbone et al. 2006, 2007; WS-CDL; Sparkes 20006; Honda
ct al. 2(M)7a). A hasic observation underlying session types is that
a communication-centred application oflen exhibits a highly struc-
tured sequence of interactions involving, for example, branching
and recursion, which as a whole form a natural unit of conversa-
Lon, or session. The structure of a conversation is abstracted as a
type through an intuitive syntax, which is then used as a basis of
validating programs through an associated type discipline.

As an cxample, the following scssion type describes a simple
business protocol between Buyer and Seller [rom Buyer's view-
point: Buyer sends the title of a book (a string), Seller sends a quote
(an intcger). If Buyer is satisfied by the quote, then sends his ad-
dress (a string) and Seller sends back the delivery date (a datc);
otherwise 1l Quits Lhe conversation.

Istring; Tint. @ [0k :!string; ?date;end, quit : end) (1)

Session Types @ Scribble

Global Type

T - Protocol Validation
Projection
(int) from C to S; ‘i
Loc 3| Type Local Type Local Type (bOOl) from S to C;
e e ofe
'M'- .. 1 7 o
) O | - ‘ x
Type ? Type Type
Checkmg : Checkmg . Checkmg :

: - - Program Verification
recelve c 1n send true c’

A system of well-behaved processes is free from
deadlocks, orphan messages and reception errors

23

Data Type providers bring information into the
language as strongly tooled, strongly typed

Session Type providers bring communication into
the language as strongly tooled, strongly typed

24

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
S.

Session Type Provider

25

Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()

S.
i i P m Statel Statel.send(S Role, Div label, int x, int y)

Constraints: y!=0

(5%

Session Type Provider

26

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, 3)

Session Type Provider

27

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, 3)

JA@ m Stated Statel.receive(S Role, Res label, Buf<float> f)

Session Type Provider

28

Our Solution: Session Type Providers

type Prot

¥

let s
s.send(S, Div, 6, 3)

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

= STP<“”Prot.scr”, C>
new Prot().Init()

i .receive(S, Res, V)

(

v

£

Session Type Provider

29

Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from S to C;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
S .

Session Type Provider

30

Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<“Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, “hello”) © Wrong payload

~ Y ~ o~ P . S N, SN
B I i e W W e i i i i N

Session Type Provider

31

Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, A> € Wrong protocol

- VAV g VAV g =g VAV r - VAV r VHV g S

Session Type Provider

32

Session Type providers bring communication into
the language as strongly tooled, strongly typed

BUT WAIT!

THERE'S MORE!

Calculator Re

global protocol C role

choice at C {

Div(x:1nt, y:int) from C to S;

Res(z:float) from C to S;
do Calc(C, S);
} or {

Add (x:1nt, y:int) from C to S;

Res(z:int) from S to C;

do Calc(C, S);

} or

Sgrt(x:float) from C to S;
Res (y:flod from S to C;
do Calc (C,
} or
Bye () fro
Bye () from

34

Scribble with refinements

global protocol Calc (role S,

choice at C {
Div(x:1nt, vy:
Res(z:float)
do Calc (C,
} or {
Add (x:1int,
Res (z:1nt)
do Calc (C,
} or {
Sgrt(x:float)
Res (y:float)
do Calc (C,
} or {
Bye ()
Bye ()
}

}

from C
from S

35

S) s

&
from S to C;
S) ;

S);

role C) {

from C to S;Q@y!=0
&

int)
from S to C;

14

int) from C to S;

14

from C to S;@x>0
from S to C; T

to S;
to C;

INnteract]

Scribble with refinements

global protocol Calc(role S, role C) {

choice at C {
Div(x:int, y:int) from C to S;@y!=0

Res(z:float) from S to C; &
do Calc(C, S);
} or

Add (x:1nt, y:int) from C to S;
Res(z:1nt) from S to C;

do Calc(C, S);

} or

Sgrt (x:float) from C to S;@x>0
Res(y:float) from S to C; 7
do Calc(C, S);

} or

Bye () from C to S; interaction refinement E
Bye () from S to C;

}
}

x|n|true| false |E®E| ©E f(El,.'..,E,,)
and |[or| = | < | > | + | = © == not | —

36

Part Three
A Session Type Provider

37

What do you get from a session type provider?

Secsion Types Cafety

= A statically well-typed endpoint program will never perform a
non-compliant 1/O action w.r.t. the source protocol.

Dpe Providere Ucability

= compile-time generation
= background type checking & auto-completion
= a platform for tool integration (e.g. protocol validation)

Interaction refinements ,Qe/iabi/ity

= runtime enforcement of constraint
= implicitly send values that can be inferred (safe by construction)
=z do not send values that can be locally inferred

38

A Session Type Provider (Architecture)

{
| (
1

|

|
)

il Model Checker |

f SMT Solver ﬂ :

The type provider framework is used for tool integration

39

r T r Tr T r T r .
Model Properties CFSM F# Type Code
. 4 N 4 n 4 N 4 y

40

r Tr T F T r .
Properties CFSM F# Type Code
. 4 n 4 . 4 n y

AL

1 (x:1int) from A to C; A=C”<("2=>;'19-”' "‘-Bs-C_%)me@v”
. - . TBsC12(y:int)@ T
2(y:1nt) from B to C; (Qy>x C:A?1(x:int) ‘(X--l?t‘)_.y))(ACI(x:int)
B:Cl2(y:int)@y>%~ . _ . -C:A?1(x:int)
102

| C:B?2(y:int)
7

Bounded model checking as a validation methodology [FASE’17]
Safety Properties:

= reception-error freedom

@ orphan-message freedom

= deadlock freedom

41

’ /‘ '

r . r .
Model , CFSM F# Type
. r I n . y

SMT Solver

v -
Code
A 4

Refinement satisfiability \ .
z5))

Refinement progress

42

+Q/G

[r L r I I .
| Properties §j CFSM F# Type Code
N . 4 . 4 n y

r -1
Model
. 4

1y

Refinement satisfiability

» check if the conjunction of all formulas is satisfiable
ceg.(and Gy (+x D)<y HEx 3))

PPersinEy o From 2o B dx>3
choice at B {2() from B to A:} O
or {3(y:1int) from B to A; (@y>x+1 and y<4} r

> ia W WY o S o S B, O

1(x:1nt) from A to B; @x>3
choice at B | 20 Trom B-to A%t
or {3(y:int) from B to A; (@y>x+1 and y>4}

43

|
| LProperties

r . i r T r .
Model - CFSM F# Type
. .n . 4 N v

1y

Refinement satisfiability

» check if the conjunction of all formulas is satisfiable
e.g.(and Gy (+x 1))(<y4)(>x 3))

" -
Code
. w

1(x:1int) from A to B; @x>3
choice at B {2() from B to A;}
or {3(y:1int) from B to A; (@y>x+1 and y<4}

NN NSNS

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
or {3(y:int) from B to A; (@y>x+1 and y>4}

44

I

r T | { r T F T r .
Model | Propertle i CFSM F# Type Code
. 4 | N 4 4 y

@ -s-p

Refinement progress
check if formula is satisfiable for all preceding solutions
et ene e Tyl o

ISt anh CErom: A o B A3
Ziapeont) from A o By
cho;cemathB__B__from?B*to%A;:@x>_h.

. Ensures that at any output point in the protocol
‘4 implementations there will be always some
chof values for which the formula holds ;

Lixsint)y Erom & o B; [@x>3

2(y:int) from A to B; Qy<=3 :;r

choice at B {3() from B to A; @x>=y} .
or {4(y:int) from B to A; (@x<y}

45

|
| LProperties

r . { r T r T r .
Model - CFSM F# Type Code
. .n . 4 N 4 y

1y

Refinement progress

» check if formula is satisfiable for all preceding solutions
e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (K X y)(> X Yy))))

1 (x:1nt) from A to B; @x>3

2(y:1int) from A to B;
choice at B {3() from B to A; @x>y} O

or {4() from B to A; @x<y}

1 (x:1nt) from A to B; @x>3

2(y:1int) from A to B;

choice at B {3() from B to A; @x>=y}
or {4() from B to A; @x<y}

l1(x:int) from A to B; @x>3

2(y:1int) from A to B; Qy<=3

choice at B {3() from B to A; (@x>y}
or {4() from B to A; @x<y}

46

-

r T r i r “ .
Model Properties { F# Type Code
. 4 . 4 n y

(N

(x:T1) from A to B; (y:T2) from B to C; (z:T3) from C to A;

Global Type

Projection

Local Type Local Type LocaiType

£ 18 (€

BI'T{ C?T: A?’T, CI'T B?T, AlT;
O—O—D) O—0O—0D O—0—0
47

r Tr o
Model Properties
. 4 N v

global protocol Calc(role S, role C) {

choice at C {
Div(x:1nt, y:int) from C to S;
Res(z:float) from S to C;
do Calc(C, S);
} or {
Bye () from C to S;
Bye () from S to C;

}

48

@y !=0

r T r Tr h
Model Properties CFSM
. 4 N 4 n y

C?Div (ink,int)

C!'Res (float)

riti method.
@ —— send methoo
= — receivemethod

r T r Tr h
Model Properties CFSM
. 4 N 4 n y

C?Div(int,int)

C!'Res (float)

type State2 =
member send: C*Res*float— Statel

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End

r T r Tr h
Model Properties CFSM
. 4 N 4 n y

global protocol Calc(role S, role C) {
choice at C {
Div(x:int, y:1int) from C to S; @y!'=0

Res (z:float) from S to C; @z=x/y Server as S
do Addeer (C, S);
} or { :
Bye () from C to S; Clientas C
Bye () from S to C;
}
/ Rec
Div
——————————— >
Res
2 1
Bye N
Bye

51

r T r
Model Properties
. 4 N v

C?Div(int,int)

‘

C!'Res (float)

r h
CFSM
. 4

type Statel =
member branch: unit— ChoiceS1

type Div = interface ChoiceS1
member receive: int*int— State2

type Bye = interface ChoiceS1
member receive: — State3

type State2 =

member send: C*Res*fleat— Statel

~

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End

r T r r h
Model Properties CFSM
. 4 N 4 n w

C?Div(int,int)

‘

C!'Res (float)

type Statel =
member branch: unit— ChoiceS1

type Div = interface ChoiceS1
member receive: int*int— State2

type Bye = interface ChoiceS1
member receive: — State3

type State2 =
member send: C*Res*float— Statel

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End

r T r Tr T r .
Model Properties CFSM F# Type
. 4 N 4 . 4 u v

1)
C?Bye

C?Div

let rec calcServer (c:Calc.Statel) =

match c.branch() with
| :? Calc.Bye as bye->

| :? Calc.Div as div ->

calcServer cl
e

r T r r T r .
Model Properties CFSM F# Type
. 4 N 4 n 4 N v

1)
C?Bye

C?Div

‘

let rec calcServer (c:Calc.Statel) =
let x, y = new Buf<int>(),new Buf<int>()
match c.branch() with
| :? Calc.Bye as bye->
bye.receive(C)
.send(C, Bye).finish()

| :? Calc.Div as div ->
let ¢l = div.receive(C, x, V)
.send(C, Res, x.Val/y.Val)

calcServer cl

r T r Tr T r .
Model Properties CFSM F# Type
. 4 . 4 . 4 u v

send | | @ quotations
' | & splicing

' ! constraints as lambda functions ! |
: ! serialise payload ! :

| i manage and use TCP sockets ! ;

56

r T r Tr T r .
Model Properties CFSM F# Type
. 4 N 4 n 4 N v

type Prot = STP<“Prot.scr”, C> .Net IL CODE
let s = new Prot().Init() D
s.send(S, Div, 6, 3) emit
Compiler

*AST of

l TType declarations iHow to compile this code? Tgenerated code

Uk

v

Session Type Provider

57

r T r Tr T r T r .
Model Properties CFSM F# Type Code
. 4 N 4 n 4 N 4 y

| A statically well-typed STP-endpoint program]

perform a non-compliant IO action ..t the source protocol. |

Compile-time performance

ping-pong

T

Example (role) #LoC| #States| #Types| Gen (ms)
2-Buyer (Bq) [13] 16 7 7 280
3-Buyer (By) [5] 16 7 7 310
Fibonacci (S) [14] 17 5 7 300
Travel Agency (A) [24] | 26 6 10 278
SMTP (c) [14] 165 | 18 29 902
HTTP (s) [3] 140 | 6 21 750
SAP-Negotiation (C) [18]] 40 5 9 347
Supplier Info (Q) [24] 86 5 25 1582
SH (P) 30 | 12 15 440

Bl Type and Code Generation (no refinements)

EXA Protocol checking (no refinements)

B8 Type and Code Generation (with refinements)

B2 Protocol checking (with refinements)

59

Run-time performance

1.8 - 0.7
16 ping-pong-no-refinements

v

pihg—pong—refinements |

(XX

0.6

1.4

0.5} S %
1.2 Y)
1.0t 0.4 S)
< %, b
0 A
" 0.8 2 2l
o X

1

0.6

S

-
N
CX

IR

ele

9.

N

X

PSSO S50 O . 0.0.0.0.9.0.

L0009 9.4

0.2 @ X]
e o X
0.0 > a

0.3
0.2
0.1
0.0 1 =

1 > '3 4 5 3 4 5
iterations (thousands) iterations (hundreds)

o Runtime overhead due to:

o branching, runtime checks, serialisation
o The performance overhead of the library stays in 5%-7% range
o The performance overhead of run-time checks is up to 10%-12%

.
60

Future work and Resources

Framework Summary
= Type-driven development of distributed protocols

= Support for refinements on message interactions
@ ...ask me for more supported features

Future Work
a Static verification of refinements

= Partial model checking
= Support for erased type providers (event-driven branching)

Resources:
@ Session type provider: https://session-type-provider.github.io
@ Scribble: http://scribble.doc.ic.ac.uk/

= MRG: mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Thank youl!

MAY THE F#ORGE BE WITH YOU

62

| Answers |

63

o parse-> analyce -> prefty print
Check the tool for more features:
@ documentation on the fly @ recompilation on protocol change
@ non-blocking receive @ online vs offline mode
= explicit connections @ support by any .Net language

64

Related work

Related works on Interaction Refinements

A theory of design-by- contract for distributed multiparty
interactions [CONCUR’12]

Linearly refined session types [LINEARITY’12]

A concurrent programming language with refined session
types. [BEAT13]

Certifying data in multiparty session types [JLAMP’17]

o no implementation
o based on syntactic checks
o developed for pi-calculus

65

