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A Session Type Provider
Compile-Time API Generation of Distributed Protocols with Refinements in Fe#
Rumyana Neykova Raymond Hu Nobuko Yoshida Fahd Abdeljallal
Imperial College London Imperial College London Imperial College London Imperial College London
United Kingdom United Kingdom United Kingdom Unsted Kingdom
Abstract 1 Introduction

We present a lbrary for the specification and implementa-
tion of distributed protocols in native F# (and other NET
languagres) based on multiparty session types (MPST). There
are two maln contributions, Our library is the first practs-
cal development of MPST to support what we refer to as
interaction refinements: a collection of features related to the
refinement of protocols, such as message-type refinements
(value constraints) and message-value dependent control
“ow. A well-typed endpoint program using our library is
~anteed to perform only compliant session 1/O actions

v the refined protocol, up to premature termination.

' our library is developed as a session type provider,

Type providers |20, 27] are a NET feature for a form of
compile-time meta programming, designed to bridge be-
tween programming in statically typed languages such as
F# and Cs, and working with so-called information spaces—
structured data sources such as SQL databases or XML data
A type provider works as a compiler plugin that performs
on-demand generation of types it takes a schema for an
external information space, and generates types that allow
the data to be manipulated via a strongly-typed interface,
with benefits such as static error detection and IDE auto-
completion. For example, an instantiation of the in-built
type provider for WSDL Web services [6] may look like
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Part One
Type Providers
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Type Providers

Problem: Languages do not integrate information
- We need to bring information into the language

PLDI’16

Types from data: Making structured data first-class citizens in F#

Tomas Petricek Gustavo Guerra Don Syme
University of Cambridge Microsoft Corporation, London Microsoft Research, Cambridge
tomas@tomasp.net gustavo@codebeside.org dsyme@microsoft.com
Abstract let doc = Http.Request("http://api.owm.org/7q=NYC")

Most modern applications interact with external services and match JsonValue.Parse(doc) with

access data in structured formats such as XML, JSON and | Record(root) RO .

CSV. Static type systems do not understand such formats, match Map find "main" root with

often making data access more cumbersome. Should we give | Record(main) — .

up and leave the messy world of external data to dynamic match Map find "te'“_p" main with

typing and runtime checks? Of course, not! | Number(num) — printfn "Lovely %f!" num

| We present F# Data, a library that integrates external | - —>.fai.lw’rt"h "Incorrect formft" )
structured data into F#. As most real-world data does not |- —>‘fa|.Iwuth Incorrect format
16 _ — failwith "Incorrect format"

come with an exglicit schema, we develog a Shﬁ inference |



e !
10T m!\%bv" ﬂ‘l&

let doc = Http.Request("http://api.owm.org/?q=NYC") | type W = JsonPravider{"http://api.owm.org/7q=NYC"}
match JsonValue. Parse(doc) with printfn "Lovely %f!" (W.GetSample().Main. Temp)

| Record(root) —
match Map.find "main" root with z all data is typed
| Record(main)
match Map.find "temp" main with @ Ooh-demand generation
| Number(num) — printfn "Lovely %f!" num _
| _ — failwith "Incorrect format" o aUtOCOmplethn
| _ — failwith "Incorrect format" :
| _ — failwith "Incorrect format" B baCkg round type'CheCkmg




WorldBank Type Providers

|

1ot data = WorldBank.GetDataContext()

data.|
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Jo Regions
J» Servicelccation
@ _GCetCountries
@ _GetCountry k

@ _CetRegicon
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A generalisation to distributed protocols requires

o a notion of schema for structured interactions between services

o an understanding of how to extract the localised behaviour for
each services

20



Part Two
Session T'ypes
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Multiparty Asynchronous Session Types

Kohel Honda Nobuko Yoshida Marco Carbone
Queen Mary, University of London Imperial College London Queen Mary, University of London

kohei @dcs.qmul.ac.uk

Abstract

Communication is becoming one ol the central elements in soft-
ware development. As a potental typed foundation for structured
communication-centred programming, scssion types have been
studicd over the last decade for a wide range of process caleuli and
programming languages, focussing on hinary (two-party) scssions.
This work extends the foregoing theories of binary session types
to multiparty, asynchronous sessions, which often arise in practical
communication-centred applications. Presented as a typed calculus
for mobile processes, the theory introduces a new notion of types in
which intcractions involving multiple peers are directly ahstracted
as a global scenario. Global types retain a friendly type syntax of
hinary session types while capturing complex causal chains of mul-
liparty asynchronous interactions. A global type plays the role of a
shared agreement among communicalion peers, and 1s used as a ba-

mie ok AR Al Ant terna Aladllins theassadh (s meatastiam Aanta dnm Al daal

yoshida@doc.ic.ac.uk

carbonem@dcs.gmul.ac.uk

vices (Carbone et al. 2006, 2007; WS-CDL; Sparkes 20006; Honda
ct al. 2(M)7a). A hasic observation underlying session types is that
a communication-centred application oflen exhibits a highly struc-
tured sequence of interactions involving, for example, branching
and recursion, which as a whole form a natural unit of conversa-
Lon, or session. The structure of a conversation is abstracted as a
type through an intuitive syntax, which is then used as a basis of
validating programs through an associated type discipline.

As an cxample, the following scssion type describes a simple
business protocol between Buyer and Seller [rom Buyer's view-
point: Buyer sends the title of a book (a string), Seller sends a quote
(an intcger). If Buyer is satisfied by the quote, then sends his ad-
dress (a string) and Seller sends back the delivery date (a datc);
otherwise 1l Quits Lhe conversation.

Istring; Tint. @ [0k :!string; ?date;end,  quit : end) (1)




Session Types @ Scribble

Global Type

T - Protocol Validation
Projection
(int) from C to S; ‘i
Loc 3| Type Local Type Local Type (bOOl) from S to C;
e e ofe
'M'- .. 1 7 o
) O | - ‘ x
Type ? Type Type
Checkmg : Checkmg . Checkmg :

: - - Program Verification
recelve c 1n send true c’

A system of well-behaved processes is free from
deadlocks, orphan messages and reception errors

23




Data Type providers bring information into the
language as strongly tooled, strongly typed

Session Type providers bring communication into
the language as strongly tooled, strongly typed

24



Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
S.

Session Type Provider

25




Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()

S.
i i P m Statel Statel.send(S Role, Div label, int x, int y)

Constraints: y!=0

(5%

Session Type Provider
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Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, 3)

Session Type Provider

27




Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, 3)

JA@ m Stated Statel.receive(S Role, Res label, Buf<float> f)

Session Type Provider

28




Our Solution: Session Type Providers

type Prot

¥

let s
s.send(S, Div, 6, 3)

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

= STP<“”Prot.scr”, C>
new Prot().Init()

i .receive(S, Res, V)

(

v

£

Session Type Provider

29




Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from S to C;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, C>
let s = new Prot().Init()
S .

Session Type Provider

30




Our Solution: Session Type Providers

BiDiv(x:int, yv:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<“Prot.scr”, C>
let s = new Prot().Init()
s.send(S, Div, 6, “hello”) © Wrong payload

~ Y ~ o~ P . S N, SN
B I i e W W e i i i i N

Session Type Provider

31




Our Solution: Session Type Providers

BiDiv(x:int, y:1nt) from C to S;
Res(z:float) from S to C;

type Prot = STP<”Prot.scr”, A> € Wrong protocol

- VAV g VAV g =g VAV r - VAV r VHV g S

Session Type Provider

32




Session Type providers bring communication into
the language as strongly tooled, strongly typed

BUT WAIT!

THERE'S MORE!




Calculator Re

global protocol C role

choice at C {

Div(x:1nt, y:int) from C to S;

Res(z:float) from C to S;
do Calc(C, S);
} or {

Add (x:1nt, y:int) from C to S;

Res(z:int) from S to C;

do Calc(C, S);

} or

Sgrt(x:float) from C to S;
Res (y:flod from S to C;
do Calc (C,
} or
Bye () fro
Bye () from

34



Scribble with refinements

global protocol Calc (role S,

choice at C {
Div(x:1nt, vy:
Res(z:float)
do Calc (C,
} or {
Add (x:1int,
Res (z:1nt)
do Calc (C,
} or {
Sgrt(x:float)
Res (y:float)
do Calc (C,
} or {
Bye ()
Bye ()
}

}

from C
from S

35

S) s

&
from S to C;
S) ;

S);

role C) {

from C to S;Q@y!=0
&

int)
from S to C;

14

int) from C to S;

14

from C to S;@x>0
from S to C; T

to S;
to C;

INnteract]




Scribble with refinements

global protocol Calc(role S, role C) {

choice at C {
Div(x:int, y:int) from C to S;@y!=0

Res(z:float) from S to C; &
do Calc(C, S);
} or

Add (x:1nt, y:int) from C to S;
Res(z:1nt) from S to C;

do Calc(C, S);

} or

Sgrt (x:float) from C to S;@x>0
Res(y:float) from S to C; 7
do Calc(C, S);

} or

Bye () from C to S; interaction refinement E
Bye () from S to C;

}
}

x|n|true| false |E®E| ©E f(El,.'..,E,,)
and |[or| = | < | > | + | = © == not | —

36




Part Three
A Session Type Provider
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What do you get from a session type provider?

Secsion Types Cafety

= A statically well-typed endpoint program will never perform a
non-compliant 1/O action w.r.t. the source protocol.

Dpe Providere Ucability

= compile-time generation
= background type checking & auto-completion
= a platform for tool integration (e.g. protocol validation)

Interaction refinements ,Qe/iabi/ity

= runtime enforcement of constraint
= implicitly send values that can be inferred (safe by construction)
=z do not send values that can be locally inferred

38



A Session Type Provider (Architecture)

{
| (
1

|

|
)

il Model Checker |

f SMT Solver ﬂ :

The type provider framework is used for tool integration

39



r T r Tr T r T r .
Model Properties CFSM F# Type Code
. 4 N 4 n 4 N 4 y
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r Tr T F T r .
Properties CFSM F# Type Code
. 4 n 4 . 4 n y

AL

1 (x:1int) from A to C; A=C”<("2=>;'19-”' "‘-Bs-C_%)me@v”
. - . TBsC12(y:int)@ T
2(y:1nt) from B to C; (Qy>x C:A?1(x:int) ‘(X--l?t‘)_.y))( ACI(x:int)
B:Cl2(y:int)@y>%~ . _ . -C:A?1(x:int)
102

| C:B?2(y:int)
7

Bounded model checking as a validation methodology [FASE’17]
Safety Properties:

= reception-error freedom

@ orphan-message freedom

= deadlock freedom

41



’ /‘ '

r . r .
Model , CFSM F# Type
. r I n . y

SMT Solver

v -
Code
A 4

Refinement satisfiability \ .
z5))

Refinement progress

42
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[r L r I I .
| Properties §j CFSM F# Type Code
N . 4 . 4 n y

r -1
Model
. 4

1y

Refinement satisfiability

» check if the conjunction of all formulas is satisfiable
ceg.(and Gy (+x D)<y HEx 3))

PPersinEy o From 2o B dx>3
choice at B {2() from B to A:} O
or {3(y:1int) from B to A; (@y>x+1 and y<4} r

> ia W WY o S o S B, O

1(x:1nt) from A to B; @x>3
choice at B | 20 Trom B-to A%t
or {3(y:int) from B to A; (@y>x+1 and y>4}

43



|
| LProperties

r . i r T r .
Model - CFSM F# Type
. .n . 4 N v

1y

Refinement satisfiability

» check if the conjunction of all formulas is satisfiable
e.g.(and Gy (+x 1))(<y4)(>x 3))

" -
Code
. w

1(x:1int) from A to B; @x>3
choice at B {2() from B to A;}
or {3(y:1int) from B to A; (@y>x+1 and y<4}

NN NSNS

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
or {3(y:int) from B to A; (@y>x+1 and y>4}

44




I

r T | { r T F T r .
Model | Propertle i CFSM F# Type Code
. 4 | N 4 4 y

@ -s-p

Refinement progress
check if formula is satisfiable for all preceding solutions
et ene e Tyl o

ISt anh CErom: A o B A3
Ziapeont ) from A o By
cho;cemathB__B\__from?B*to%A;:@x>\_h.

. Ensures that at any output point in the protocol
‘4  implementations there will be always some
chof values for which the formula holds ;

Lixsint)y Erom & o B;  [@x>3

2(y:int) from A to B; Qy<=3 :;r

choice at B {3() from B to A; @x>=y} .
or {4(y:int) from B to A; (@x<y}

45



|
| LProperties

r . { r T r T r .
Model - CFSM F# Type Code
. .n . 4 N 4 y

1y

Refinement progress

» check if formula is satisfiable for all preceding solutions
e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (K X y)(> X Yy))))

1 (x:1nt) from A to B; @x>3

2(y:1int) from A to B;
choice at B {3() from B to A; @x>y} O

or {4() from B to A; @x<y}

1 (x:1nt) from A to B; @x>3

2(y:1int) from A to B;

choice at B {3() from B to A; @x>=y}
or {4() from B to A; @x<y}

l1(x:int) from A to B; @x>3

2(y:1int) from A to B; Qy<=3

choice at B {3() from B to A; (@x>y}
or {4() from B to A; @x<y}

46
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r T r i r “ .
Model Properties { F# Type Code
. 4 . 4 n y

(N

(x:T1) from A to B; (y:T2) from B to C; (z:T3) from C to A;

Global Type

Projection

Local Type Local Type LocaiType

£ 18 (€

BI'T{ C?T: A?’T, CI'T B?T, AlT;
O—O—D)  O—0O—0D  O—0—0
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global protocol Calc(role S, role C) {

choice at C {
Div(x:1nt, y:int) from C to S;
Res(z:float) from S to C;
do Calc(C, S);
} or {
Bye () from C to S;
Bye () from S to C;

}
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C?Div (ink,int)

C!'Res (float)

riti method.
@ —— send methoo
= — receivemethod
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C?Div(int,int)

C!'Res (float)

type State2 =
member send: C*Res*float— Statel

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End
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global protocol Calc(role S, role C) {
choice at C {
Div(x:int, y:1int) from C to S; @y!'=0

Res (z:float) from S to C; @z=x/y Server as S
do Addeer (C, S);
} or { :
Bye () from C to S; Clientas C
Bye () from S to C;
}
/ Rec
Div
——————————— >
Res
2 1
Bye N
Bye
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C?Div(int,int)

‘

C!'Res (float)

r h
CFSM
. 4

type Statel =
member branch: unit— ChoiceS1

type Div = interface ChoiceS1
member receive: int*int— State2

type Bye = interface ChoiceS1
member receive: — State3

type State2 =

member send: C*Res*fleat— Statel

~

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End
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C?Div(int,int)

‘

C!'Res (float)

type Statel =
member branch: unit— ChoiceS1

type Div = interface ChoiceS1
member receive: int*int— State2

type Bye = interface ChoiceS1
member receive: — State3

type State2 =
member send: C*Res*float— Statel

type State3 =
member send: C*Bye— State4

type State4 =
member finish: unit— End
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1)
C?Bye

C?Div

let rec calcServer (c:Calc.Statel) =

match c.branch() with
| :? Calc.Bye as bye->

| :? Calc.Div as div ->

calcServer cl
e
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1)
C?Bye

C?Div

‘

let rec calcServer (c:Calc.Statel) =
let x, y = new Buf<int>(),new Buf<int>()
match c.branch() with
| :? Calc.Bye as bye->
bye.receive(C)
.send(C, Bye).finish()

| :? Calc.Div as div ->
let ¢l = div.receive(C, x, V)
.send(C, Res, x.Val/y.Val)

calcServer cl
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send | | @ quotations
' | & splicing

' ! constraints as lambda functions ! |
: ! serialise payload ! :

| i manage and use TCP sockets ! ;
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type Prot = STP<“Prot.scr”, C> .Net IL CODE
let s = new Prot().Init() D
s.send(S, Div, 6, 3) emit
Compiler

*AST of

l TType declarations iHow to compile this code? Tgenerated code

Uk

v

Session Type Provider
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| A statically well-typed STP-endpoint program ]

perform a non-compliant IO action ..t the source protocol. |



Compile-time performance

ping-pong

T

Example (role) #LoC| #States| #Types| Gen (ms)
2-Buyer (Bq) [13] 16 7 7 280
3-Buyer (By) [5] 16 7 7 310
Fibonacci (S) [14] 17 5 7 300
Travel Agency (A) [24] | 26 6 10 278
SMTP (c) [14] 165 | 18 29 902
HTTP (s) [3] 140 | 6 21 750
SAP-Negotiation (C) [18]] 40 5 9 347
Supplier Info (Q) [24] 86 5 25 1582
SH (P) 30 | 12 15 440

Bl Type and Code Generation (no refinements)

EXA Protocol checking (no refinements)

B8 Type and Code Generation (with refinements)

B2 Protocol checking (with refinements)
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Run-time performance

1.8 - 0.7
16 ping-pong-no-refinements

v

pihg—pong—refinements |

(XX

0.6

1.4

0.5} S %
1.2 Y )
1.0t 0.4 S )
< %, b
0 A
" 0.8 2 2l
o X

1

0.6

S

-
N
CX

IR

ele

9.

N

X

PSSO S50 O . 0.0.0.0.9.0.

L0009 9.4

0.2 @ X ]
e o X
0.0 > a

0.3
0.2
0.1
0.0 1 =

1 > '3 4 5 3 4 5
iterations (thousands) iterations (hundreds)

o Runtime overhead due to:

o branching, runtime checks, serialisation
o The performance overhead of the library stays in 5%-7% range
o The performance overhead of run-time checks is up to 10%-12%

.
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Future work and Resources

Framework Summary
= Type-driven development of distributed protocols

= Support for refinements on message interactions
@ ...ask me for more supported features

Future Work
a Static verification of refinements

= Partial model checking
= Support for erased type providers (event-driven branching)

Resources:
@ Session type provider: https://session-type-provider.github.io
@ Scribble: http://scribble.doc.ic.ac.uk/

= MRG: mrg.doc.ic.ac.uk


http://mrg.doc.ic.ac.uk

Thank youl!

MAY THE F#ORGE BE WITH YOU
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| Answers |
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o parse-> analyce -> prefty print
Check the tool for more features:
@ documentation on the fly @ recompilation on protocol change
@ non-blocking receive @ online vs offline mode
= explicit connections @ support by any .Net language
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Related work

Related works on Interaction Refinements

A theory of design-by- contract for distributed multiparty
interactions [CONCUR’12]

Linearly refined session types [LINEARITY’12]

A concurrent programming language with refined session
types. [BEAT13]

Certifying data in multiparty session types [JLAMP’17]

o no implementation
o based on syntactic checks
o developed for pi-calculus
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