’"g%g Behavioural Type-Based 22
Static Verification Framework
. for o A
§® l é \
2
o Ay
@ & 3 b~ o - R ®
0 ONo) %N o © g
@) e ;
s T U2
-764/5*: L‘zﬂge Nich (qs” & sern‘ﬂ'l{:;h ™ ::s\r\

http:/mrg.doc.ic.ac.uk

T-calculus, Session Types research at Imperial College

Post-docs:
NEWS SELECTED Simon CASTELLAN

— PUBLICATIONS David CASTRO

asynchronous session types by
Kohei Honda, Nobuko Yoshida,

and Marco Carbone, published in H

POPL 2008 has been wardedthe 2018 Francisco FERREIRA
ACM SIGPLAN Most Influential

POPL Paper Award today at POPL Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : A Static

T ¢ 52 9. o Raymond HU

Verification Framework for Message Passing in Go using Behavioural Types.

» more To appear inICSE 2018 . Rumyana NEYKOVA

10 Jan 2018 Bernardo Toninho , Nobuko Yoshida : Depending On Session Typed Process.

Estafet has published a page on To appear in FoSSaCS 2018 . Nicholas NG
their usage of the Scribble |

language developed in our group Bernardo Toninho , Nobuko Yoshida : On Polymorphic Sessions And
Wi': Rechiatandotiel et Functions: A Talk of Two (Fully Abstract) Encodings. To appear in ESOP Alceste SCALAS
partners.

2018.

SR PhD Students:

Rumyana Neykova , Raymond Hu , Nobuko Yoshida , Fahd Abdeljallal :

255202017 Session Type Providers: Compile-time API Generation for Distributed Assel_ ALTAY E\/A
Nick spoke at Golang UK 2017 on Protocols with Interaction Refinements in F#. To appear in CC 2018 .
Juliana FRANCO

applying behavioural types to
™ Eva GRAVERSEN

——

verify concurrent Go proarams.

&
IPOPL 2008 MOST INFLUENTIAL PAPER AWARD)

%) SIGPLAN

8 Most Influential Paper Award

POPL 200
a, Nobuko Yoshida and Marco Carbone

Kohei Hond

Multiparty asynchronous session types

I

www.scribble.org

Home GettingStarted ~ Downloads Documentation ~ Community +

Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol

represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to
expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks,

Describe ¢ Verify oy Project X Implement = Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, or Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (or type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and () statically verify the code againstthe particular endpoint, to

protocol projection. ensure it correctly

implements the expected
behaviour.

On].lne tOO]. . http://scribble.doc.ic.ac.uk/

module exampless

- global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldj;
-~ choice at World {
goodMorningl() from World to Mej
- }Yor{
goodMorningl() from World to Mej
}
}

Load a sample ﬂ Check Protocol: examples.HelloWorld Role: Me Project Generate Graph

OOI Collaboration

=
3

Pl

i

)

e

=

S

* TCS’16: Monitoring Networks through Multiparty Session Types. Laura Bocchi,
, Tzu-Chun Chen , Romain Demangeon , Kohei Honda , Nobuko Yoshida
| *LMCS’16: Multiparty Session Actors. Rumyana Neykova, Nobuko Yoshida
I FMSD’15: Practical interruptible conversations: Distributed dynamic verification
{ with multiparty session types and Python. Romain Demangeon , Kohei Honda ,
Raymond Hu , Rumyana Neykova , Nobuko Yoshida
» TGC’13: The Scribble Protocol Language. Nobuko Yoshida , Raymond Hu ,
Rumyana Neykova , Nicholas Ng

End-to-End Switching Programme by DCC

! Estafet

o Innovate | Deliver | Transform

1. All design work takes place in ABACUS,
DCC's enterprise architecture tool. This
can export standard XMl files

(an open standard for UMLS) 7. Generate

exception report and

2. XMl is converted into
OpenTracing format for
consumption by managed service

send back to DCC

FC e+ e

OPENTRACING

3. OpenTracing files are

4. Model holds types S. Scribble compiler i gl
rather than instances to identifies inconsistency, | graphlcally in Eclipse | '
understand behaviour change & design flaws ! !

combined to build a
model in Scribble

www.estafet.com Estafet Managed Service

End-to-End Switching Programme by DCC

1 Estafet

‘e Innovate | Deliver | Transform

Caveats:
1. Using earlier implementation of
Scribble (CDL), because we

already have those tools

2. Using earlier plugin to Eclipse -
we'd want to improve this

3. We're not going via OpenTracing
- this is part of the bid costs

7. Generate
exception report and
send back to DCC

OPENTRACING

3. OpenTracing files are 4. Model holds types

5. Scribble compiler 6. Issues highlighted
combined to build a rather than instances to identifies inconsistency, | graphically in Eclipse |
model in Scribble understand behaviour change & design flaws |

www.estafet.com Estafet Managed Service

Interactions with Industries

Strange Loop

A

SEPTEMBER 15-17 2016 PEABODY OPERA HOUSE ST. LOUIS, MO

»y
/
w-_ Adam Bowen @adamnbow Sep 14 .
, u | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

DoC researcher to speak at Golang UK conference , rocking on

about static deadlock detection in

DoC researcher to speak at industry-focused Golang UK G hore to add contont
conference on results of concurrency research

The Golang UK Conference

Interactions with Industries

F#unctional Londoners Meetup C,

6 days ago - 6:30 PM

Session Types with Fahd Abdeljallal

OEVSH A TEEE

43 Members

Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... tearn vore

Current State

* behaviors can be composed both sequentially
and concurrently

Dr. Roland Kuhn » effects are not yet tracked

@rolangSESEtof Actyx « Scribble generator for Scala not yet there

* theoretical work at Imperial College, London
(Prof. Nobuko Yoshida & Alceste Scalas)

actyx

Selected Publications 2017/2018

> [LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.

[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type Providers:
Compile-time API Generation for Distributed Protocols with Interaction Refinements in F#.
» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.

» [ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of Two
(Fully Abstract) Encodings.

[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz Ziarek:
A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems.
[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming..

[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based library
with polarities and lenses.

[FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.

> [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

14

v

v

v

v

v

v

v

v

v

v

Selected Publications 2017/2018

[LICS’18] Romain Demangeon, NY: Casual Computational Complexity of Distributed
Processes.

[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type Providers:
Compile-time API Generation for Distributed Protocols with Interaction Refinements in F#.
[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of Two
(Fully Abstract) Encodings.

[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz Ziarek:
A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems.
[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.

[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming.

[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based library
with polarities and lenses.

[FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

Imperial College
London

Home College and Campus Science W Health Business Go»

Go concurrency verification research at Doc
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".

=

oL

the morning paper

an interesting/influential /important paper from the world of CS every weekday morning, as selected by Adrian Colyer

Home About InfoQ QR Editions Subscribe

A static verification framework for message susscrise
passing in Go using behavioural types .
JANUARY 25, 2018 -

tags: Concurrency, Programming Languages
never miss an issue! The

Morning Paper delivered
A static verification fr k for g in Go using

behavioural types Lange et al., ICSE 18

straight to your inbox.

With thanks to Alexis Richardson who first forwarded this paper to me. SEARCH
‘We're jumping ahead to ICSE 18 now, and a paper that has been accepted peslond blessrien
for publication there later this year. It fits with the theme we’ve been ARCHIVES
exploring this week though, so I thought I'd cover it now. We’ve seen
Select Month

verification techniques applied in the context of Rust and JavaScript,

looked at the integration of linear types in Haskell, and today it is the MOST READ IN THE

turn of Go! LAST FEW DAYS

pregrammm famtjuage_ @GO 'e (200?
G §)

» Messqﬁe = Passmj based multicore PL, svccessor of C

* Do not communicate by shared memory;
msteqd, Share memory b/ Cammum‘qu/‘/Zj
Go 40/29 Proverdh
» Explicrt channel -based cmcurrenc)/
e Bolbered I/O communication channels
o Lrgh-rwerjh-f +hread SPawrlTnj — gorounines @5@0/
e Selective Send /receive

l } @M Dropbox , Netfix, Docker, Core0S

» @ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for realstic programs !

» (se behaviovral types m process calculr

e.g. [ACM Surve)/ , 2006] 185 crtationS , 6 pages

4 P -
Dynamic channel creations, unbounded #hread creations, recursions
-

» Scalable ¢ synchronous / asynchronous) Modvia rs Refina ble

» @ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for realistic programs !
> se behavioural types m process calculr j@

€.g. [ACM Su;fve)/ , 2016] 185 citationS , 6 pages

» Dynamic channel creations, unbounded thread creatins, recursions
-

3 ch lable ¢ Synchronous / asynchronous) Madu/ar-), Kefina ble

»@ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for reqlistic programs ?
> (se behaviovral typeS m process calculr ﬁ

e.g. [ACH Surve)/ , 20/6] 185 crrationS , 6 pages

o) » Unbounded #hread creations, recursions
o

» Scqiavie ¢ Sysnropous / asynchronous) Madu/ar-} Refrnable

»© has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors
for realstic programs !
> Use behaviovral types m process caleulr ﬁ
e [ACM Surve)/ , 2006] 185 crations , 6 pages
o o %
156
» B hanne/ creation b
;| \ S, Uhbounded thread creatins, recursions, -.

* Scalable (synchronous/ asynchronous) Madula,-} Refinable

» @ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for realistic IDr09rams?
» (se behavioural types i process calculr ﬁ

Sniolrdn,

> SCQ/able (Synchronous/ asynchronous) Modvlar P nerinable

Uhderstandable

Our Framework

STEPl Extract DBehavioural Types
'(Hosf) Messaje passing features of @

> Trrck)/ primitives : selection, channel creation

STEPZ Check Safety/ Liveness of Behavioural Types

» Model - Checkr@ (Finite Control)
STEP 3 h
» Relate Safety/ Liveness of Behavioural Types and Gl@)
» 3 Classes [POPL’17] Frograms

» Termination Check.

Our Framework

STEPl Extract Behavioural Types
'(HDS") Message, passig features of @@

> Trrck)/ primitives ¢ Selection , channel creation

STEPZ Chek Sm(e-ty/ Liveness of Behaviouyal Types

» Model - Unedd@ (Finite Control) T ,
STEP 3 Al

» Relate Safety/ Liveness of Behovtoural Types and GO
P
» 3 Classes [POPL’I7] rgrams

» Termination Check.

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Static verification framework for Go =

Overview

®Model checking

Behavioural — mCRL2 model checker
Types Transform
and verify Check safety and liveness
@ Type inference
Termination checking
SSA IR > KITTeL term. prover

Go source code

Address type <> process gap

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 23/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Concurrency in Go =
Concurrency primitives

func main() {
ch := make(chan int) // Create channel.
go send(ch) // Spawn as goroutine.
print (<-ch) // Recv from channel.

3

func send(ch chan int) { // Channel as parameter.
ch <- 1 // Send to channel.
}

m Send/receive blocks goroutines if channel full/empty resp.
m Channel buffer size specified at creation: make(chan int, 1)
m Other primitives:

m Close a channel close(ch)
m Guarded choice select { case <-ch:; case <-ch2: }

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida doc.i K 24
Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.u /A7

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Concurrency in Go =l
Deadlock detection

func main() {
ch := make(chan int) // Create channel.
send (ch) // Spawn as goroutine.
print (<-ch) // Recv from channel.
3

func send(ch chan int) { ch <- 1 }

Missing 'go’ keyword

7"E Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk

25 /47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Concurrency in Go =
Deadlock detection

func main() {
ch := make(chan int) // Create channel.
send (ch) // Spawn as goroutine.
print(<-ch) // Recv from channel.
}

func send(ch chan int) { ch <- 1 }

Run program:

go run main.go

fatal error: all goroutines are asleep - deadlock!

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 25/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

00

Concurrency in Go =
Deadlock detection

m Go has a runtime deadlock detector, crashes if deadlock
m Deadlock if all goroutines are blocked

m Some packages (e.g. net for networking) disables it

import _ "net" // Load unused "net" package
func main() {
ch := make(chan int)
send (ch)
print (<-ch)
}
func send(ch chan int) { ch <- 1 }

TC

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk

26,47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

00

Concurrency in Go =
Deadlock detection

m Go has a runtime deadlock detector, crashes if deadlock
m Deadlock if all goroutines are blocked
m Some packages (e.g. net for networking) disables it

import _ "net" @La.a.dq;m.s.ad_{Add benign import

func main() {
ch := make(chan int)
send(ch)
print (<-ch)

}
func send(ch chan int) { ch <- 1 }

Deadlock NOT detected

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida doc.i K
Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.u

26,47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Abstracting Go with Behavioural Types

Type syntax

a = dl|u|T
T, = o T|T&S|&{aiiTitict | (T|S)]|0
| (newa)T |closeu; T |t(d) | |u]} | uv*
T = {t(}N/,) = T,'},'E[in S

m Types of a CCS-like process calculus
m Abstracts Go concurrency primitives

m Send/Recv, new (channel), parallel composition (spawn)
m Go-specific: Close channel, Select (guarded choice)

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk

27 147

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Infer Behavioural Types from Go program

Input Go source code

func main() {

ch := make(chan int) // Create channel
go sendFn(ch) // Run as goroutine
x := recvVal(ch) // Function call
for i := 0; 1 < x; i++ {

print (i)
}

close(ch) // Close channel
}

func sendFn(c chan int) {c<-31}

// Send to c

func recvVal(c chan int) int { return <-c } // Recv from c

TC

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida
Behavioural Type-Based Static Verification Framework for Go

mrg.doc.ic.ac.uk

2847

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

N

Infer Behavioural Types from Go program

Program in Static Single Assignment (SSA) form

package main
J

func main.main()

func main.sendFn(c)

t5 = phil[0:
t6 = t6 < t1

entry
0 h

t0 = make chan int O0:int

go sendFn(t0)
tl = recvVal(t0)
jump 3

1

O:int, 1:

if t6 goto 1 else 2

t3] #i

t2
t3

jump 3

for.loop for.done

= print (t5) 2

= t5 + 1:int

return

t4 = close(t0)
return

entry

0
send ¢ <- 42:int
return

T
return

func main.recvVal(c)
entry
0 r
t0 = <-c
return tO

relyrn
[Block of instructions
Function boundary

O Package boundary

m Skip over non-communication code

TC

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida
Behavioural Type-Based Static Verification Framework for Go

mrg.doc.ic.ac.uk

m Context-sensitive analysis to distinguish channel variables

2947

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Infer Behavioural Types from Go program
Types inferred from program

func main() {
ch := make(chan int) // Create channel
go sendFn(ch) // Run as goroutine
x := recvVal(ch) // Function call
for i := 0; i < x; i++ {
print (i)

¥
close(ch) // Close channel
s
func sendFn(c chan int) { c <- 3} // Send to c
func recvVal(c chan int) int { return <-c } // Recv from c

main()
main_1(t0) = main_3(t0)
main_2(t0) = closet0;0
main_3(t0) = main_1(t0) & main_2(t0)
sendFn(c) = ¢;0
recvWal(c) = ¢;0

TC

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida
Behavioural Type-Based Static Verification Framework for Go

mrg.doc.ic.ac.uk

= (new t0)(sendFn(t0) | recvVal(t0); main_3(t0))

30,47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types

®Model checking

Behavioural
T —> mCRL2 model checker
ypes Transform
and verify Check safety and liveness
@ Type inference
Termination checking
SSA IR — KITTeL term. prover

Go source code

Address type <> process gap

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 3 1/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types
Behavioural types as LTS model

1. Generate LTS model from type semantics
2. Generate p-calculus formulae for LTS describing properties
3. Check LTS |= formulae with model checker (e.g. mCRL2)

Properties of interest:
m Global deadlock freedom
m Channel safety (no send/close on closed channel)
m Liveness (partial deadlock freedom)
m Eventual reception
Constraints (on mCRL2 model checker):

m Finite control (no parallel composition in recursion)

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 32/47

MT GO Liveness / Smce‘f/ P I Barb
; ;{”, a [M”ﬂe\’ 8

Channel Safe*r)/ Sungiori 92
» Channel ts closed at most once
» Can only mput from a closed channel Cdefault valve)

» Others raise. an error and crash

MI G-O Liveness /Sa‘Fe‘t')/ P I Barb y
Ja [Mrlner
Channel Safety {

Sangiogt QZ]
» Chapnel ts closed at most once
» Can only Mpot from a closed channe!l (default value)

» Others raise an error and crash

P s channrel Safe, if P —;F(VEV)Q and Q,J,cfuse(a)
QL endwr) A (Qez) @ e

never dostg Never Send

["]fao L1veness / Saxcer/

» Liveness

All reachable actions are eventually performe d
¥
Pslve if P—09Q
QJ{O\ = Q ﬂ/ = =q Redu(fr(‘ol’)
a v

Q.\L a = Q’JL Tag ")a

Select @ |

P = select (al b?, z.P} out

P = select {al, b7] Ri = a?

Select @
Time # Pisre

P = select {a ; b2, z. P{ out Pr s live

F

I

select {al, b7] Ri = a?

1

Jeleet Q@
Time it Pisine

P = select {a! f L?) Z. P} Out P ts lve
P P2 s not.
) = select {al, b7] Ri = a? (rve
¥ P21 R2 Ts

@@5@@? @ -
Time it Pis e

P = select {a!) L?) z. P } Out P s lve
Po s not.
= %
P, = select {al, b7] R = a? sy
Barb &
select {Te. Prylq Pl bice]

eness QL& = Qlz o+ a

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types

Generating p-calculus formulae (channel safety)

m Given an LTS model, generate formulae for safety properties

m Note: formulae are model-specific

Property: Channel safety

ws déf (/\ J/a*) = _‘(\LE V J/cloa)

acA

()¢ is a modal operator, satisfied if:
There is a T' where T 2 T’ such that formula ¢ holds

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 40/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types

Generating p-calculus formulae (channel safety)

Property: Channel safety

s E (N L) = sV betos)

acA

()¢ is a modal operator, satisfied if:
There is a T' where T = T’ such that formula ¢ holds

func main() {
ch := make(chan int)
go func(ch chan int) {
ch <- 1
}(ch)
close(ch)
<-ch // Recetive from closed channel is OK

}

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 41/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types

Generating p-calculus formulae (liveness)

Property: Liveness

Y, £ (/\ 12V lz) = eventually ((75)true)
acA

Property: Liveness (select)

Wy, d:ef(/\ 13) = eventually (({72|a € &})true)
GeP(A)

m Liveness: sometimes known as partial deadlock freedom
m Program is live if (1, A 4y,) holds

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 42/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types

Summary

1. Generate LTS model from type semantics
2. Generate p-calculus formulae for LTS describing properties
3. Check LTS [= formulae with model checker (e.g. mCRL2)

Properties:
v Global deadlock freedom
V" Channel safety (no send/close on closed channel)

X Liveness (partial deadlock freedom)
¥ Eventual reception
m Require additional guarantees

7"‘t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 43/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Model checking behavioural types
Termination checking with KIT TelL

m Extracted types do not consider data in process
m Type liveness # program liveness
m Especially when involving iteration
m Check for loop termination
m Properties:
v Global deadlock freedom
v" Channel safety (no send/close on closed channel)
V" Liveness (partial deadlock freedom)
v Eventual reception

func main() {

ch := make(chan int)
go func() { o
for i := 0; i < 10; i-—- { | | Type: L|ve
// Does not terminate
¥ m Program: NOT live
ch <- 1
}0O
<-ch

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida doc.i K
Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.u

4467

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Tool demo

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida doc.i K 45
Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.u /47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Conclusion

Verification framework based on
Behavioural Types

m Behavioural types for Go concurrency
m Infer types from Go source code
m Model check types for safety/liveness

m + termination for iterative Go code

Model
checking

Termination
checking

Transform and verify

[Behavioural types}

Type inference

SSA IR

Go source code

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida
Behavioural Type-Based Static Verification Framework for Go

mrg.doc.ic.ac.uk 46/47

Overview Concurrency in Go Behavioural type inference Model checking behavioural types Termination checking Summary

Future work

m Extend framework to support more properties
m Unlimited possibilities!
m Different verification techniques
m Godel-Checker model checking [ICSE'18] (this talk)
m Gong type verifier [POPL'17]
m Choreography synthesis [CC'15]
m Different concurrency issues
m Other synchronisation mechanisms
m Race conditions

%

7‘"t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 47/47

Semantics of MiGo types

s\p |2 T3S T [Rev]a TS T [mav TS T

END |closea; T 225 T [Bur| [a]f 2% a* [cp| a* 25 a*
ie{1,2 0 T -5 T, jel
SEL {77} BRA — 1 ! a_J
ThoT,— T &{ai; Titier = T
TS T TS T

PAR ———————— [SEQ ———— |TERM|0;S 5 S
TIS—=T]|S T,.S—=T,S

ac{aza,a"} TST sig B€{%a,a}

COM T, / /
T|IS=T|S
T=.T T5%T7T" T ST t«(%)=T
EQ 7« m LD {/} 3\ & E)
T & T t(a}-)T
T Slea, v S Cl“‘} s’ k<n k>1
CLOSE — IN - U | — .
TISLT|S la]t =2 |a) i lalk = lalk-1

Figure: Semantics of tvpes.

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 1/5

Barb predicates for MiGo types

a; Tls closea; T leoa Vie{l,...,n} : ai o

3T s a* lax &{ai; Thieqa,...,n L1or...on}
T o Tl Tl orT |o T{¥}le tX)=T
T:T Lo T|T | t(3) lo
Tl ails Tlsor Tl ails
T | &{ai; Sitier 4r, T | &{wi;Sitier 4-,
k<n k>1 Tls T e, Tl ails

LaJZ \L‘a _aJZ J/a' T | L \LTa T | &{Oéi; 51'}1'6/ \LTa

T lo Tle adfn(o) Tlo T=T
T|T o (new" a); T o T lo

Figure: Barb predicates for types.

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk

2/5

Model checking behavioural types

Generating p-calculus formulae (global deadlock freedom)

m Given an LTS model, generate formulae for safety properties

m Note: formulae are model-specific

Property: Global deadlock freedom

Vg =l /\ 12V i) = (A)true

acA

m (a)¢ is a modal operator, satisfied if:
There is a T' where T 2 T’ such that formula ¢ holds

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 3/5

Model checking behavioural types

Generating p-calculus formulae (eventual reception)

Property: Eventual reception

e d=Ef(/\ l.e) = eventually ((75)true)
acA

m Applies only to buffered channels

7‘"t Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 4/5

Eventually

Eventually

eventually (¢) E py- (o Vv (A)y)

m i.e. ¢ holds in some reachable state

Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida

Behavioural Type-Based Static Verification Framework for Go mrg.doc.ic.ac.uk 5/5

