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Go concurrency verification research at DcC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".
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e Reversibility can be used for:
e Modelling naturally reversible systems
e Debugging
e State-space exploration
e Event structures have been used to define semantics for CCS,
m-calculus, LOTOS, etc. in forwards-only setting.

e Categorical definitions can help define choice and parallel

composition.



CCSK (Phillips et al. 06) uses keys to denote past actions and
which actions they have synchronised with:

7[m n b[n]
a.b |3 2 a[m].b | a[m] 25 a[m].b[n] | a[m] = a[m].b | a[m]



Forwards CCS Process as Prime Event Structure (Winskel

1982)

E ={a,b,b,7}
a<b {a,
ab|b — a<T /

birt

, b}
R \
{7
_ A
THb /b
!

Process Event Structure Configurations



Forwards-only Category Overview

Ba
AsymmetricES ExtendedBundleES
PrimeES BundleES E ~ StableES ———  generalES
b



Category Overview

EBES
SES ! ES
Ep
P. |-l &, P, P
R ! RES
B

REBES . || pr R(4C || R

Bar 7
N

SConfigurationSystems — FinitelyEnabledCS

Previously defined Morphisms defined by us Entirely defined by us



Configuration Systems
Reversible Bundle Event Structures

Event structure semantics of CCSK

Roll-CCSK
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Configuration System

A configuration system has a set of events E = {a, b}, a set of
reversible events F = {a, b}, which can be undone a, b, a set

C c2F configurations of events, and aset > € Cx (EuU F) x C
transitions between them:

{a, b}

PR
\/




Definition (Configuration system-morphism)

Let (Eo, Fo, Co,—0) and (Ej, F1,Cy, —1) be configuration systems.

A configuration system morphism is a partial function f : Eg — E;
such that

1. forany X,Y € Co, AC Ey, and B S Fo, if X 22250 Y then
F(X) fAAB, F(Y)
2. for any X € Co, f(X) e Cy

3. for all ey, €} € Ep, if f(eg) = f(€}) # L and ey # €] then there
exists no X € Cq such that eg, e) € X



Coproduct (Choice)

{a, b} {c,d} {a,b} {c,d}
/o A1\ A
{p}  {a} {c} | {d} {p} {3} {y {d}
I YV \ A

1) %} %}
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Partially Synchronous Product (Parallel Composition)

{a. b}
oy
B} {3} X {g =
¢ ;
10/] g

{(a,%), (b, %), (+, ©)}

A
{(2,0), (B, )} {(b,%),(x, )}/ {(2,%), (b, )]N{(a,%), (x, )} {(,%), (b, )}
N~ N b

{@a} _ {b)}  {(x¢) (a,%)}  {(b,c)}
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Reversible Bundle Event Structures




Reversible Bundle Event Structure

{a, b} {a, c}
E = (E,F,—,#,1>) where
E ={a,b,c}, n\ / ‘
F = {a, b},
{c,b} — a, {b} {a} {c}
{a} —c,
bitc, b 2
{a} — b, :

ck>a
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Causal

If a CS or RBES is causal, an event can be reversed if and only if

every event caused by it has been reversed.
In a causal CS any reachable configuration is forwards-reachable.
Most reversible process calculi are causal.

The previous RBES and CS were not causal.

13



Causal CS and RBES

{a, b}

E = (E,F,—,#,>) where
E = {a, b} / \
F ={a, b}

a} — b,

\ e

—~—
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Event structure semantics of CCSK




CCSK uses keys to denote past actions and which actions they
have synchronised with:

7[m n b[n]
a.b |3 2 a[m].b | a[m] 25 a[m].b[n] | a[m] = a[m].b | a[m]

ii5)



CCSK Process as Reversible Bundle Event Structure

alm|.b | a[m] —

Process

E ={a,a,T,b}
{a,7} —> b
attt4a
br a

b1

Event Structure

{a, 3, b}
SN
{a, b} {7, b} {a,3}
AT
{a} {3}
NS
1G]

Configurations
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Roll-CCSK




Rollback

Rollback (Lanese et al., 11) is a way to control when the process
reverses, only letting tagged actions and actions caused by them
reverse when the roll is reached:

roll
a|lm|.b[n] | ay[m].c[o]roll v e 2.b | 3y.c.roll

17



Rollback

Rollback (Lanese et al., 11) is a way to control when the process
reverses, only letting tagged actions and actions caused by them
reverse when the roll is reached:

roll
a|lm|.b[n] | ay[m].c[o]roll v e 2.b | 3y.c.roll

Using this method,
(ay.(d.0| croll ) | by.(c | d.roll ') | 3| b)\{a, b, c, d}

is not able to roll all the way back to the beginning, as executing
one roll undoes an action preceding the other.

17



We split the roll into two actions, one triggering the roll, which is
reversed when a previous action is rolled back, and one executing

the roll:
(a4 [m].-(@[n].0 | e[o]-roll %) | b, [p]-(&[o] | d[nl.roll ') | 3[m] | Bp])\{a, b, c, d}

start roll _ —
BN (ay [m].(d[n].0 | c[o]. ) | by [p).(2lo] | dlnl.roll ) | 3[m] | Blp])\(a, b, c, d}
start roll ~/ _ _
A (2 [m].(@[].0 | c[o].rolling ) | b [p].(€[o] | d[]. ) | 3lm] | Blp)\(a, b, c, d}

roll ~'

A3 (ay[m].(d.0 | c.rolling 7) | b€ | duroll +) | 3[m] | B)\{a, b, c, d}

roll _ —
~ (a,.(d.0]c. )| by (Tl droll ') | 2| b)\{a, b, c, d}

18



Roll-CCSK Process as Event Structure

ay.roll v —

Process

E = {a, start roll 7, roll v}
{a} > start roll

{start roll v} — roll ~
{roll v} > start roll ~
{roll 7} > a

21> roll y

start roll vy > a

roll vy a

roll > start roll «y

Event Structure

{a, start roll v, roll ~}

/
{a, start roll w}\

‘ {a,roll v}
{a} {roll 7}
N/

Configurations

19



Splitting events in Roll-CCSK

Sometimes reversal of events is caused by multiple events
combining. To model this, events must be spilt.

a[m].b[n] | ay[m].rolling ~ L0, ab | 3,.roll v

a[m'].b[n] | 3,[m].rolling 7 <2 a[m'].b[n] | 3,.roll

20



Splitting events in Roll-CCSK

Sometimes reversal of events is caused by multiple events
combining. To model this, events must be spilt.

a[m].b[n] | ay[m].rolling ~ L0, ab | 3,.roll v

a[m'].b[n] | 3,[m].rolling 7 <2 a[m'].b[n] | 3,.roll

This requires splitting b as it is only rolled back by roll ~v if the as
synchronised, meaning

{a} > b,

{r} — br

{roll v} — b,

20



Given a process P, which generates an event structure £ and an
initial state Init,

1. P& P for a P’ which generates an event structure £ and
initial state Init’, if and only if there exists an isomorphism
f:€— & and an event e in £ that is enabled in Init and
labelled p, such that f(Init U {e}) = Init’

I .
2. P, P’ for a P’ which generates an event structure £ and

initial state Init’, if and only if there exists an isomorphism

f: & — &' and a sequence of transitions in the configuration
system of &, Init =, Xo < oo X021 0 Xn 2 X such that ¢
is labelled roll v and £(X) = Init’

21



Conclusion

e Causal reversible bundle event structures can describe the
semantics of CCSK

e Roll-CCSK extends CCSK to control reversibility by using
rollback

e Non-causal reversible extended bundle event structures can
model Roll-CCSK.

22



m-calculus: (vn)(@(n) | b{n) | n(y))
e Non-structural causation
e Traditionally non-stable

e Past actions must be stored in separate memories

23
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