Reversible event structures,
and Controlled and Uncontrolled Reversibility
in CCSK

Eva Graversen & Nobuko Yoshida
April 29

http://mrg.doc.ic.ac.uk

Mobility Research Group

Ti-calculus, Session Types research at Imperial College o

S5
~———

\X/S SELECTED Post-docs:
vy PUBLICATIONS Simon CASTEL

asynchronous session types by '
Kohei Honda, Nobuko Yoshida, DaV I d CAST R C
and Marco Carbone, published in
POPL 2008 has been awardedthe 2018 — ;
ACM SIGPLAN Most Influential Francisco FER]
POPL Paper Award today at POPL Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : A Static
2018. : - : - - -

Ver|ﬂcat|on. Framework for Message Passing in Go using Behavioural Types. QaymOﬂd |_| U
e To appear in ICSE 2018 .
10 Jan 2018 Bernardo Toninho , Nobuko Yoshida : Depending On Session Typed Process. QU mya Nna N EY
Estafet has published a page on To appear in FoSSaCS 2018 . '
their usage of the Scribble \I | C h O [aS N G
language developed in our group Bernardo Toninho , Nobuko Yoshida : On Polymorphic Sessions And
with RedHat and other industry ; . g ;
Dartners. ;;:(;tlons. A Talk of Two (Fully Abstract) Encodings. To appear in ESOP AlCGSte SCA L/ﬁ
» more ‘

Rumyana Neykova , Raymond Hu , Nobuko Yoshida, Fahd Abdeljallal : .
Lot 2l Session Type Providers: Compile-time API Generation for Distributed PhD StUdentS
Nick spoke at Golang UK 2017 on Protocols with Interaction Refinements in F#. To appear in CC 2018 . ASS@[A LTAY E\

applying behavioural types to

verifv concurrent Go proarams. J U [| ana F R A N C
Eva GRAVERSI

http://mrg.doc.ic.ac.uk

Interactions with Industries

Strange Loop

SEPTEMBER 15-17 2016 PEABODY OPERA HOUSE ST. LOUIS, MO

oy
;
w- . Adam Bowen “adamnbowen - Sep 15 .
’ 3 | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

DoC researcher to speak at Golang UK conference y rocking on

0 b 2018 about static deadlock detection in

DoC researcher to speak at industry-focused Golang UK Click here to add content
conference on results of concurrency research

Interactions with Industries

6 days ago - 6:30 PM

Session Types with Fahd Abdeljallal

o E Wl £ CHEE
N

43 Members

Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... tearn More

Current State

* behaviors can be composed both sequentially
and concurrently
Dr. Roland Kuhn » effects are not yet tracked
@rolanCEE] /\ctyx » Scribble generator for Scala not yet there

* theoretical work at Imperial College, London

(Prof. Nobuko Yoshida & Alceste Scalas)
actyx

OO Behavioural Type-Based ok
- Static Verification Framework
for A

Imperial College
London

Home College and Campus Science Health Business | Search here... m

Go concurrency verification research at DcC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".

g

<4

the morning paper

an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

Home About InfoQ QR Editions Subscribe

A static verification framework for message susscrise
passing in Go using behavioural types

JANUARY 25, 2018 i

tags: Concurrency, Programming Languages

never miss an issue! The

Morning Paper delivered

A static verification framework for message passing in Go using
behavioural types Lange et al., ICSE 18

straight to your inbox.

With thanks to Alexis Richardson who first forwarded this paper to me. SEARCH

H type and press enter

We're jumping ahead to ICSE 18 now, and a paper that has been accepted

for publication there later this year. It fits with the theme we’ve been ARCHIVES

exploring this week though, so I thought I’d cover it now. We've seen

verification techniques applied in the context of Rust and JavaScript, Select Month

looked at the integration of linear types in Haskell, and today it is the MOST READ IN THE

turn of Go! LAST FEW DAYS

Selected Publications 2017/2018

» [CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time AP| Generation for Distributed Protocols with Interaction
Refinements in F#.

» [FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.

» [ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.

» [ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.

» [ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types

» [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming..

» [COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

» [FoSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

» [FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
» [CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
» [POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

Selected Publications g&017/2018

[CC’18] Rumyana Neykova , Raymond Hu, NY, Fahd Abdeljallal: Session Type
Providers: Compile-time API Generation for Distributed Protocols with Interaction
Refinements in F#.

[FoSSaCS’18] Bernardo Toninho, NY: Depending On Session Typed Process.
[ESOP’18] Bernardo Toninho, NY: On Polymorphic Sessions And Functions: A Talk of
Two (Fully Abstract) Encodings.

[ESOP’18] Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu , Lukasz
Ziarek: A Typing Discipline for Statically Verified Crash Failure Handling in Distributed
Systems.

[ICSE’18] Julien Lange, Nicholas Ng, Bernardo Toninho, NY : A Static Verification
Framework for Message Passing in Go using Behavioural Types.

[ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming.

[COORDINATION’17] Keigo Imai, NY, Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

[FOSSaCS’17] Julien Lange, NY: On the Undecidability of Asynchronous Session
Subtyping.

[FASE’17] Raymond Hu, NY: Explicit Connection Actions in Multiparty Session Types.
[CC’17] Rumyana Neykova, NY: Let It Recover: Multiparty Protocol-Induced Recovery.
[POPL’17] Julien Lange, Nicholas Ng, Bernardo Toninho, NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

http://mrg.doc.ic.ac.uk/people/rumyana-neykova/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/
http://mrg.doc.ic.ac.uk/people/tzu-chun-chen/
http://mrg.doc.ic.ac.uk/people/raymond-hu/
http://mrg.doc.ic.ac.uk/people/julien-lange/
http://mrg.doc.ic.ac.uk/people/nicholas-ng/
http://mrg.doc.ic.ac.uk/people/bernardo-toninho/

e Reversibility can be used for:
e Modelling naturally reversible systems
e Debugging
e State-space exploration
e Event structures have been used to define semantics for CCS,
m-calculus, LOTOS, etc. in forwards-only setting.

e Categorical definitions can help define choice and parallel

composition.

CCSK (Phillips et al. 06) uses keys to denote past actions and
which actions they have synchronised with:

7[m n b[n]
a.b |3 2 a[m].b | a[m] 25 a[m].b[n] | a[m] = a[m].b | a[m]

Forwards CCS Process as Prime Event Structure (Winskel

1982)

E ={a,b,b,7}
a<b {a,
ab|b — a<T /

birt

, b}
R \
{7
_ A
THb /b
!

Process Event Structure Configurations

Forwards-only Category Overview

Ba
AsymmetricES ExtendedBundleES
PrimeES BundleES E ~ StableES ——— generalES
b

Category Overview

EBES
SES ! ES
Ep
P. |-l &, P, P
R ! RES
B

REBES . || pr R(4C || R

Bar 7
N

SConfigurationSystems — FinitelyEnabledCS

Previously defined Morphisms defined by us Entirely defined by us

Configuration Systems
Reversible Bundle Event Structures

Event structure semantics of CCSK

Roll-CCSK

Configuration Systems

Configuration System

A configuration system has a set of events E = {a, b}, a set of
reversible events F = {a, b}, which can be undone a, b, a set

C c2F configurations of events, and aset > € Cx (EuU F) x C
transitions between them:

{a, b}

PR
\/

Definition (Configuration system-morphism)

Let (Eo, Fo, Co,—0) and (Ej, F1,Cy, —1) be configuration systems.

A configuration system morphism is a partial function f : Eg — E;
such that

1. forany X,Y € Co, AC Ey, and B S Fo, if X 22250 Y then
F(X) fAAB, F(Y)
2. for any X € Co, f(X) e Cy

3. for all ey, €} € Ep, if f(eg) = f(€}) # L and ey # €] then there
exists no X € Cq such that eg, e) € X

Coproduct (Choice)

{a, b} {c,d} {a,b} {c,d}
/o A1\ A
{p} {a} {c} | {d} {p} {3} {y {d}
I YV \ A

1) %} %}

10

Partially Synchronous Product (Parallel Composition)

{a. b}
oy
B} {3} X {g =
¢ ;
10/] g

{(a,%), (b, %), (+, ©)}

A
{(2,0), (B,)} {(b,%),(x,)}/ {(2,%), (b,)]N{(a,%), (x,)} {(,%), (b,)}
N~ N b

{@a} _ {b)} {(x¢) (a,%)} {(b,c)}

11

Reversible Bundle Event Structures

Reversible Bundle Event Structure

{a, b} {a, c}
E = (E,F,—,#,1>) where
E ={a,b,c}, n\ / ‘
F = {a, b},
{c,b} — a, {b} {a} {c}
{a} —c,
bitc, b 2
{a} — b, :

ck>a

12

Causal

If a CS or RBES is causal, an event can be reversed if and only if

every event caused by it has been reversed.
In a causal CS any reachable configuration is forwards-reachable.
Most reversible process calculi are causal.

The previous RBES and CS were not causal.

13

Causal CS and RBES

{a, b}

E = (E,F,—,#,>) where
E = {a, b} / \
F ={a, b}

a} — b,

\ e

—~—

14

Event structure semantics of CCSK

CCSK uses keys to denote past actions and which actions they
have synchronised with:

7[m n b[n]
a.b |3 2 a[m].b | a[m] 25 a[m].b[n] | a[m] = a[m].b | a[m]

ii5)

CCSK Process as Reversible Bundle Event Structure

alm|.b | a[m] —

Process

E ={a,a,T,b}
{a,7} —> b
attt4a
br a

b1

Event Structure

{a, 3, b}
SN
{a, b} {7, b} {a,3}
AT
{a} {3}
NS
1G]

Configurations

16

Roll-CCSK

Rollback

Rollback (Lanese et al., 11) is a way to control when the process
reverses, only letting tagged actions and actions caused by them
reverse when the roll is reached:

roll
a|lm|.b[n] | ay[m].c[o]roll v e 2.b | 3y.c.roll

17

Rollback

Rollback (Lanese et al., 11) is a way to control when the process
reverses, only letting tagged actions and actions caused by them
reverse when the roll is reached:

roll
a|lm|.b[n] | ay[m].c[o]roll v e 2.b | 3y.c.roll

Using this method,
(ay.(d.0| croll) | by.(c | d.roll ') | 3| b)\{a, b, c, d}

is not able to roll all the way back to the beginning, as executing
one roll undoes an action preceding the other.

17

We split the roll into two actions, one triggering the roll, which is
reversed when a previous action is rolled back, and one executing

the roll:
(a4 [m].-(@[n].0 | e[o]-roll %) | b, [p]-(&[o] | d[nl.roll ') | 3[m] | Bp])\{a, b, c, d}

start roll _ —
BN (ay [m].(d[n].0 | c[o].) | by [p).(2lo] | dlnl.roll) | 3[m] | Blp])\(a, b, c, d}
start roll ~/ _ _
A (2 [m].(@[].0 | c[o].rolling) | b [p].(€[o] | d[].) | 3lm] | Blp)\(a, b, c, d}

roll ~'

A3 (ay[m].(d.0 | c.rolling 7) | b€ | duroll +) | 3[m] | B)\{a, b, c, d}

roll _ —
~ (a,.(d.0]c.)| by (Tl droll ') | 2| b)\{a, b, c, d}

18

Roll-CCSK Process as Event Structure

ay.roll v —

Process

E = {a, start roll 7, roll v}
{a} > start roll

{start roll v} — roll ~
{roll v} > start roll ~
{roll 7} > a

21> roll y

start roll vy > a

roll vy a

roll > start roll «y

Event Structure

{a, start roll v, roll ~}

/
{a, start roll w}\

‘ {a,roll v}
{a} {roll 7}
N/

Configurations

19

Splitting events in Roll-CCSK

Sometimes reversal of events is caused by multiple events
combining. To model this, events must be spilt.

a[m].b[n] | ay[m].rolling ~ L0, ab | 3,.roll v

a[m'].b[n] | 3,[m].rolling 7 <2 a[m'].b[n] | 3,.roll

20

Splitting events in Roll-CCSK

Sometimes reversal of events is caused by multiple events
combining. To model this, events must be spilt.

a[m].b[n] | ay[m].rolling ~ L0, ab | 3,.roll v

a[m'].b[n] | 3,[m].rolling 7 <2 a[m'].b[n] | 3,.roll

This requires splitting b as it is only rolled back by roll ~v if the as
synchronised, meaning

{a} > b,

{r} — br

{roll v} — b,

20

Given a process P, which generates an event structure £ and an
initial state Init,

1. P& P for a P’ which generates an event structure £ and
initial state Init’, if and only if there exists an isomorphism
f:€— & and an event e in £ that is enabled in Init and
labelled p, such that f(Init U {e}) = Init’

I .
2. P, P’ for a P’ which generates an event structure £ and

initial state Init’, if and only if there exists an isomorphism

f: & — &' and a sequence of transitions in the configuration
system of &, Init =, Xo < oo X021 0 Xn 2 X such that ¢
is labelled roll v and £(X) = Init’

21

Conclusion

e Causal reversible bundle event structures can describe the
semantics of CCSK

e Roll-CCSK extends CCSK to control reversibility by using
rollback

e Non-causal reversible extended bundle event structures can
model Roll-CCSK.

22

m-calculus: (vn)(@(n) | b{n) | n(y))
e Non-structural causation
e Traditionally non-stable

e Past actions must be stored in separate memories

23

	Configuration Systems
	Reversible Bundle Event Structures
	Event structure semantics of CCSK
	Roll-CCSK

