PROBLE!
SESSLORY.

Us

€ Mobility Eesearch Group

Tr MobilityReadingGroup

m-calculus

Home

NEWS

Our recent work Fencing off Go:
Liveness and Safety for Channel-
based Programming was
‘summarised on The Morning
Paper blog.

2Feb 2017

Weizhen passed her viva today,
congratulations Dr. Yang!

24 Jan 2017

Mariangiola Dezani-Ciancaglini, a
long-term collaborator with our
group working on Session Types
turns 70 today, more details here.

23 Dec 2016

Rumyana passed her viva today,

, Session Types research at Imperial College

SELECTED
PUBLICATIONS

2017

Raymond Hu , Nobuko Yoshida : Explicit Connection Actions in Multiparty
Session Types. To appear in FASE 2017 .

Julien Lange , Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : Fencing
off Go: Liveness and Safety for Channel-based Programming. POPL 2017 .

Rumyana Neykova , Nobuko Yoshida : Let It Recover: Multiparty Protocol-
Induced Recovery. CC 2017 .

Julien Lange , Nobuko Yoshida : On the Undecidability of Asynchronous
Session Subtyping. To appear in FoSSaCS 2017 .

http://mrg.doc.ic.ac.uk/

Academic Staff
Nobuko Yoshida
Research Associate
Raymond Hu
Julien Lange
Nicholas Ng

Xinyu Niu

Alceste Scalas
Bernardo Toninho
PhD Student
Assel Altayeva
Juliana Franco
Rumyana Neykova

Weizhen Yang

OOI Collaboration

=
3
e
=
-
e
2
1

1« TCS’16: Monitoring Networks through Multiparty Session Types. Laura Bocchi ,
; Tzu-Chun Chen , Romain Demangeon , Kohei Honda , Nobuko Yoshida
| * LMCS’16: Multiparty Session Actors. Rumyana Neykova, Nobuko Yoshida
‘q « FMSD’15: Practical interruptible conversations: Distributed dynamic verification
| with multiparty session types and Python. Romain Demangeon , Kohei Honda ,
Raymond Hu , Rumyana Neykova , Nobuko Yoshida
* TGC’13: The Scribble Protocol Language. Nobuko Yoshida , Raymond Hu ,

Rumyana Ngykova , Nicholas Ng

wWww.scribble.org

Home GettingStarted Downloads Documentation ~ Community ~

Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol

represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to
expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks

Describe ¢ Verify ol Project & Implement = Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, or Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (or type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and (0 statically verify the code against the particular endpoint, to

protocol. projection. ensure it correctly

implements the expected
behaviour.

OIlllI‘le tOOI . http://scribble.doc.ic.ac.uk/

module examples;

- global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldj;
- choice at World {
goodMorningl() from World to Mes
- Yor{
goodMorningl() from World to Mej
}
}

Load asample [&J Check Protocol: examples.Helloworld Role: Me Project

Generate Graph

End-to-End Switching Programme by DCC

! Estafet

- Innovate | Deliver | Transform

1. All design work takes place in ABACUS,
DCC's enterprise architecture tool. This
can export standard XM| files

(an open standlard for UML5)

7. Generate
exception report and

2. XMl is converted into
OpenTracing format for
consumption by managed service

OPENTRACING

send back to DCC

4. Model holds types 5. Scribble compiler | " 6. Issues hlghllghted ‘
rather than instances to identifies inconsistency, | graphically in Ecllpse ‘
understand behaviour change & design flaws | i

3. OpenTracing files are

combined to build a
model in Scribble

www.estafet.com Estafet Managed Service

End-to-End Switching Programme by DCC

1 Estafet

- Innovate | Deliver | Transform

Caveats:

1. Using earlier implementation of
Scribble (CDL), because we
already have those tools

2. Using earlier plugin to Eclipse -

EXEEPti[l n report and

we'd want to improve this N
3. We're not going via OpenTracing senghack to DCE
- this is part of the bid costs L1
|
& e T X %/
OPENTRACING - :
conii— N VO -,
3. OpenTracing files are (" 4. Model holds types 5. Scribble compiler | "6, Issues hlghllghted ‘
combined to build a rather than instances to identifies inconsistency, | graphically in Ecllpse
model in Scribble understand behaviour change & design flaws | f

www.estafet.com Estafet Managed Service

Interactions with Industries

Strange Loop

A

]

SEPTEMBER 15-17 2016 PEABODY OPERA HOUSE ST. LOUIS, MO
» y

/

, . Adam Bowen @adamnbowen - Sep 15 .
m | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
Yoshida's great talk at #pwiconf, | want to learn more. Imperial College, London

rocking on

DoC researcher to speak at Golang UK conference y)
about static deadlock detection in

by Vicky Kapogianni
20 July 2016

DoC to speak at industry-f d Golang UK Click here to add content
conference on results of concurrency research The G (0] |a g U K CO nfe rence

Interactions with Industries

F#unctional Londoners Meetup Group

6 days ago - 6:30 PM
Session Types with Fahd Abdeljallal

rS ° o -
a5 (2% v
SENSH A TEREE
43 Members
Synopsis: Session types are a formalism to codify the structure of

a communication, using types to specify the communication
protocol used. This formalism provides the... Learn more

Current State

* behaviors can be composed both sequentially
and concurrently

Dr. Roland Kuhn » effects are not yet tracked

@rolandkuhn — CTO of Actyx

* Scribble generator for Scala not yet there

* theoretical work at Imperial College, London
(Prof. Nobuko Yoshida & Alceste Scalas)
actyx

Selected Publications 2016/2017 70

¢ [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY: A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming..

¢ [COORDINATION’17] Keigo Imai, NY and Shoji Yuen: Session-ocaml: a session-based
library with polarities and lenses.

¢ [FoSSaCS’17] Julien Lange , NY: On the Undecidability of Asynchronous Session
Subtyping.

¢ [FASE’17] Raymond Hu , NY: Explicit Connection Actions in Multiparty Session Types.

¢ [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced Recovery.

¢ [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off Go: Liveness
and Safety for Channel-based Programming.

¢ [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY, Wayne Luk :
EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits.

¢ [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala

¢ [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by Global
Session Graph Synthesis.

¢ [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint API
Generation.

¢ [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.

¢ [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative Expressiveness of
Higher-Order Session Processes.

¢ [POPL’16] Dominic Orchard, NY: Effects as sessions, sessions as effects .

Selected Publications 2016/2017 70

¢ [ECOOP’17] Alceste Scala, Raymond Hu, Ornela Darda, NY :A Linear
Decomposition of Multiparty Sessions for Safe Distributed Programming.

¢ [COORDINATION’17] Keigo Imai, NY and Shoji Yuen: Session-ocaml: a session-
based library with polarities and lenses.

¢ [FoSSaCS’17] Julien Lange , NY : On the Undecidability of Asynchronous Session
Subtyping.

¢ [FASE’17] Raymond Hu , NY : Explicit Connection Actions in Multiparty Session
Types.

¢ [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced
Recovery.

¢ [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

¢ [FPL'16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY, Wayne Luk:
EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits.

¢ [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala

¢ [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by Global
Session Graph Synthesis.

¢ [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint API
Generation.

¢ [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.

¢ [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative Expressiveness
of Higher-Order Session Processes.

¢ [POPL’16] Dominic Orchard, NY: Effects as Sessions, Sessions as Effects.

dertver theortes to practlces
make theortes understndable

meet Jrheoreﬂaxﬁ cha “eV\cjeg (concurnemcy dcs(-r(‘boﬁowg)

Communicate peop e

3 Behavioural Type-Based ~ 5°
Static Verification Framework

. for o A
@
@ ’"@“g'
™
- 2N N . A
0 ONo S ® 49
=) A @ P
%)5 Z v 5 lﬂj
N \.-)k-“‘
Ty, lange Nich las B Bern%":;h NN

Imperial College
London

Home College and Campus Science

Go concurrency verification research at DoC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".

@@ Pmarammnﬁ lﬁmgua\je @6:/ 3,3 (200?)

’ Mesgaﬁe - Passmj based multicore. PL, successor of C

» Do not communicate by shared memovy;
Instead, share memory by Cammuﬁ/'Cdf/‘f?j
; | ' Go Lang Proverd
» Explrcit channel-based concurrency
o Buftered /O communication channels
. LrghTweTjH +hread spawm‘nj— gorountnes @@@0/
o Selective Send /receive

i ’ @M Diopbox , Netfix, Docker, Core 0S

»G&© has a runtime deadlock detector

» How can we detect partial deadlock. and channel errvrs

for realistic programs?

» (Jse behavriovral types m process calculr

e.g. [ACM Surve/ , 2016] 185 citations , 6 pages

» = =
Dynamic channel creations, unbounded thread creatins, recursions
La-

» Scalable ¢ Sync/zronoz/s/ asynchronous) Modvla r, Refina ble

»(&G@ has a runtime deadlock detector

» How can we detect partiall deadlock. and channel errors

for reglistic programs?
> (se behaviovral types m process calculr j@

€3 [ACM SUVVG)/ , 2006] 135 crtationS , 6 pages

’ ~ -
Dynamic channel creations, uvnbounded thread creations, recursions
-

» Scalable (synchronous/ asynchronous) Modviar ; Retina ble

’ @@ has a runtime deadlock detector

» How can we detect partial deadlock. and channel errors

for realistic programs ?
> (se behavioyral types m process calculr ﬁ
e.g. [ACM Survey , 2016] 185 crrarions , 6 pees

e, © , Unbounded thread creatins, recursions
s

’ \SCQIabIe (Syuu/ronous/ asynchronous) Mac/u/ar') rf’efiﬂqb/e

»&© has a runtime deadlock detector

» How can we detect partial deadlock and channel errors

for reglistic programs?
> (se behaviovral types m process calculr ﬁ
eg. [ACM Surve)/ , 2016] 185 cirations , 6 pages

?
e | Jigent

») 8 .
. \ hannel creations, unbounded thread creations, recursions, ..

» Scalable synchronous / asynchronous) Modvla o Refinable

'@@ has a runtime deadlock detector

» How can we detect partial deadlock. and channel! errors
for realistic programs?
> USe behavrovral -ry,oes m process calculr

5
» Dynamic channel creations, unbounded thread creativr .

3 SCQ lable ¢ Synchronous / asynchronous) Modvla r, nerina ble

Uhderstunda ble

Our Framework

STEPJ_ Extract Behavioural Types
’(MDS*) Messaje, passig features of @@

» Trick)/ primitives : Selectton, cdhannel creation

STEPZ Chek Sa-Fg-ry/ Liveness of Behavioural —D/PQS

» Model - Chec,kl‘@ (Finite Control)
STEP 3 fﬁ
» Relate Safety/ Liveness of Behavroural Types and GO
» & Classes [POPL17] FPrgrams

b Termination Check

Our Framewovk

STEP]_ Extracr Behavioural Types
»(Most) Messaﬂe passing features of @@

b Tricky primitives ¢ selection, channel creation

STEPZ Chek Safety / Liveness of Behavioural Types

> Model - CheCkerj (Finite Control) T ‘
STEP 3 @@@ |

» Relate Sm‘ey/ Liveness of Behavtoura | Types and @@
P
» 3 Classes [POPL/17] rgrams

» Termination Check

Verification framework for Go
Overview

Check safety and (2) Model (3) Termina-
liveness checking tion checking
Create input model
and formula

Transform and verify

Behavioural types

4
(1) Typelinference

SSA IR

Go source code

Nobuko Yoshida
Open Problems of Session Types

Address type and
process gap

Pass to termination
prover

mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go

func main() {

ch, done := make(chan int), make(chan int)
go send(ch) // Spawn as goroutine.
go func() {

for i := 0; i < 2; i++ {

print ("Working...")

}
110)
go recv(ch, done)
go recv(ch, done) // Who is ch receiving from?
print("Done:", <-done, <-done) // 2 receivers, 2 replies

}
func send(ch chan int) {ch<-11} // Send to channel.
func recv(in, out chan int) { out <- <-in } // Fwd in to out.

m Send/receive blocks goroutines if channel full/empty resp.

m Close a channel close(ch)
m Guarded choice select { case <-ch:; case <-ch2: }

Nobuko Yoshida f
Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go
Deadlock detection

func main() {

ch, done := make(chan int), make(chan int)
go send(ch) // Spawn as goroutine.
go func() {

for i := 0; i < 2; i++ {

print ("Working...")

}
110
go recv(ch, done)
go recv(ch, done) // Who is ch receiving from?
print("Done:", <-done, <-done) // 2 receivers, 2 replies

}
func send(ch chan int) {ch<-11}% // Send to channel.
func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Run program:

go run main.go

fatal error: all goroutines are asleep - deadlock!

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go
Deadlock detection

func main() {

ch, done := make(chan int), make(chan int)
go send(ch) // Spawn as goroutine.
go func() {

for i := 0; ; {qxx { A/ 'i'nf'i'n.'i[change to infinite
print ("Working...") l

}

30O

go recv(ch, done)

go recv(ch, done) // Who %s ch receiving from?

print("Done:", <-done, <-done) // 2 receivers, 2 replies
}
func send(ch chan int) {ch<-11% // Send to channel.
func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go
Deadlock detection

func main() {

ch, done := make(chan int), make(chan int)
go send(ch) // Spawn as goroutine.
go func() {

for i := 0; ; {qxx { A/ 'i'nf'i'n.'i‘change to infinite
print ("Working...")

}

30O

go recv(ch, done)

go recv(ch, done) // Who %s ch receiving from?

print("Done:", <-done, <-done) // 2 receivers, 2 replies
}
func send(ch chan int) {ch<-11% // Send to channel.
func recv(in, out chan int) { out <- <-in } // Fwd in to out.

Deadlock NOT detected (some goroutines are running)

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go
Deadlock detection

m Go has a runtime deadlock detector, panics (crash) if deadlock
m Deadlock if all goroutines are blocked

m Some packages (e.g. net for networking) disables it

import _ "net" <££_Laad_£n£iﬂ_p{Add benign anoﬂ‘

func main() {
ch := make(chan int)
send (ch)
print (<-ch)

}
func send(ch chan int) { ch <- 1 }

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Concurrency in Go
Deadlock detection

m Go has a runtime deadlock detector, panics (crash) if deadlock
m Deadlock if all goroutines are blocked

m Some packages (e.g. net for networking) disables it

import _ "net" <££_Laad_£n£iﬂ_p{Add benign anoﬂ‘

func main() {
ch := make(chan int)
send (ch)
print (<-ch)

}
func send(ch chan int) { ch <- 1 }

Deadlock NOT detected

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,Q = mP m=ule) | u?(y)| T

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,Q = mP m=ule) | u?(y) |7
| closeu; P

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,Q = mP m=ule) | u?(y) |7
| closeu; P
| select{m;; P;}ic/

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

Go Program

P,Q

= mP m=ul(e) | u?(y)|T
| closeu; P

| select{m;; Pi}ici

| if ethenPelse Q

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,.Q = mP
| closeu; P
| select{m;; Pi}ici
\
|

m=ul(e) | u?(y)|T

if ethen Pelse Q
newchan(y:o); P

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,Q = mP m=ul(e) | u?(y)|T
| closeu; P
| select{m;; Pi}ici
| ifethenPelse Q
| newchan(y:o); P
| PIQ |0 (vo)P
TU Geugveshis ceosion Types

mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,Q

= mP m=ul(e) | u?(y)|T
| closeu; P

| select{m;; Pi}ici

| ifethenPelse Q

| newchan(y:o); P

|

P = {Di}ie/inP

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Go Programs as Processes

P,Q

= mP m=ul(e) | u?(y)|T
| closeu; P
| select{m;; Pi}ici
| ifethenPelse Q
| newchan(y:o); P
| PIQ |0 (vo)P
| X(& D)
= X(x) =P
P = {Di}iesinP

Nobuko Yoshida ;
7.t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Abstracting Go with Behavioural Types

a = dlul|T
T, = o T|TeS|&{ai;Titicr | (T|S)]|0
| (newa)T |closeu; T |t(Q)
T = {t()"/,) = Ti}iE/ in S

m Types of a CCS-like process calculus
m Abstracts Go concurrency primitives

m Send/Recv, new (channel), parallel composition (spawn)
m Go-specific: Close channel, Select (guarded choice)

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

MT G'O |jveness /SCHL@T)’ P I Barb
‘ N a [Mrlnerg

Chanrel Sm‘en‘)/ Singiorg 02
» Chapnel s closed at most once
» Cgn onl)/ mput from a closed channel (default Value,)

> Others rarse. an error and crash

Mi Go Liveness / Safety Y Barb
U a [Mﬂnerg

Channel Safe:r)/ Sungiogi 92]

» Channel ts closed at most once
» Can only mput from a closed channel (default value,)

» Others ratse an error and crash

P is channel safe if P —e)F(ya‘)Q' and Q»J/dose(a)
-'(Qalend(a)) N7 (Q‘H, x) a closed

never closmg ey

M,‘go Lnveness / Soncev
» Liveness
All reachable actions are eventually pertorme d
P s hve if PT00Q
Qla = QL |z aa p
eductior,
QE = @bzen

@ elect @
Time it Pis e

f = sedect §al b7, z. P, out Py s live
P I b? ERAES
) = select (al, b7] R = a? 3

P21 Rz Ts

Jelect Q@
Time it Pislne

P = select {a! . b?, z. P} Out Pr ts ltve
P2 s not.
P = select {al, b7] R = a? frve
P.I Rz Ts
Barb Q&
LTl Pla @Qlg

Select {Te. Plj\l,a’ p l @\/J,[Q{_j

eness QLo = Qlz «+ a

Verification framework for Go
Model checking with mCRL2

Generate LTS model and formulae from types

m Finite control (no parallel composition in recursion)
m Properties (formulae for model checker):

v" Global deadlock

V" Channel safety (no send/close on closed channel)

X Liveness (partial deadlock)
¥ Eventual reception

m Require additional guarantees

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

'H"em = CGICU\US eﬂco&c‘vﬁ properties wrth bav bs

Global Desdlock — N\aeC (la Vig)=> >T
aecC lcfose a > (J/OT \/\chosea>

Channel Sa{:ey A

PR T R AT R

Lveness A wec (aVia)= ® (@D T)A
N gecn la = & (Vaea ([O\]>T>

[Lange $NY
TACAS7]]

TC

Verification framework for Go
Termination checking with KITTelL

m Extracted types do not consider data in process
m Type liveness |= program liveness
m Especially when involving iteration
m Check for loop termination
m Properties:
v Global deadlock
V" Channel safety (no send/close on closed channel)
v Liveness (partial deadlock)
v Eventual reception

func main() {

ch := make(chan int)
fun o
' S 10; i—— { m Type: Live

// Does not terminate i
m Program: NOT live
ch <—1

30
<—ch

Nobuko Yoshida
Open Problems of Session Types

mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Re lating Programs and Types
Program |
F(n,i,0) =

- Type
filter(i,0) =

i?(x); if (x%n # 0) then ol{z); F'(n, 1, o) else F(n,i, o) .
i; (03 tr(i,0) © t5(i,0))

> Idenﬁfy % classes (Lrvehess)

1. May Terminate
2 . Without nfinttely runhing Conditionals

3. Non- determ:mS'ft(_ conditioha |

> Channel Sa\(e-ty Pragrams = Types

o F

Re (q'ﬁnj PYUfjmms and Types
Program |

F(n,i,0) = i?(x); if (x%n

Type
filter(i,0) =

» Tdentif 2 cla§5e5 (Lr en \
y B veness) it
1. May Terminate o
n . Without nfinttely running Condittonals

T olz); F(n,i,o0) else F{n,i,0) .

i: (3; tr (i, 0) @ tF(1,0))

3. Non- demrmumwc_ condittona |

» Channel Sa{-e17 Pragmms = Types

o F

TC

Verification framework for Go
Termination checking with KITTelL

m Extracted types do not consider data in process
m Type liveness |= program liveness
m Especially when involving iteration
m Check for loop termination
m Properties:
v Global deadlock
V" Channel safety (no send/close on closed channel)
v Liveness (partial deadlock)
v Eventual reception

func main() {

ch := make(chan int)
fun o
' S 10; i—— { m Type: Live

// Does not terminate i
m Program: NOT live
ch <—1

30
<—ch

Nobuko Yoshida
Open Problems of Session Types

mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Tool demo

http://mrg.doc.ic.ac.uk

Conclusion

- Model Termination
checking checking

Verification framework based on
Behavioural Types

Transform and verify

Behavioural types for Go concurrency ’ Behavioural types ‘

Infer types from Go source code]
. Type inference
Model check types for safety/liveness

-+ termination for iterative Go code SSA IR
Go source code

Nobuko Yoshida

Open Problems of Session Types mrg.doc.ic.ac.uk

http://mrg.doc.ic.ac.uk

Future work

m Extend framework to support more properties
m Unlimited possibilities!
m Different verification techniques
m e.g. [POPL'17], Choreography synthesis [CC'15]
m Different concurrency issues

m Other synchronisation mechanisms
m Race conditions

v

Nobuko Yoshida f
7“t Open Problems of Session Types mrg.doc.ic.ac.uk

Table 3: Go programs verified by our framework and comparison with existing static deadlock detection tools.

Godel Checker
states

dingo-hunter [35] %)pherlyzer [39] Golnfer/Gong [30]
5 .

Programs Vg Ui Ys Ve Infer Live Live+CS Term | Live Time ‘ Time ‘ Live CS Time
1 mismatch [35] 53 X X v v 620.68 996.79 996.67 v X 639.40 X 3956.41 X v 616.78
2 fixed [35] 16 v v v v 624.41 996.50 996.34 v v 603.18 v 3166.26 v v 609.95
3 fanin [35, 38 39 v v v v 631.12 996.15 996.23 v v 607.98 v 19.76 v v 696.65
4 sieve 30,35 o0 n/a - - - n/a n/a - | n/a - v v 778.29
5 philo [39] 65 X X v v 6.10 996.51 996.56 v X 34.23 X 26.99 X v 16.84
6 dinephil3 [13,32] 3838 v v v v 645.15 996.42 996.31 v n/a - | n/a - v v, 13.2min
7 starvephil3 3151 X X v v 628.20 996.50 996.46 v n/a - | n/a - X v 3.5 min
8 sel [39 103 X X v v 4.23 996.70 996.61 v X 15.31 X 13.04 X v 50.46
9 selFixed [39 20 v v v v 4.02 996.33 996.39 v v 14.93 v 3168.32 v v 13.08
10 jobsched [30 43 v v v v 632.67 996.69 1996.14 v n/a - v 4753.56 v v 635.20
11 forselect [30] 26 v v v v 623.31 996.36 996.38 v v 611.79 | n/a - v v 618.57
12 cond-recur [30] 12 v v v v 3.95 996.21 996.22 v v 9.40 | n/a - v v 14.74
13 concsys [41] 15 X X v v 549.69 996.50 996.40 v n/a - X 5278.59 X v 521.26
14 alt-bit [30, 34] 112 v v v v 634.43 996.34 996.26 v n/a - | na - v v 916.81
15 prod-cons 106 v X v v 4.10 996.37 1996.24 v X 10.15 X 30.10 X v 21.84
16 nonlive 8 v v v v 630.10 996.55 996.47 timeout ® 613.62 | n/a - ® v 613.79
17 double-close 17 v v X v 3.48 996.58 1996.62 v X 8.68 X 11.83 v X 9.13
18 stuckmsg 4 v v v X 3.45 996.58 996.60 v n/a - | n/a - v v 7.55
19 dinephil5 ~1M v v v Y 626.45 41194.18 41408.00 v n/a - n/a - timeout >48 hrs
20 prod3-cons3 57493 v v v v 465.09 40859.24 40902.06 v n/a - | n/a - timeout >48 hrs
21 async-prod-cons | 164897 v v v 4.29 47720.30 89414.60 v n/a - | n/a - timeout >48 hrs
22 astranet [26] 1160 v v v v\ 2512.54 70399.00 75043.00 v n/a - | n/a - n/a -

CS: Channel Safe, Term: Termination check, DF: Deadlock-free, timeout: Termination check timeout (likely does not terminate), X: False Alarm, ®: Undetected liveness error.

most programs use traditional imperative control flow features su-
ch as for loops, for-range loops (i.e. loops over a fixed finite data
structure) and for-select loops (i.e. an infinite loop with a select
that can break the loop - the Consumer function of Figure 1) instead
of recursion; we assume that loop indices are not modified in loop
bodies and that no goto-like constructs are used in a loop.

Since the analysis only takes into account loop parameters, a
loop that indefinitely blocks (e.g. due to communication) may be
identified as terminating. However, if our analysis identifies the in-
ferred types as live and the termination check validates the program,
both termination and program liveness are guaranteed.

6 EVALUATION

Table 3 lists several benchmarks of our tool against other static
deadlock detection tools for Go (a detailed comparison of these
tools is given in § 7). The benchmarks were run with go1.8.3 on
an 8-core Intel i7-3770 machine with 16GB RAM on a 64-bit Linux.
The model checker we used was mCRL2 v201707.1.

The results for Godel Checker are shown in columns 3-11. Col-
umn 3 shows the number of states in the input LTS as a measure-
ment of the relative complexity of each program (proportional to
the number of concurrency-related operations rather than the num-
ber of lines of code). Columns 4-7 shows the core properties of
Figure 6 in § 4, i.e. no global deadlock (1), liveness (), channel
safety (/s) and eventual reception (). Columns 8-10 list the run-
ning time of Godel Checker, where Column 8 lists the inference
time, Columns 9 and 10 are the model checking times for liveness,
and both liveness and channel safety, respectively. The total run
time can be obtained by adding Column 8 to Column 9 or 10. Unless
otherwise stated, all times are in milliseconds. Column 11 (Term)
shows the result of the termination check, which proves the ter-
mination of loops in the given program, or times out after 15s. A
program that times out is conservatively assumed not to terminate.

Columns 12-13 pertain to the dingo-hunter tool from [35].
The time includes both communicating finite state machine extrac-
tion and their analysis, but does not include building the global
graph and only checks for liveness. Columns 14-15 pertain to the

gopherlyzer tool [39], which only checks for global deadlock-
freedom (most programs had to be manually adjusted in order to be
accepted by this tool - see § 7 for the severe practical limitations of
the tool). Columns 16-18 refer to the GoInfer/Gong tool from [30].
The times include both type inference and analysis stages, which
only accounts for liveness and channel safety checks. Most pro-
grams in Table 3 are taken either from other papers on the static
verification of Go programs [30, 35, 39] or from publicly available
source code. Programs 7, and 15-22 are introduced by this work.
Programs that are unsupported by a tool are marked with n/a.
Programs 1-7 are typical concurrent programs from the litera-
ture. The sieve program is not finite control (it spawns an infinite
number of threads), thus it can only be analysed by GoInfer/Gong.
Program 6 is a (three) dining philosophers program where the first
fork can be released, while Program 7 is the traditional deadlock-
ing version (Program 19 is as Program 6 but with 5 philosophers).
dingo-hunter does not support Programs 6, 7, and 19 due to dy-
namically spawned goroutines, while gopherlyzer does not sup-
port them due to a nested select statement. GoInfer/Gong analyses
them correctly, but is much slower than Godel Checker.
Programs 8-12 consist of idiomatic Go patterns which are all
handled correctly and quickly by our tool. Program 13 is a publicly
available program which is not live. Program 14 is an implemen-
tation of the alternating bit protocol. Program 15 is the Producer-
Consumer example from § 1, which is not live. All tools were able to
verify this simple program. Program 16 demonstrates the mismatch
between type and program liveness, where the type is live but due
to an erroneous loop the program does not terminate and causes a
partial deadlock. The termination check identifies this as possibly
non-terminating, while GoInfer/Gong incorrectly identifies it as
live. Program 17 closes a channel twice which flags a violation of
channel safety in Godel Checker and GoInfer/Gong. Interestingly,
dingo-hunter detects a deadlock (a false alarm) due to its repre-
sentation of channel closure as a message exchange, but not due to
the double close. gopherlyzer also detects a deadlock incorrectly
due to the same reason. Program 18 is a program that violates the
eventual reception property by sending an asynchronous message
that is never received — none of the earlier tools can detect this.

