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Session Types in a Nutshell \/

send(int).send(int).receive(oo!)

“...Session Types structure a series of interactions in a simple
and concise syntax and ensure type safe communication.”



A Protocol

» Protocol: Buyer-Seller

» Description: Alice buying a book

send(siring).receive(in:).@{ok: send(siring).receive(c 2:c), quit:end}

receive(siring).send(ni).&{ok: receive(:iring).send(c2te), quit: end}



Are we compatible? \ /

send(int).send(t).receive(boo!)

receive(nt).receive(int).send(bhool)

It is all about duality!



session lype)

Are we compatible? \7-9

receive(int).send(int).receive(ool)

receive(int).receive(int).send(bhool)



What is a type safe communication ? ' TU

./

{ Communication safety

e No communication mismatch

{ Session Fidelity }

e Communications follow the desired protocol

)

{ Progress J

e No deadlock/stuck in a session
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Session-based Distributed
Programming in Java

Raymond Hu, Nobuko Yoshida Kohei Honda
Imperial College ‘Q Queen Mary

Lon d on University of London



Implementing Customer (4)

SJSocket s = SJSocket.create(p, ..):;
protocol p {

begin. i s.request () ;
' i s.outwhile(..) {
1<String>. i s.send (”PARTS/EUROSTAR”) ;
? (int) i cost = s.receive()
]* )
14 i if (..) {
ACCEPT: { i s .outbranch (ACCEPT) {
|<Address>. E s.send(..);
? (Date) i date = s.receive();
}, i }
REJECT: { } .} else {
} i s.outbranch (REJECT) { }
} }

Raymond Hu, Nobuko Yoshida, Kohei Honda 38



Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

U
Formalisation of W3C WS-CDL [ESOP’07]

e
Scribble at T4 Technology




CDL Equivalent

* Basic example:

package HelloWorld {
roleType YouRole, WorldRole;
participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole

relationship=YouWorldRel channel=worldChannel {
request messageType=Hello;

Dr Gary Brown (Pi4 Tech) in 2007



Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling"” - Kohei Honda 2007

e Basic example:

protocol HelloWorld {

role You, World;
Hello from You to World;



Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

4

@ SCl’lbble red.hat




Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

U
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oession T'ypes Overview

Global Type

> Global session type
Projection
G=A—->B:(U1).B— C:(lr).C— A:(Us)
Local Type Local Type Local Type
H ¢ i > Local session type
e | Type e ! > Slice of global prgtocol relevant to one role
Checking +  Checking Checking » Mechanically derived from a global protocol

Program Program Program . }

> Process language
> Execution model of I/O actions by session
participants
> Mechanically derived from a global protocol

Pa = a[A](x). x!(B, U1> x?(C,y)

> (Static) type checking for communication safety and progress



Www.scribble.org

Home Getting Started Downloads Documentation ~ Community ~

Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol
represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to

expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks.

Describe ¢* Verify ol Project & Implement & Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, or Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (or type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and (c) statically verify the code against the particular endpoint, to

protocol. projection. ensure it correctly

implements the expected
behaviour.




On].lne tOO]. . http://scribble.doc.ic.ac.uk/

module examples;

- global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldj
v choice at World {
goodMorningl() from World to Me;
v }ror{
goodMorningl() from World to Me;
}
}

Load a sample & Check Protocol: examples.HelloWorld  Role: Me

Project

Generate Graph
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Us € Mobility Research Group

T‘r MobilityReadingGroup

m-calculus,

NEWS

Our recent work Fencing off Go:
Liveness and Safety for Channel-
based Programming was
summarised on The Morning
Paper blog.

2 Feb 2017

Session Types research at Imperial College

SELECTED
PUBLICATIONS

2017

Raymond Hu , Nobuko Yoshida : Explicit Connection Actions in Multiparty

Weizhen passed her viva today,
congratulations Dr. Yang!

24 Jan 2017

Session Types. To appear in FASE 2017 .

Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : Fencing
off Go: Liveness and Safety for Channel-based Programming. POPL 2017 .

Mariangiola Dezani-Ciancaglini, a
long-term collaborator with our

group working on Session Types
turns 70 today, more details here.

23 Dec 2016

Rumyana Neykova , Nobuko Yoshida : Let It Recover: Multiparty Protocol-
Induced Recovery. CC 2017 .

Julien Lange , Nobuko Yoshida : On the Undecidability of Asynchronous

Rumyana passed her viva today,

Session Subtyping. To appear in FoSSaCS 2017 .

http://mrg.doc.ic.ac.uk/

Academic Staff

Nobuko Yoshida

Research Associate

Raymond Hu

Julien Lange

Nicholas Ng

Xinyu Niu

Alceste Scalas

Bernardo Toninho

PhD Student

Assel Altayeva

Juliana Franco

Rumyana Neykova

Weizhen Yang



Ocean Observatories Initiative

» ANSF project (400M$, 5 Years) to build a cyberinfrastructure for
observing oceans around US and beyond.

»> Real-time sensor data constantly coming from both off-shore and

on-shore (e.g. buoys, submarines, under-water cameras, satellites),
transmitted via high-speed networks.
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Ocean Observatories Initiative
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OOl agent negotiation 1/5

Consumer Provider
Agent Agent
negotiate: request{SAP_1) Confirm is the
Negotiston sterting by : ; complementary acoept
“;Conmumr mlgyw a nmpo:tﬂ negotiate: accept(SAP_1, details) by the other party (both
e negotiate: confim(SAP_1) _4__-] must acoopt for] an
| With a mutual accept, at
—————————————————————————X least one commitment
ALT g on each side of the
R negotiate: invite(SAP_1) Sraition resalts
Providar inviting a kot negotiate: accept(SAP_1, details) (may be multiple). The
with a propasal, accepted by contract is as stated in
Consumer and oanfrmed by negotiate: confirm(SAP_1)
Provider
ALT negotiate: request(SAP_1)
| counter-propose is a
Negotiation starting by negotiate: counter- SAP_2) new SAP, but it typically
Consurmes making 3 f DZ ysal, s fropasit refines or parﬁalsly
The racipient (Provider) makes iota modifies the prior SAP.
3 counter-roposal s g negotiate: accept(SAP_2, details) pnior
:&Lﬁh:mm:m by negotiate: confirm(SAP_2)
the Provider.
ALT negotiate: request(SAP_1) I Any party can reject
Negosation starting by a instead of counter-
Consumer making & propoeal, negotiate: reject{SAP_1) <_ﬁ coept
rejected by the Provider ending propase (or 8 )
the Negoliation.

» https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Negotiate+Protocol
11 /42



OOI agent negotiation 2/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

Consumer Provider
Agent Agent
negotiate: request(SAP_1) mis
Negotiatian starting by 3 complementary accept
. : > :
";Coz‘wmlr m:l;y ing a wpo:u negotiate: accept(SAP_1, details) by r:::; other pa?g,' (:flh
by Consumar . acoept
negotiate: confim(SAP_1) 4-—-[ aGreament)
With a mutual accept, at
—————————————————————————‘K least one commitment
ALT negotiate: invite(SAP_1) xwm: r:fs::tes.
Negotiation startin i
Providernsing 8 Coneu ki negotiate: accept(SAP_1, details) (may be multiple). The
with a proposal. accepted by contract is as stated in
Consumer and confirmed by negotiate: confirm(SAP_1)
Provider
ALT jate:
negotiate: request{SAP_1) A tor-pro o
Negotiation starti negotiate: counter- SAP_2) new SAP, but it typically
Consumer making 8 :::ml. o PI'ODOSG( refines or pama"‘/
The recipient (Provider) makes jate: modifies the prior SAP.
& ope ; negotiate: accept(SAP_2, details) prior
s:&,uﬁ,n;::m by negotiate: confirm(SAP_2)
Ihe Provider.
ALT negotiate: request(SAP_1) Any party can reject
Negosation staring by & ol iecl(SAP_1) instead of counter-
Consumer making & proposal, negotiate: rej &% '<|‘| or a
ey D i o | propose (or accept)
e

12 /42



OOI agent negotiation 3/5 (choice)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose (SAP) from C to P;

choice at P {
accept() from P to C;

Consumer Provider
: Agent Agent
confirm() from C to P; |
negotiate: request(SAP_1) s
Negotiation starting by a complementary accept
} or { m Sl:yw m:u negotiate: accept(SAP_1, details) by the other party (both
. Sopiones by Coneune: negotiate: confim(SAP_1) 4-—1 must acoopt '8' L
reject() from P to C; “
With a mutual accept, at
} or { ————————————————————————E least one commitment
T negotiate: invite(SAP_1) xwe:crs,:a:if: rzfstt';ti
A iate: (may be multiple). The
propose (SAP) from P to C; it resete sccop(SAP 1, sl Cona 3.0 e
) Consumer P::a canfirmed by negotiate: confirm(SAP_1)

ALT negotiate: request(SAP_1) 7 N
Negotiation starting by a negotiate: counter-propose(SAP_2) new SAP, but it typically
T i — ey e
racipien| makes iate: 3 modifies *
a counter-prope 5 negotiate: accept(SAP_2, details) prior
%Lﬁ"&"'&"ﬁm:} negotiate: confirm(SAP_2)
Ihe Provider.
ALT negotiate: request{(SAP_1) Any party can reject
Negotiation starting by a i iect(SAP_1) instead of counter-
Consumer making & proposal, negotiate: rej % —<"‘ coept
rejiected by the Provicer ending PIo038I (060 )
the Negotiaton. |

3

13 /42



OOl agent negotiation 4/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose (SAP) from C to P;

choice at P {

accept() from P to C;
confirm() from C to P;

} or {

reject() from P to C;
} or {

propose (SAP) from P to C;

choice at C {

accept() from C to P;
confirm() from P to C;

} or {

reject() from C to P;
} or {

propose(SAP) from C to P;

P r}

Provider

Negotiation starting by a

Cansumar making a proposal,

then accepted by Provider and
confimaed by Consumar

Negatiation starting by the
Provider inviling a Cansumer
with a propasal. accepted by
Consumer and confrmed by

Consumer
Agent

negotiate: request{SAP_1)

Provider
Agent

m s
negotiate: accept(SAP_1, details)

complementary acoept

negotiate: confim(SAP_1)

by the other party (both
must accept for an
agreement)

e

negotiate: invite(SAP_1)

With a mutual accept, at
- —E least one commitment

on each side of the

negotiate: accept(SAP_1, details)

conversation results

negotiate: confirm(SAP_1)

(may be multiple). The
contract is as stated in

Negotiation starting by 3
Consumer making 8 proposal.
The recipient (Provider) makes
A counler-p i

SAP_1, which i then accepled

ALT

negotiate: request{SAP_1)

negotiate: counter-propose{SAP_2)

A counter-propose is a

negotiate: accept(SAP_2, details)

new SAP, but it typically
refines or partially

by Cansumer and confirmed by
Ihe Provider.

rejected by the Provider ending
the Negolistion.

negotiate: confirm(SAP_2)

modifies the prior SAP,

negotiate: request(SAP_1)

negotiate: reject(SAP_1) —==——_"__ propose (or accept)
|

Any party can reject
instead of counter-

14 / 42



OOI agent negotiation 5/5 (recursion)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose (SAP) from C to P;
rec X {
choice at P {
accept() from P to C;
confirm() from C to P;
} or A{
reject() from P to C;
} oor A
propose (SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
} oor {
reject() from C to P;

} or {

propose(SAP) from C to P;

continue X;

¥
}

negotiate: request{SAP_1)

Provider

Agent

Consumer
Agent
Negotiation starting by a
Cansumar making a proposal,
then accepted by Provider and

negotiate: accept(SAP_1, details)

confimed by Consumar

negotiate: confim(SAP_1)

_

m Is
complementary acoept
by the other party (both

must accept for an
agreement)

S N~

negotiate: invite(SAP_1)

With a mutual accept, at

least one commitment
on each side of the
conversation results

Negatiation starting by the
Provider inviling a Cansumer

negotiate: accept(SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepted by
Consumer and confrmed by
Provider

negotiate: confirm(SAP_1)

ALT

negotiate: request{SAP_1)

Negotiation gunng bya

negotiate: counter-propose{SAP_2)

A counter-propose is a
new SAP, but it typically

refines or partially

Consumer m a proposal.
The recipient (Provider) makes
a counler-p i

negotiate: accept(SAP_2, details)

modifies the prior SAP,

SAP_1, which i then accepled
by Consumer and confirmed by

negotiate: confirm(SAP_2)

Ihe Provider,

negotiate: request(SAP_1)

Any party can reject
instead of counter-

rejected by the Provider ending
e Negolistion

negotiate: reject(SAP_1) —==——_"__ propose (or accept)
|

15 / 42



Local protocol projection (Negotiation Consumer)

// Global
propose(SAP) from C to P;
rec START {
choice at P {
accept() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
} or {
reject() from C to P;

} or {

propose (SAP) from C to P;

continue START;
)

// Projection for Consumer
propose (SAP) to P;
rec START {
choice at P {
accept() from P;
confirm() to P;
} or {
reject() from P;
} or {

propose (SAP) from P;

choice at C {
accept() to P;
confirm() from P;

} oor {
reject() to P;

} or {
propose(SAP) to P;
continue START;

Fr3

19 /42
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Dynamic Monitoring
[RV°13, COORDINATION’14, FMSD’15, LMCS’17, CC’17]

Global Type
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Local Type Local Type Local Type
s s z
Dynamic Dynamic Dynamic
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Program Program Program
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Type Checking
[OOPSLA’15, ECOOP’16, ECOOP’17, COORDINATION’17]

Global Type
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Local Type Local Type Local Type
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(Generation

Projection

Code Generation
[CC’15, FASE’16, FASE’17]

Local Type

A

R

Program

Alice
\_

/

Global Type

Local Type

it

Generation ,

v
.

-

Program

Bob

/

Local Type

3¢

(GGeneration ,

\ 4

(

\_

B

Program

Carol
_J




Synthesis
[ICALP’13, POPL’15, CONCUR’15, TACAS’16, CC’16]

Global Type
Synthesis
Local Type Local Type Local Type
3 A A
Type : Type Type
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Interactions with Industries

Strange Loop

SEPTEMBER 15-17 2016 / PEABODY OPERA HOUSE / ST.LOUIS, MO

’ w ., Adam Bowen @adamnbowen - Sep 15 .
g | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
. Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

DoC researcher to speak at Golang UK conference ’ _ rocking on
by Vicky Kapogianni . . .
20 July 2016 about static deadlock detection in

[
g UK Conference

DoC researcher to speak at industry-focused Golang UK Click here to add content Th G I
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Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... Learn vore

Current State

* behaviors can be composed both sequentially
and concurrently

Dr. Roland Kuhn » effects are not yet tracked

@rolandkuhn — CT0 of Actyx » Scribble generator for Scala not yet there

* theoretical work at Imperial College, London
(Prof. Nobuko Yoshida & Alceste Scalas)
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Imperial College
London

Home College and Campus Science

Go concurrency verification research at DoC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".
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RFC 821 August 1982
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Scribble - Proving a distributed design

1 Estafet
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1. All design work takes place in ABACUS, v
DCC's enterprise architecture tool. This s
can export standard XMl files ABACUS
(an open standard for UMLS) 7 Generate
2. XMl is converted into exception report and
OpenTracing format for send back to DCC
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- ————————— -

3. OpenTracing files are 4. Model holds types 5. Scribble compiler 1 6. Issues highlighted E
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Other completeness results Subtyping of recursive types requires
algorithms for checking subtype relations, as discussed in [32,
Chapter 21]. These algorithms need to be proved sound and com-
plete with respect to the definition of the corresponding subtyping,
as done for example in [7, 12, 33]. Algorithms for checking the
synchronous and asynchronous subtypings of the present paper can
be easily designed.
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