s 8¢

MarTa V\ﬁ?‘o\c(MayTo

Contributions 1o

SESETOR =
~ PRACTICE

NOBUKO YoSHIDA

LOGIC AND

COMPUTER
SCIENCE
EDITED BY
3 l P, OPLEREDD L

Two Extensions ot Cuw)/’.s Type Inference Systeu

by F. Gardone and ™. Coppo

@ARIANGIOLA o

PHO‘(’O by J.ow. kKlop 978

ETAPS 702 977

@ARIANGIOLA | 4

photo by J.W. Klop 178

ETAPS 702 277

Session Types in a Nutshell \/

send(int).send(int).receive(oo!)

“...Session Types structure a series of interactions in a simple
and concise syntax and ensure type safe communication.”

A Protocol

» Protocol: Buyer-Seller

» Description: Alice buying a book

send(siring).receive(in:).@{ok: send(siring).receive(c 2:c), quit:end}

receive(siring).send(ni).&{ok: receive(:iring).send(c2te), quit: end}

Are we compatible? \ /

send(int).send(t).receive(boo!)

receive(nt).receive(int).send(bhool)

It is all about duality!

session lype)

Are we compatible? \7-9

receive(int).send(int).receive(ool)

receive(int).receive(int).send(bhool)

What is a type safe communication ? ' TU

./

{ Communication safety

e No communication mismatch

{ Session Fidelity }

e Communications follow the desired protocol

)

{ Progress J

e No deadlock/stuck in a session

Drami tvTg

Objects

SQSSEOV\ Types an d Objecfs

Sesston Types and Objects

\c

and Obje ctS

FirsT
AS‘)/ nchvvnog

S@SS O Wy

EHeCIDS S0

Deami 1vTs

Session-based Distributed
Programming in Java

Raymond Hu, Nobuko Yoshida Kohei Honda
Imperial College ‘Q Queen Mary

Lon d on University of London

Implementing Customer (4)

SJSocket s = SJSocket.create(p, ..):;
protocol p {

begin. i s.request () ;
' i s.outwhile(..) {
1<String>. i s.send (”PARTS/EUROSTAR”) ;
? (int) i cost = s.receive()
]*)
14 i if (..) {
ACCEPT: { i s .outbranch (ACCEPT) {
|<Address>. E s.send(..);
? (Date) i date = s.receive();
}, i }
REJECT: { } .} else {
} i s.outbranch (REJECT) { }
} }

Raymond Hu, Nobuko Yoshida, Kohei Honda 38

Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

U
Formalisation of W3C WS-CDL [ESOP’07]

e
Scribble at T4 Technology

CDL Equivalent

* Basic example:

package HelloWorld {
roleType YouRole, WorldRole;
participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole

relationship=YouWorldRel channel=worldChannel {
request messageType=Hello;

Dr Gary Brown (Pi4 Tech) in 2007

Scribble Protocol

e "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling"” - Kohei Honda 2007

e Basic example:

protocol HelloWorld {

role You, World;
Hello from You to World;

Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

4

@ SCl’lbble red.hat

Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

U
‘ AN S
%L @ Scribble redia: SAVARA

Cognizant

oession T'ypes Overview

Global Type

> Global session type
Projection
G=A—->B:(U1).B— C:(lr).C— A:(Us)
Local Type Local Type Local Type
H ¢ i > Local session type
e | Type e ! > Slice of global prgtocol relevant to one role
Checking + Checking Checking » Mechanically derived from a global protocol

Program Program Program . }

> Process language
> Execution model of I/O actions by session
participants
> Mechanically derived from a global protocol

Pa = a[A](x). x!(B, U1> x?(C,y)

> (Static) type checking for communication safety and progress

Www.scribble.org

Home Getting Started Downloads Documentation ~ Community ~

Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol
represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to

expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks.

Describe ¢* Verify ol Project & Implement & Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, or Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (or type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and (c) statically verify the code against the particular endpoint, to

protocol. projection. ensure it correctly

implements the expected
behaviour.

On].lne tOO]. . http://scribble.doc.ic.ac.uk/

module examples;

- global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldj
v choice at World {
goodMorningl() from World to Me;
v }ror{
goodMorningl() from World to Me;
}
}

Load a sample & Check Protocol: examples.HelloWorld Role: Me

Project

Generate Graph

POPL' 0¥
Alce = Bob: K (Nak >
Bl e K <Inﬁ>

CONCUR'O8
Alice — Bob: <N5\/t>

Bob — Altce: (Tt >

TCP

Co nn@cTFOv)

Mulﬁ party Session 1)
ypes (1)

POPL ‘0¥
Al
e = Bob K <
¢ (Nat >
Pt e ik <L*>

CONCUR’
" VR O8 *ﬂm
@ =7 Bob; <NM > ““Q\ 3
BO‘D : . O .MFV)
bllieel Tt | //@ fes
N C
=

® = ©
C
onnecT?vm

POPL ‘0¥
Alice = Bob: K (Nat >
Bob = Alice 2 K7 < Jnk >

CONCURO8

Alice - Bob: {Nat >

Bob — Alice: o

Co V)H@CT?OV)

CONCUR ‘08
Global Progress of MPS T

% g ¢ t// >
- - /
u Dezan \ [s z
N%

Betttn 7 Coppo D'Antont Luc kK

COORDINATION (3 .
| Inference of Grlobad Progress v MPST

MSCS W

@en‘rle Imrodumov,
Padovam
MPST

4

Us € Mobility Research Group

T‘r MobilityReadingGroup

m-calculus,

NEWS

Our recent work Fencing off Go:
Liveness and Safety for Channel-
based Programming was
summarised on The Morning
Paper blog.

2 Feb 2017

Session Types research at Imperial College

SELECTED
PUBLICATIONS

2017

Raymond Hu , Nobuko Yoshida : Explicit Connection Actions in Multiparty

Weizhen passed her viva today,
congratulations Dr. Yang!

24 Jan 2017

Session Types. To appear in FASE 2017 .

Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : Fencing
off Go: Liveness and Safety for Channel-based Programming. POPL 2017 .

Mariangiola Dezani-Ciancaglini, a
long-term collaborator with our

group working on Session Types
turns 70 today, more details here.

23 Dec 2016

Rumyana Neykova , Nobuko Yoshida : Let It Recover: Multiparty Protocol-
Induced Recovery. CC 2017 .

Julien Lange , Nobuko Yoshida : On the Undecidability of Asynchronous

Rumyana passed her viva today,

Session Subtyping. To appear in FoSSaCS 2017 .

http://mrg.doc.ic.ac.uk/

Academic Staff

Nobuko Yoshida

Research Associate

Raymond Hu

Julien Lange

Nicholas Ng

Xinyu Niu

Alceste Scalas

Bernardo Toninho

PhD Student

Assel Altayeva

Juliana Franco

Rumyana Neykova

Weizhen Yang

Ocean Observatories Initiative

» ANSF project (400M$, 5 Years) to build a cyberinfrastructure for
observing oceans around US and beyond.

»> Real-time sensor data constantly coming from both off-shore and

on-shore (e.g. buoys, submarines, under-water cameras, satellites),
transmitted via high-speed networks.

Visible & UV
Radiation

sensible
heat
transfer

 Infrared
Ry Radiation

| Internal
Wave
Radiation

{) Jayne Doucette
| WHOI Graphics

Ocean Observatories Initiative

o

Science

Cyberinfrastructure

Education

Regional - a2 —
SENTOR s . 3 ‘ # :
B 1ervonxs | 47 Pt General Public

, .
CANARIETM;;‘\\\
e n =y ‘&?q CANARIE n*10Gb

’ CANARIE- =
Seattle GLORIAD 2.5Gb

R >
= 1 ¥ENG. CANARIE n*10Gb \ CANARIE n*1

1’ - NN P Montreal ontreal g
NN TransLight 10Gb GLORIAD 1Gb Qa Byicag /70 Toro\\/ ¥

NLR n*10Gb-
GLORIAD 10Gb

“Salt Lake City, 7 ‘,//) —
\ ftérnet2- g_,*"’ Aﬂna‘ .\ Hanapolic N

\ ific DCN n 10Gb Qenver ., < Ci v A\ V- i
National LambdaRail n*10Gb \\\ Oal

InternetZ-DCNn'1OGb“~~.\(10Gh nggn Qate . FeraFlow 10Gb
UltraLight 10-20Gb “pag e eae =S National

LambdaRail Internet2- DCN\ \\ - -n.rsElTened 10Gb
n*10Gb n*10Gb Atlanta Lt
LONI 10Gb \ \Internei2—Dk,.' w10Gb

WHREN-LILA®Gb El Paso S \ . . \ National LambdaiTa#a:10Gb
e — - ®\ Jacksonville
\‘;. "/Baton

Rouge
B . AtlanticWave 10Gb

AMPATH #
BT

Ocean Observatories Initiative

OOl agent negotiation 1/5

Consumer Provider
Agent Agent
negotiate: request{SAP_1) Confirm is the
Negotiston sterting by : ; complementary acoept
“;Conmumr mlgyw a nmpo:tﬂ negotiate: accept(SAP_1, details) by the other party (both
e negotiate: confim(SAP_1) _4__-] must acoopt for] an
| With a mutual accept, at
—————————————————————————X least one commitment
ALT g on each side of the
R negotiate: invite(SAP_1) Sraition resalts
Providar inviting a kot negotiate: accept(SAP_1, details) (may be multiple). The
with a propasal, accepted by contract is as stated in
Consumer and oanfrmed by negotiate: confirm(SAP_1)
Provider
ALT negotiate: request(SAP_1)
| counter-propose is a
Negotiation starting by negotiate: counter- SAP_2) new SAP, but it typically
Consurmes making 3 f DZ ysal, s fropasit refines or parﬁalsly
The racipient (Provider) makes iota modifies the prior SAP.
3 counter-roposal s g negotiate: accept(SAP_2, details) pnior
:&Lﬁh:mm:m by negotiate: confirm(SAP_2)
the Provider.
ALT negotiate: request(SAP_1) I Any party can reject
Negosation starting by a instead of counter-
Consumer making & propoeal, negotiate: reject{SAP_1) <_ﬁ coept
rejected by the Provider ending propase (or 8)
the Negoliation.

» https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Negotiate+Protocol
11 /42

OOI agent negotiation 2/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

Consumer Provider
Agent Agent
negotiate: request(SAP_1) mis
Negotiatian starting by 3 complementary accept
. : > :
";Coz‘wmlr m:l;y ing a wpo:u negotiate: accept(SAP_1, details) by r:::; other pa?g,' (:flh
by Consumar . acoept
negotiate: confim(SAP_1) 4-—-[aGreament)
With a mutual accept, at
—————————————————————————‘K least one commitment
ALT negotiate: invite(SAP_1) xwm: r:fs::tes.
Negotiation startin i
Providernsing 8 Coneu ki negotiate: accept(SAP_1, details) (may be multiple). The
with a proposal. accepted by contract is as stated in
Consumer and confirmed by negotiate: confirm(SAP_1)
Provider
ALT jate:
negotiate: request{SAP_1) A tor-pro o
Negotiation starti negotiate: counter- SAP_2) new SAP, but it typically
Consumer making 8 :::ml. o PI'ODOSG(refines or pama"‘/
The recipient (Provider) makes jate: modifies the prior SAP.
& ope ; negotiate: accept(SAP_2, details) prior
s:&,uﬁ,n;::m by negotiate: confirm(SAP_2)
Ihe Provider.
ALT negotiate: request(SAP_1) Any party can reject
Negosation staring by & ol iecl(SAP_1) instead of counter-
Consumer making & proposal, negotiate: rej &% '<|‘| or a
ey D i o | propose (or accept)
e

12 /42

OOI agent negotiation 3/5 (choice)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose (SAP) from C to P;

choice at P {
accept() from P to C;

Consumer Provider
: Agent Agent
confirm() from C to P; |
negotiate: request(SAP_1) s
Negotiation starting by a complementary accept
} or { m Sl:yw m:u negotiate: accept(SAP_1, details) by the other party (both
. Sopiones by Coneune: negotiate: confim(SAP_1) 4-—1 must acoopt '8' L
reject() from P to C; “
With a mutual accept, at
} or { ————————————————————————E least one commitment
T negotiate: invite(SAP_1) xwe:crs,:a:if: rzfstt';ti
A iate: (may be multiple). The
propose (SAP) from P to C; it resete sccop(SAP 1, sl Cona 3.0 e
) Consumer P::a canfirmed by negotiate: confirm(SAP_1)

ALT negotiate: request(SAP_1) 7 N
Negotiation starting by a negotiate: counter-propose(SAP_2) new SAP, but it typically
T i — ey e
racipien| makes iate: 3 modifies *
a counter-prope 5 negotiate: accept(SAP_2, details) prior
%Lﬁ"&"'&"ﬁm:} negotiate: confirm(SAP_2)
Ihe Provider.
ALT negotiate: request{(SAP_1) Any party can reject
Negotiation starting by a i iect(SAP_1) instead of counter-
Consumer making & proposal, negotiate: rej % —<"‘ coept
rejiected by the Provicer ending PIo038I (060)
the Negotiaton. |

3

13 /42

OOl agent negotiation 4/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose (SAP) from C to P;

choice at P {

accept() from P to C;
confirm() from C to P;

} or {

reject() from P to C;
} or {

propose (SAP) from P to C;

choice at C {

accept() from C to P;
confirm() from P to C;

} or {

reject() from C to P;
} or {

propose(SAP) from C to P;

P r}

Provider

Negotiation starting by a

Cansumar making a proposal,

then accepted by Provider and
confimaed by Consumar

Negatiation starting by the
Provider inviling a Cansumer
with a propasal. accepted by
Consumer and confrmed by

Consumer
Agent

negotiate: request{SAP_1)

Provider
Agent

m s
negotiate: accept(SAP_1, details)

complementary acoept

negotiate: confim(SAP_1)

by the other party (both
must accept for an
agreement)

e

negotiate: invite(SAP_1)

With a mutual accept, at
- —E least one commitment

on each side of the

negotiate: accept(SAP_1, details)

conversation results

negotiate: confirm(SAP_1)

(may be multiple). The
contract is as stated in

Negotiation starting by 3
Consumer making 8 proposal.
The recipient (Provider) makes
A counler-p i

SAP_1, which i then accepled

ALT

negotiate: request{SAP_1)

negotiate: counter-propose{SAP_2)

A counter-propose is a

negotiate: accept(SAP_2, details)

new SAP, but it typically
refines or partially

by Cansumer and confirmed by
Ihe Provider.

rejected by the Provider ending
the Negolistion.

negotiate: confirm(SAP_2)

modifies the prior SAP,

negotiate: request(SAP_1)

negotiate: reject(SAP_1) —==——_"__ propose (or accept)
|

Any party can reject
instead of counter-

14 / 42

OOI agent negotiation 5/5 (recursion)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose (SAP) from C to P;
rec X {
choice at P {
accept() from P to C;
confirm() from C to P;
} or A{
reject() from P to C;
} oor A
propose (SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
} oor {
reject() from C to P;

} or {

propose(SAP) from C to P;

continue X;

¥
}

negotiate: request{SAP_1)

Provider

Agent

Consumer
Agent
Negotiation starting by a
Cansumar making a proposal,
then accepted by Provider and

negotiate: accept(SAP_1, details)

confimed by Consumar

negotiate: confim(SAP_1)

_

m Is
complementary acoept
by the other party (both

must accept for an
agreement)

S N~

negotiate: invite(SAP_1)

With a mutual accept, at

least one commitment
on each side of the
conversation results

Negatiation starting by the
Provider inviling a Cansumer

negotiate: accept(SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepted by
Consumer and confrmed by
Provider

negotiate: confirm(SAP_1)

ALT

negotiate: request{SAP_1)

Negotiation gunng bya

negotiate: counter-propose{SAP_2)

A counter-propose is a
new SAP, but it typically

refines or partially

Consumer m a proposal.
The recipient (Provider) makes
a counler-p i

negotiate: accept(SAP_2, details)

modifies the prior SAP,

SAP_1, which i then accepled
by Consumer and confirmed by

negotiate: confirm(SAP_2)

Ihe Provider,

negotiate: request(SAP_1)

Any party can reject
instead of counter-

rejected by the Provider ending
e Negolistion

negotiate: reject(SAP_1) —==——_"__ propose (or accept)
|

15 / 42

Local protocol projection (Negotiation Consumer)

// Global
propose(SAP) from C to P;
rec START {
choice at P {
accept() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
} or {
reject() from C to P;

} or {

propose (SAP) from C to P;

continue START;
)

// Projection for Consumer
propose (SAP) to P;
rec START {
choice at P {
accept() from P;
confirm() to P;
} or {
reject() from P;
} or {

propose (SAP) from P;

choice at C {
accept() to P;
confirm() from P;

} oor {
reject() to P;

} or {
propose(SAP) to P;
continue START;

Fr3

19 /42

20 / 42

(uumguoa,. d 1 S
e ° (umuos; g
(ndaaoe; gl (yoalerg ° 9

(Oasodoxd, g\ (adeosoe g/ (haalbr g

(Jasodoud;g

(Jesodoxd;g

FSM generation (Negotiation Consumer)

%«!« OCEAN OBSERVATORY INITIATIVE

SEARCH
RESOURCES
@ All Resources
& DataProducts v
%% Observatories
¥ Platforms
%= Instruments

Welcome to Release 2 of the Ocean
Observatories |nitiative Observatory
(C0I). You already have access to
many QOI features and real-time
data. Just click on something that
looks interesting on this page to start
using the OCI as our Guest

For personalized services, such as
setting up notifications and presery
ing settings for your next visit, create
a free account by clicking on "Create
Account” at the top of the page.

——

F¥

g X
b o g
National Science Foundation working
with Consortium for Ocean Leadership

CURRENT LOCATION

-

DATA LEGEND RECENCY RECENT UPDATES

Q Temperature v 1 Hour B NAME TYFE
Salinity 2 hours) 01lm Oregon Coast North Salinity Tyne

O Oxygen v 3 hours 01 m California South 100m pH Type
Density 5 hours O 01m California South salinity Type
Currents 8 hours O 0m on North Turbidity Type
Sea Surface Height (SSH) 12 hours QO 05m C n SouthTempearature Type
Chlorophyli 18 hours 20 m on Coast Currents Type

O Turbidity / 24 hours Q 01h California South Seismelogy Type
pH 48 Hours “ Oregon Coast South 1000m Ox-

QO Seismology J 72 Hours J 02 h California Coast Seismology 55 Type

O Other / O 04h California North Seismology 5 Type

FACEPAGE

EVENT
Event
Event

Event

Event

Event

RELATED

DESCRIPTION
Description goes here
Description g
Description §

Description

Description go
Description goes here

Description goes

COMPOSITE

[FiLTER)

NOTE
Note goes here
Note goes here

Note goes here

Note here
Note goes here
Note goes here

Note goes here

STATUS

CREATE ACCOUNT

Dashboard

RECENT IMAGES

Glider

Last Modified: 2011-06-15
Last Vliewed: 2011-12-15
Last Updated: 2011-12-30,

Gorgonian Coral

Last Modified: 2011-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

Acoustic Release
Last Modifed: 2011-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

POPULAR RESOURCES

SeaBird CDT

Last Modified: 2011-06-15
Last Vliewed; 2011-12-15
Last Updated: 2011-12-30,

Marine caption

Last Modified: 2011-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

Surface Buoy

Last Modified: 2011-06-15
Last Vlewed: 2011-12-15
Last Updated: 2011-12-30,

EVENTS

Last Modified: 2011-06-15
Last Vliewed; 2011-12-15

Last Modified: 2011-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

Oregon Coast Wave Heig

SIGN I

*

13.24

13.24

13.24

13.24

13.24

13.24

Last Updated: 2011-12-30, 13.24

Water Surface Elevation

13.24

MONITORING

and

ADAPTATIONS

by Coppo 3 Dezont based on Session Typps

Dynamic Monitoring
[RV°13, COORDINATION’14, FMSD’15, LMCS’17, CC’17]

Global Type
Projection
Local Type Local Type Local Type
s s z
Dynamic Dynamic Dynamic
Monitoring ! Monitoring Monitoring
2 ' ™ f ' \ s ' \
Program Program Program
Alice Bob Carol
\ y - Y - Y

Type Checking
[OOPSLA’15, ECOOP’16, ECOOP’17, COORDINATION’17]

Global Type
Projection
Local Type Local Type Local Type
3 Y 3
Type - Type Type
Checking Checking Checking
— mm— —
Program Program Program
Alice Bob Carol

\ v

/

_

v

(Generation

Projection

Code Generation
[CC’15, FASE’16, FASE’17]

Local Type

A

R

Program

Alice
_

/

Global Type

Local Type

it

Generation ,

v
.

-

Program

Bob

/

Local Type

3¢

(GGeneration ,

\ 4

(

_

B

Program

Carol
_J

Synthesis
[ICALP’13, POPL’15, CONCUR’15, TACAS’16, CC’16]

Global Type
Synthesis
Local Type Local Type Local Type
3 A A
Type : Type Type
Inference Inference Inference ,
s ' o e ' o s . N
Program Program Program
Alice Bob Carol
\ y, _ Y _ Y,

oession T'ype based Tools

OOl Governance

e | TU
i
001 Business Logic 3{ ‘/
'
Govemance ==l control [
Intercmptc w3
M CRpIOr n.-:--
-ty
LD]’ { - ,' OO0 Jrens _(ACL)
annotate
Fac L interceprot read | Rules
anmotate :
. - - Specs
Brate bt Monitor — (8c)
Messaging Chent
S Mossage Brokor B
e —— ,/—>

Actor Verification

Monitors

Session (protocol mailboxes)

Session (Roles)

Actor Model (Processes and mailboxes)

Session Actor

ONTLR
G, scribble

#. puthon LL

(¥, 1]
avA
NM Logs.
M RAME
Application
Logs » NEY
YPRY
cosoL
System logs. TANCEM
DB Logs ORAQLE 08
[

SCRIBBLE

ZDLC: Process Modeling

UML & BPMN2
Model

MPI code generations

Communication protocol

@-2) (1) (b)
T Custom Pabble T Common protocols | Sequential
or :
global protocols | repository kernels (C99)

~ Sequential code

Output(s)

1 \
Pabble tool .'I

A
Endpoint protocol]

MPI codegen |
(e} -

Protocol compiler
(Automatic)

(d.e)

T LARA weaver

7" MPI backbone ‘[

A Optimised MPI
application

: Non-Optimised MPI
S application

Interactions with Industries

Strange Loop

SEPTEMBER 15-17 2016 / PEABODY OPERA HOUSE / ST.LOUIS, MO

’ w ., Adam Bowen @adamnbowen - Sep 15 .
g | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
. Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

DoC researcher to speak at Golang UK conference ’ _ rocking on
by Vicky Kapogianni . . .
20 July 2016 about static deadlock detection in

[
g UK Conference

DoC researcher to speak at industry-focused Golang UK Click here to add content Th G I
conference on results of concurrency research e O a

Interactions with Industries

F#unctional Londoners Meetup Group

6 days ago - 6:30 PM
Session Types with Fahd Abdeljallal

-~ € ‘."! :
o B WSl A PN
RN i

43 Members

Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... Learn vore

Current State

* behaviors can be composed both sequentially
and concurrently

Dr. Roland Kuhn » effects are not yet tracked

@rolandkuhn — CT0 of Actyx » Scribble generator for Scala not yet there

* theoretical work at Imperial College, London
(Prof. Nobuko Yoshida & Alceste Scalas)

actyx

%3 Behavioural Type-Based 5°
Static Verification Framework
o for " B
X 8\
G2y
(o3,

N
pORo] ““é °
| w
o> P |
kv
Tetren La ®&© M Bernardo No:o%"“m
90 Nicholas

N Toninho

2
L=

Imperial College
London

Home College and Campus Science

Go concurrency verification research at DoC
grabs headline

A paper by DoC researchers at POPL on Go concurrency
verification was featured in a tech blog and generates a
buzz outside of the research community.

A paper by researchers at the department was recently featured in the
morning paper, a blog by venture capitalist Adrian Colye, which
summarises an important, influential, topical or otherwise interesting
paper in the field of computer science every weekday in an easily
digestible way by non-researchers. On the 2 Feb 2017 issue of the
morning paper, It was highlighted as "the true spirit of POPL (Principles
of Programming Languages)".

Java API Generation [FASE'16] /U

RFC 821 August 1982
Simple Mail Trans¥er Protocol

TABLE OF CONTENTS

1. INTRODUCTIONiiiiiiiiiccrncccacccacnnccanaannnnannannnnnn 1
2. THE SMTP MODELciiiiiiiiiiciicccccccsnnccncccannnannnnnn
3.2. Forwarding
3.3. Verifying and E para-ng .
3.4, Sending and Mailangiiiiiiiiiiii e
3.3. upeﬂ-ngansc- BANME c i iieicreceeeeerae e
3.6. Rela,-'g
3.8. Chaﬂg--gﬁle
4. THE SMTP SPECIFICATIONSccvviiecnnnccnnnnnnnncnannnannnns

.1, SHTP Commandsovvvuvernncnacnnansnasnsnsnnnnnnns
4.1.1. Command Semantics

4.1.2. Command Syntax

4.2. SHTP Replies ...

4.2.1. Reply Code:z by ‘wcn on Group

4.2.2. Reply Code:s in Mumeric Ordero,

IC-

3. Seguencing of Commandzs and Replies

lull.l'.la.llulmlmlmlu .I. .l., l.‘ '.‘ |.,|., I., I., I“
[N [[(2 (P) ER O ‘:] 8) {8 oo 1t Fls 1o s Jom 1 s '™ s

4.4, State Diagrams iiiiiiaecceaceaaaaan

4.5. De’a--.w. e . .

4.5.1. Minimum Inp-emen’at--ﬂ e e

4.5.2. Tran-:areﬂc, resessrsesssssnenene e s e ereannse oo

4.5.3. Sdzes .. iiiiiiiiaaaaaa e
O

¥ ([channels

& C

» (+ioifaces
EndSocket.java
\J] Smtp_C_1_Future.java
\J| Smtp_C_1.java
Smtp_C_10.java
\J) Smtp_C_11_Cases.java
Smtp_C_11_Handler.java
\J] Smtp_C_11.java
\Jl Smtp_C_12.java

.send(Smtp.S, new DatalLine("Session
.send(Smtp.S, new EndOfData())
.receive(Smtp.S, Smtp._250, new Buf

.S
@ send(S role, Mail m) : Smtp_C_11 - Smtp_C_10
@ send(S role, Quit m) : EndSocket - Smip C 10

Scribble - Proving a distributed design

1 Estafet

= Innovate | Deliver | Transform

—=
1. All design work takes place in ABACUS, v
DCC's enterprise architecture tool. This s
can export standard XMl files ABACUS
(an open standard for UMLS) 7 Generate
2. XMl is converted into exception report and
OpenTracing format for send back to DCC

consumption by managed service /

o — RPavA

4 .

OPENTRACING

- ————————— -

3. OpenTracing files are 4. Model holds types 5. Scribble compiler 1 6. Issues highlighted E
combined to build a rather than instances to identifies inconsistency, | graphically in Eclipse |
model in Scribble understand behaviour change & design flaws !

\--

\www.estafet.com Estafet Managed Service j

Ljﬁ U ‘E, Researchers %%?%

| |
(20 years o'd X Information Flow
e r;\é and Securit
ure. }
(:f_w [CoNCuRr‘10T. ...
x Reversible Computatio,
L CoNCUR’(77 ...

/O years ol

?

Past

L]
5 SR Ry = Wz 57 3 §-5aas ap-na B S S na e s)
e AL ,'z.»?:"&% R*.-J:-;#&:?‘j??t ;?-if‘.e}?’;‘.g?y?fq‘i?—cgﬁx 2 %M‘%
. b

% Proctsenesg
L PPPP/14] LLMCS]T ..

v
e O years old °

e e
P PRI 2N

i
¥ S .q
2
b

b

Background: session subtyping

Types and Subtypes for Client-Server
Interactions

Simon Gay and Malcolm Hole

(ESOP'99)

Background: session subtyping

Types and Subtypes for Client-Server
Interactions

Simon Gay and Malcolm Hole

(ESOP'99)

hvd

Global Principal Typing in Partially Commutative
Asynchronous Sessions

Dimitris Mostrous', Nobuko Yoshida', and Kohei Honda”

(ESOP'09)

Background: session subtyping

Types and Subtypes for Client-Server
Interactions

Simon Gay and Malcolm Hole

(ESOP'99)

~
Global Principal Typing in Partially Commutative
Asynchronous Sessions

Dimitris Mostrous', Nobuko Yoshida', and Kohei Honda”

(ESOP'09)

On the Preciseness of Subtyping in Session Types

Tzu-Chun Chen Mariangiola Dezani-Ciancaglini Nobuko Yoshida
Universita di Torino Universita di Torino Imperial College London
chen@di.unito.it dezani@di.unito.it yoshida@doc.ic.ac.uk

(PPDP'14)

Background: session subtyping

Types and Subtypes for Client-Server
Interactions

Simon Gay and Malcolm Hole

(ESOP'99)

~
Global Principal Typing in Partially Commutative
Asynchronous Sessions

Dimitris Mostrous', Nobuko Yoshida', and Kohei Honda”

(ESOP'09)

Other completeness results Subtyping of recursive types requires
algorithms for checking subtype relations, as discussed in [32,
Chapter 21]. These algorithms need to be proved sound and com-
plete with respect to the definition of the corresponding subtyping,
as done for example in [7, 12, 33]. Algorithms for checking the
synchronous and asynchronous subtypings of the present paper can
be easily designed.

Ljﬁ U ‘E, Researchers %%?%

| |
(20 years o'd X Information Flow
e r;\é and Securit
ure. }
(:f_w [CoNCuRr‘10T. ...
x Reversible Computatio,
L CoNCUR’(77 ...

/O years ol

?

Past

L]
5 SR Ry = Wz 57 3 §-5aas ap-na B S S na e s)
e AL ,'z.»?:"&% R*.-J:-;#&:?‘j??t ;?-if‘.e}?’;‘.g?y?fq‘i?—cgﬁx 2 %M‘%
. b

% Proctsenesg
L PPPP/14] LLMCS]T ..

v
e O years old °

e e
P PRI 2N

i
¥ S .q
2
b

b

