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“Fail fast and recover quickly”

Erlang proverb

“Fail fast and recover quickly and safely

OPCT proverb (after this talk)
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Part One
Background



The Erlang programming language
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factorial (0) -> 1;
factorial (X) when X > 0 -> X * factorial (X-1).
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Erlang’s coding philosophy
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Let it crash: Erlang’s fault tolerance model

. QOrganise your processes in supervision trees

Supervisor
one-for-one

Supervisor
rest-for-one

Supervisor
rest-for-one

é‘Supervision Strategies ﬁ

one-for-one

. all-for-one

G - rest-for-one

\ Ne-
v N\

A - A, ‘ B, |--| B,

- Do not program defensively, let the process crash

. In case of error, the process is automatically terminated

. Processes are linked. When a process crashes linked
process are notified and (can be) restarted.

. Recently adopted by
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Supervision strategies: Drawbacks

. Supervision strategies are: statically defined, error-prone
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- Arecovery may cause deadlocks, orphan messages, reception
errors
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Session Types Overview

Dynamic Monitoring . Global protocol (session type)
[RV'13, COORDINATION'14, FMSD'15]
Gilohal Type G=A—>B:(U).B— C:{lh).C— A: (Us)
Projection _
. Local protocol (session type)
Losel Tipe oo Ti:e Lp(%p . Slice of global protocol relevant to one role
o ) .
£ g % . Mechanically derived from a global protocol
| Afgafo?fgf A%:if;?’,fg’ Ta =/(B, U1).7(C, Us)

Alice Bob Carol
- Process language

- Execution model of I/O actions by roles

- A system of well-behaved processes is free from deadlocks;
orphan messages and reception errors

- The framework has been applied to Java, Python, MPI/C, Go...
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Part Two
et ItRecover
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Recovery workflow
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Recovery Table H “ Erlnang Runtim %
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Local Type Local Type Local Type Local Type
|

: ) 4 4 N\

F Process Process Process Process
A B C D

& J

Initial Failure| |Recovered| |Ignore Failure||Unaffected

- Arecovered system is free from deadlocks, orphan messages

and reception error.

_ Outperforms one of the built-in recovery strategies in Erlang
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This talk: Safe Recovery for Session Protocols

Approach

. Recovery algorithm to analyse a global protocol as to calculate
the dependencies of a failed process.

Local supervisors monitor the state of the process in the protocol

Protocol supervisors use the algorithms at runtime to decide which
process to recover

Protocol Supervisor
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Causalities

~; » -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A _’B,B—>Q,L n1<ion2
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<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover
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Causalities

—; o -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A— B:B—C: n1 ~io N2
W_J W_/
ni n2
<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

A — B: C—B; n3 <l ng Nz Ai,N4
———r N
na Ty

=+ -guarded dependencies (represent dependencies of the
failed node) should not recover

A— B:B—C: ny <+ N9
———r N—~—
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Part Three
Recovery Algorithm
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Recovery Algorithm

Algorithm Calculating affected nodes
Input: n; (a failed node), p (a failed role)
Output: ./ (a set of affected nodes)
1. /' =A7"={n|nj<dn An=r—p}U{n;}
L={n|((n;<an’An =p—>r)vn' =n)An" Kon}\{n;}
repeat
N ={n|n<Kpn V(inanAneS) Anes7}
A7 ={n|n"<an Anes}\(SUY)
S =W VT L= N
until /<~ =47 =92
return .4

0L g 1 e
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Recovery Algorithm

. Step 1: Initialise the =+ dependencies of the failed node

. Step 2: Backward traversal of <, dependencies

Step 3: Forward Traversal of <] dependencies

Step 4: Repeat 2-3 until no new dependencies are added
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Step 1: Initialise the =<+ dependencies of the failed node

1:B— E; 2:C—E&;
3:B— A:4:C—A; 5:A—B;
6:D— E; 7:.E—B;

Step 2: Backward traversal of <, dependencies

Step 3: Forward Traversal of <] dependencies

Step 4: Repeat 2-3 until no new dependencies are added

1) < (> <1@<®< 5 ) <io (6 )< {7

Initialise ahe Final Condition

<]
3.4 | | 5,4 - i ﬁ*ﬁotdone ' %
4 | 3,4 | %  done | %
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Recovery points

- recovery point: take the top node from the set of recovery nodes

1:B— C; 2.C—E;
I0I0Y@ 3:B— A4:C—A;

. Global Recovery Table

Failure Recovery points

A:3, B:3, C:4
A:3, B:3, C:5
C:2, E:2
C:1,B:1, ...
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Main Results: Transparency and Safety (informally)

'Theorem: Transparency
| _

h v I is a reduction of the initial protocol.
The configuration of the system after a failure is reachable from
the initial configuration.

‘Theorem:Safety

ARy reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a
reception error.

Recovered protocol




Part Four
Recovery Implementation
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Enabling Protocol Recovery in

protocol supervisor
(recover processes)

Protocol Supervisor

N\

Local Type Local Type Local Type Lc;:al Type I ocCca I SUu pe rv i SOrS

gcg GQED 8% d@ (monitor the process behaviour)
| B 5 %
Process Process Process Process gen server

(used to implement processes)

Initial Failure| |Recovered| |lgnore Failure||Unaffected

mnesias (S Scribble

((0

gen_server stores recovery tables  protocol specification
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Enabling Protocol Recovery in Erlang: Example

gen_server:cast(Roleld, Msg) gen_protocol:cast(id, Msg)
role:send(id, A, method, Args) > >‘ method(Args)
checkMsg checkMsg
global protocol Trading | ¢ Handlers for C and D
role A, role B, quote ({msg,Val},State) —
role C, role D){ role:send(Statef#state.role, ?E, quote, Val).

gucte (int) from A to (C;

gucte (int) from B to D;
% Handlers for E
guote (int) from C to E; — » quote ({msg, Val},State) when State.prev==undef —
gquote (int) from D to E; {noreply, State#state{prev=Vval}};;
choice at E {
accept () from E to C;
accept () £from E to D;

quote ({msg, Val},State) when State#state.prev>Val —
— - role:send(State#state.role, ?C, reject, empty),
role:send (State#state.role, ?D, accept, empty),

or ({ {noreply, State};
reject () from E to (C;
reject () from E to D; quote ({msg, Val},State) when State#state.prev<vVal —
} role:send (State#state.role, ?C, accept, empty),
} role:send (State#state.role, ?D, reject, empty),
{noreply, State}.
A
(S scribble
23 ERLANG




seconds

Evaluation: Web

M protocol-recovery  all-for-one

2 3 R

number of crashes

Crawler Example

Supervisor SiteCrawler Scraper

A

IIIII

IndexFinished

. A process is chosen at random at the start

. Improvement when several failures occur

~ By mistake initially we implemented all-for-one that

Introduced a deadlock

SOource:



http://foat.me/articles/crawling-with-akka/

Evaluation: Concurrency Patterns

" no failure M protocol-recovery = all-for-one

1.4

seconds

Example #roles #states GRT (sec) affected roles
MapReduce [21] n+l n+2 0.11 W[1l] ... W[n]
Ring [21] n 2*n 0.16 W[1l] ... W[n]
Calculator [18] n+1 4*n 0.75 A[l]

el Ring MapReduce Calculator
"! Ring H
ping ping ping
~7T Y

(41 g S22
pong»\pw.x

pong_

- 92% improvement when
. intense local computation

- disconnected interactions
. Upto 7% overhead when all roles
are restarted

| Map Reduce ! | Calculator l

(e

result

val. expr.
expr.
’ \result i
1 gt
vall cont 250
(Y / expr. ¢



Future work & Resources

' Framework summary

|

. Ensure processes are safe and conform to a protocol (even in cases of
failures)

- Create supervision trees and link processes dynamically based on a
protocol structure

' Future work

L

. Support for stateful processes
. Integration with checkpoints
. Replications and recovery actions

Additional Resources

|

~ Scribble webpage: scribble.doc.ic.ac.uk
_ Project source: https://gitlab.doc.ic.ac.uk/rn710/codelNspire
- MRG webpage: http://mrg.doc.ic.ac.uk/



http://mrg.doc.ic.ac.uk/

Q&A

o~
* THANK YOU °

", FOR CRASHING °
« MY PARTY ,

27



Future work & Resources

' Framework summary

|

. Ensure processes are safe and conform to a protocol (even in cases of
failures)
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