Let it Recover:
Multiparty Protocol-Induced Recovery

Rumyana Neykova, Nobuko Yoshida
Imperial College London

“Fail fast and recover quickly”

Erlang proverb

“Fail fast and recover quickly and safely

OPCT proverb (after this talk)

2

Part One
Background

The Erlang programming language

m
D

factorial (0) -> 1;
factorial (X) when X > 0 -> X * factorial (X-1).

Upgradable ~ YTESENCeSystem Streamurlenteabatd

HomeCoding BusinessSoftware
NewProjects BlnaryDataProcessing
L}

R NoPtaRiaalllteilme Me S S a g l n g CoordinationAndControl

Playing Middleware

NotProduction gma) 1projects Ne tWO rks e rv i C e S

Robust Eémbfdded Ifmai%;’l“eams
: stems
Vi oo SCalable
:on Teaching
~zazaioreD1stributedSystems

Exchanges

Ry $ clue Available
GndComputlpg Re l a e ProcessController
DataBrowsing

ToIntensive MarIl\ctors NotGui CommunicationServices

y A
ey CONCUrrent
omplexsystems
: i&tfi“‘!y Sof'érR%Ia(i‘ct)ime MultiplayerGames
g patabases |J @) NotCompute

SystemsIntegration

“amentt FaultTolerant

mbedded

NotStringProcessing
Infrastructure yotyorksystensifithNoLoad
TransactionProcessing
StandaloneProjects
NetworkSecuritySystem

Erlang’s coding philosophy

em has

compL
The problem seems
PAGE _FAULT _IN_NONPAGED_AR

IT this 1s the first time you ve seen this Stop error screen,
restart your computer. " this screen appears again, follow

rhecp <t ;,F', <
- | I F S - - S e

_LET_IT_CRASH_

problems continue, disable or remove any newly installe

software. Disable BIOS memory options such as cachinc ing.

MOGe TO remove or 11:‘-.1:}1{4 "IFT'flllfl»’J'l"-‘, restanrt

= o~

vOou need

fOUr 'f'i':’T’Fjil,J'_ ey, PIress F8 to select Advanced Start UL - tions, and then
select ':'.1’—' |
i

SPCMDCON. 5YS - DateStamp 3d6dd67cC

Let it crash: Erlang’s fault tolerance model

. QOrganise your processes in supervision trees

Supervisor
one-for-one

Supervisor
rest-for-one

Supervisor
rest-for-one

é‘Supervision Strategies ﬁ

one-for-one

. all-for-one

G - rest-for-one

\ Ne-
v N\

A - A, ‘ B, |--| B,

- Do not program defensively, let the process crash

. In case of error, the process is automatically terminated

. Processes are linked. When a process crashes linked
process are notified and (can be) restarted.

. Recently adopted by

Cﬁ

Z G@ \/816

Supervision strategies: Drawbacks

. Supervision strategies are: statically defined, error-prone

unsound E jinefficientg

Supervisor Supervisor
one-for-one all-for-one
I) i |
/ R / 1
I 1 I |
Supervisor : 1 Supervisor l 1
all-for-one f 1 all-for-one I i
f I
I

/N / \
) () (] [1] o] (2] [)

- Arecovery may cause deadlocks, orphan messages, reception
errors

jinefficienti

Supervisor

all-for-one

/

Supervisor
all-for-one

/[\

Bie

= === == -
L

J |

unsound i

Supervisor

one-for-one

I
|
|

Supervisor
all-for-one

/[\

Session Types Overview

Dynamic Monitoring . Global protocol (session type)
[RV'13, COORDINATION'14, FMSD'15]
Gilohal Type G=A—>B:(U).B— C:{lh).C— A: (Us)
Projection _
. Local protocol (session type)
Losel Tipe oo Ti:e Lp(%p . Slice of global protocol relevant to one role
o) .
£ g % . Mechanically derived from a global protocol
| Afgafo?fgf A%:if;?’,fg’ Ta =/(B, U1).7(C, Us)

Alice Bob Carol
- Process language

- Execution model of I/O actions by roles

- A system of well-behaved processes is free from deadlocks;
orphan messages and reception errors

- The framework has been applied to Java, Python, MPI/C, Go...
9

Part Two
et ItRecover

10

Recovery workflow

% Protocol | g

'

N

recovery algorithm

implementation

—

’; :DependencyGréph N |
| _

Al {Al 0}
A, {A2 ZO,AI O}
A> {A2:0,A1:0}

OV UNDEBRWW-=O OB

{C:1,A2:0,A,:0}

B, {32:3,81:2}

{D:3,B,:2,B;:2}
{C:1,A;:0,A,:0}

{D:3,B,:2,B;:2}

{C: 1,A,:0,A,:0,D:3,B,:2,B; 22,E:4}

{C:1,A;:0,A;:0,D:3,B,:2,B;:2,E:4}
{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4}
{C:1,A,:0,A,:0,D:3,B,:2,B;:2,E:4}
{C:1,A;:0,A;:0,D:3,B,:2,B;:2,E:4}
any (&
any (&

(A:3)

4 %
5 .
- '
- b3
- *
- %
- <

(B:1)

(C:2)

Protocol Supervisor

-
‘e

‘e
‘e
e

Recovery Table H “ Erlnang Runtim %

r | recovery points

‘e
.
e
*e

‘A

Local Type Local Type Local Type Local Type
|

:) 4 4 N\

F Process Process Process Process
A B C D

& J

Initial Failure| |Recovered| |Ignore Failure||Unaffected

- Arecovered system is free from deadlocks, orphan messages

and reception error.

_ Outperforms one of the built-in recovery strategies in Erlang

11

This talk: Safe Recovery for Session Protocols

Approach

. Recovery algorithm to analyse a global protocol as to calculate
the dependencies of a failed process.

Local supervisors monitor the state of the process in the protocol

Protocol supervisors use the algorithms at runtime to decide which
process to recover

Protocol Supervisor

-y - .
- O 240
- . .
-~ o
-~ ‘._
- >
- <4

Local Type Local Type Local Type Local Type

& || bl |0 | |48

/'y
I

b ‘.
Process Process Process Process
A B & D
J

Initial Failure| |Recovered| |lgnore Failure||Unaffected

Causalities

~; » -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A _’B,B—>Q,L n1<ion2
—_—— ——
T o

<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

>
A B C—B, n3 <l N4 N3 AioN4
ueue of B
ns3 T4 |

Causalities

—; o -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A— B:B—C: n1 ~io N2
W_J W_/
ni n2
<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

A — B: C—B; n3 <l ng Nz Ai,N4
———r N
na Ty

=+ -guarded dependencies (represent dependencies of the
failed node) should not recover

A— B:B—C: ny <+ N9
———r N—~—
ni n2

Part Three
Recovery Algorithm

15

Recovery Algorithm

Algorithm Calculating affected nodes
Input: n; (a failed node), p (a failed role)
Output: ./ (a set of affected nodes)
1. /' =A7"={n|nj<dn An=r—p}U{n;}
L={n|((n;<an’An =p—>r)vn' =n)An" Kon}\{n;}
repeat
N ={n|n<Kpn V(inanAneS) Anes7}
A7 ={n|n"<an Anes}\(SUY)
S =W VT L= N
until /<~ =47 =92
return .4

0L g 1 e

16

Recovery Algorithm

. Step 1: Initialise the =+ dependencies of the failed node

. Step 2: Backward traversal of <, dependencies

Step 3: Forward Traversal of <] dependencies

Step 4: Repeat 2-3 until no new dependencies are added

17

Step 1: Initialise the =<+ dependencies of the failed node

1:B— E; 2:C—E&;
3:B— A:4:C—A; 5:A—B;
6:D— E; 7:.E—B;

Step 2: Backward traversal of <, dependencies

Step 3: Forward Traversal of <] dependencies

Step 4: Repeat 2-3 until no new dependencies are added

1) < (> <1@<®< 5) <io (6)< {7

Initialise ahe Final Condition

<]
3.4 | | 5,4 - i ﬁ*ﬁotdone ' %
4 | 3,4 | % done | %

18

Recovery points

- recovery point: take the top node from the set of recovery nodes

1:B— C; 2.C—E;
I0I0Y@ 3:B— A4:C—A;

. Global Recovery Table

Failure Recovery points

A:3, B:3, C:4
A:3, B:3, C:5
C:2, E:2
C:1,B:1, ...

19

Main Results: Transparency and Safety (informally)

'Theorem: Transparency
| _

h v I is a reduction of the initial protocol.
The configuration of the system after a failure is reachable from
the initial configuration.

‘Theorem:Safety

ARy reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a
reception error.

Recovered protocol

Part Four
Recovery Implementation

21

Enabling Protocol Recovery in

protocol supervisor
(recover processes)

Protocol Supervisor

N\

Local Type Local Type Local Type Lc;:al Type I ocCca I SUu pe rv i SOrS

gcg GQED 8% d@ (monitor the process behaviour)
| B 5 %
Process Process Process Process gen server

(used to implement processes)

Initial Failure| |Recovered| |lgnore Failure||Unaffected

mnesias (S Scribble

((0

gen_server stores recovery tables protocol specification

22

Enabling Protocol Recovery in Erlang: Example

gen_server:cast(Roleld, Msg) gen_protocol:cast(id, Msg)
role:send(id, A, method, Args) > >‘ method(Args)
checkMsg checkMsg
global protocol Trading | ¢ Handlers for C and D
role A, role B, quote ({msg,Val},State) —
role C, role D){ role:send(Statef#state.role, ?E, quote, Val).

gucte (int) from A to (C;

gucte (int) from B to D;
% Handlers for E
guote (int) from C to E; — » quote ({msg, Val},State) when State.prev==undef —
gquote (int) from D to E; {noreply, State#state{prev=Vval}};;
choice at E {
accept () from E to C;
accept () £from E to D;

quote ({msg, Val},State) when State#state.prev>Val —
— - role:send(State#state.role, ?C, reject, empty),
role:send (State#state.role, ?D, accept, empty),

or ({ {noreply, State};
reject () from E to (C;
reject () from E to D; quote ({msg, Val},State) when State#state.prev<vVal —
} role:send (State#state.role, ?C, accept, empty),
} role:send (State#state.role, ?D, reject, empty),
{noreply, State}.
A
(S scribble
23 ERLANG

seconds

Evaluation: Web

M protocol-recovery all-for-one

2 3 R

number of crashes

Crawler Example

Supervisor SiteCrawler Scraper

A

IIIII

IndexFinished

. A process is chosen at random at the start

. Improvement when several failures occur

~ By mistake initially we implemented all-for-one that

Introduced a deadlock

SOource:

http://foat.me/articles/crawling-with-akka/

Evaluation: Concurrency Patterns

" no failure M protocol-recovery = all-for-one

1.4

seconds

Example #roles #states GRT (sec) affected roles
MapReduce [21] n+l n+2 0.11 W[1l] ... W[n]
Ring [21] n 2*n 0.16 W[1l] ... W[n]
Calculator [18] n+1 4*n 0.75 A[l]

el Ring MapReduce Calculator
"! Ring H
ping ping ping
~7T Y

(41 g S22
pong»\pw.x

pong_

- 92% improvement when
. intense local computation

- disconnected interactions
. Upto 7% overhead when all roles
are restarted

| Map Reduce ! | Calculator l

(e

result

val. expr.
expr.
’ \result i
1 gt
vall cont 250
(Y / expr. ¢

Future work & Resources

' Framework summary

|

. Ensure processes are safe and conform to a protocol (even in cases of
failures)

- Create supervision trees and link processes dynamically based on a
protocol structure

' Future work

L

. Support for stateful processes
. Integration with checkpoints
. Replications and recovery actions

Additional Resources

|

~ Scribble webpage: scribble.doc.ic.ac.uk
_ Project source: https://gitlab.doc.ic.ac.uk/rn710/codelNspire
- MRG webpage: http://mrg.doc.ic.ac.uk/

http://mrg.doc.ic.ac.uk/

Q&A

o~
* THANK YOU °

", FOR CRASHING °
« MY PARTY ,

27

Future work & Resources

' Framework summary

|

. Ensure processes are safe and conform to a protocol (even in cases of
failures)

- Create supervision trees and link processes dynamically based on a
protocol structure

' Future work

L

. Support for stateful processes
. Integration with checkpoints
. Replications and recovery actions

Additional Resources

|

~ Scribble webpage: scribble.doc.ic.ac.uk
_ Project source: https://gitlab.doc.ic.ac.uk/rn710/codelNspire
- MRG webpage: http://mrg.doc.ic.ac.uk/

28

http://mrg.doc.ic.ac.uk/

