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Let’s Start
Let it Recover:  

Multiparty Protocol-Induced Recovery  
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“Fail fast and recover quickly” 
       Erlang proverb

“Fail fast and recover quickly and safely ” 
          CC proverb (after this talk)
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The Erlang programming language 

 factorial(0) -> 1;
 factorial(X) when X > 0 -> X * factorial(X-1).
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Erlang’s coding philosophy 
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Organise your processes in supervision trees 

Let it crash: Erlang’s fault tolerance model

Do not program defensively, let the process crash

In case of error, the process is automatically terminated

Processes are linked.  When a process crashes linked 
process are notified and (can be) restarted.  

Recently adopted by 

- one-for-one 
- all-for-one 
- rest-for-one{
Supervision Strategies 
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unsound

A recovery may cause deadlocks, orphan messages, reception 
errors   

Supervision strategies: Drawbacks

Supervision strategies are: statically defined, error-prone
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inefficient



unsoundinefficient

How to generate sound and efficient  supervision strategies?

By using Session Types!
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Session Types Overview 

Global protocol (session type)

Local protocol (session type)
Slice of global protocol relevant to one role
Mechanically derived from a global protocol 

A system of well-behaved processes is free from deadlocks, 
orphan messages and reception errors 

The framework has been applied to Java, Python, MPI/C, Go…  

Process language 
Execution model of I/O actions by roles 
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Part Two
Let it Recover
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Protocol

Dependency Graph Recovery Table Erlang Runtime

Recovery (and talk) Workflow
recovery algorithm implementation

A recovered system is free from deadlocks, orphan messages 
and reception error.

Outperforms one of the built-in recovery strategies in Erlang  
20
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This talk: Safe Recovery for Session Protocols 

Recovery algorithm to analyse a global protocol as to calculate 
the dependencies of a failed process.

Local supervisors monitor the state of the process in the protocol 

Protocol supervisors use the algorithms at runtime to decide which 
process to recover  

Approach
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Causalities 

A B; B C;

A B; C B;

{ {

                                -input-output dependencies (assert the order between a 
reception of a message and a send action) should recover

          -precedence dependencies (represent the order between 
two nodes which have a common participant) should recover 
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          -guarded dependencies (represent dependencies of the 
failed node) should not recover
�†

A B; B C;{ {

n1 n2

n1 n2�†
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Part Three
Recovery Algorithm
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Recovery Algorithm 
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Recovery Algorithm 
Step 1: Initialise the      dependencies of the failed node   

Step 2: Backward traversal of           dependencies   

Step 3: Forward Traversal of         dependencies

Step 4: Repeat 2-3 until no new dependencies are added
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3:B A; 4:C A; 5:A D;

4 53 �
ioC

Initialise
      :5, 6, 7

Final condition
 3 3, 4 3, 4 

1:B E; 2:C E;

6:D E; 7:B E;

21 C 76 C�
ioC

�
io
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Recovery points

recovery point: take the top node from the set of recovery nodes

Failure Recovery points
… …

3, A A:3, B:3, C:4
3, B A:3, B:3, C:5
4, C C:2, E:2
4, A C:1, B:1, …
… …

Global Recovery Table 
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Main Results: Transparency and Safety (informally)

The recovered protocol is a reduction of the initial protocol. 
The configuration of the system after a failure is reachable from 
the initial configuration. 

Any reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a 
reception error. 

Theorem: Transparency

Theorem:Safety



Part Four
Recovery Implementation
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Enabling Protocol Recovery in

gen_server

local supervisors 

protocol supervisor

gen_server stores recovery tables protocol specification
31

(monitor the process behaviour)

(used to implement processes)

(recover processes)



Enabling Protocol Recovery in Erlang: Example
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number of crashes 

Evaluation: Web Crawler Example

A process is chosen at random at the start

Improvement when several failures occur  

By mistake initially we implemented all-for-one that 
introduced a deadlock

se
co

nd
s

source: http://foat.me/articles/crawling-with-akka/ 33
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Evaluation: Concurrency Patterns
se

co
nd

s

Map ReduceRing Calculator

52% improvement when 
intense local computation
disconnected interactions  

Up to 7% overhead when all roles 
are restarted
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Future work & Resources 

Ensure processes are safe and conform to a protocol (even in cases of 
failures) 
 Create supervision trees and link processes dynamically based on a 
protocol structure 

Framework summary

Additional Resources

Future work 

Scribble webpage: scribble.doc.ic.ac.uk 
Project source: https://gitlab.doc.ic.ac.uk/rn710/codeINspire 
MRG webpage: http://mrg.doc.ic.ac.uk/

Support for stateful processes   
Integration with checkpoints  
Replications and recovery actions 
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Q & A 
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