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Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol
represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to

expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks.

Describe ¢* Verify uls Project X Implement = Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, or Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (or type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and (c) statically verify the code against the particular endpoint, to

protocol. projection. ensure it correctly

implements the expected
behaviour.
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module examples}

~ global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldjs
v choice at World {
goodMorningl() from World to Mej
- }or {
goodMorningl() from World to Mej
}
}

Load a sample a Check Protocol: examples.Helloworld  Role: Me

Project

Generate Graph
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Interactions with Industries
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protocol used. This formalism provides the... Learn more
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Let’s Start

Let it Recover
Multiparty Protocol-Induced Recovery
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“Fail fast and recover qm’cﬁfy”

Erlang proverb

“Fail fast and recover cluicﬁfy and safe[y 7

CC proverb (after this talk)
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The Erlang programming language
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factorial(0) -> 1;
factorial(X) when X > 0 -> X * factorial(X-1).
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Erlang’s coding philosophy

-

A problem has bee letected and windows has shut down TO prevent damage

L0 your compu

problem seems
PAGE_FAULT_IN

IT this 1s the first time you ve seen tl

restart your computer. If this screen appears

—
.

_LET_IT_CRASH_

; ol l ﬂf'—‘f’]u_ ‘ . 1F lii-ﬂt _]r'—‘ or r‘,’.n” A\~ _:[j

software. Disable BIOS memory options such as caching or shadowing.

> - ” ‘ >

vou need S safte Mode to remove or disable 'IWpHHPW"

H;wwj Iinstal led hardware

>, Frestart

computer, press F8 to select Advanced Startup Options, and then

select safe Mo

SPCMDCON. SYS - 55 hase . BFES000, DateStamp 3d6dd67c¢




Let it crash: Erlang’s fault tolerance model

- Organise your processes in supervision trees

Supervisor

one forone il Supgrvision Strategies §
s one-for-one
r—— e BN S - all-for-one
th ”¥ v - rest-for-one

A A B B

- Do not program defensively, let the process crash
- In case of error, the process is automatically terminated

> Processes are linked. When a process crashes linked
process are notified and (can be) restarted.
S

. Recently adopted by Al Gogle
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Supervision strategies: Drawbacks

© Supervision strategies are: statically defined, error-prone

unsound | inefﬁCient |

Supervisor Supervisor

one-for-one all-for-one

1 I

/ . / .

I 1 I |

Supervisor : ' Supervisor M 7

all-for-one n i all-for-one i |
0 | 1
i

/N / \
) () (] [1] o] (2] [)

- Arecovery may cause deadlocks, orphan messages, reception
errors

16



“inefficient |

Supervisor

all-for-one

Supervisor
all-for-one

/[ \

Bie

J |

unsound I

Supervisor
one-for-one

I
|
1

Supervisor
all-for-one

/
o1 (2]
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Session Types Overview

Dynamic Monitoring :
[RV'13, COORDINATION'14, FMSD'15] | Global protocol (session type)
Sl G=A—B:(Ui).B— C:(U).C— A: (Us)

Projection
/ l \ - Local protocol (session type)

e e el - Slice of global protocol relevant to one role
Q?§ gng - Mechanically derived from a global protocol
A A =
: D : D :
vonioning Voniorng | Monitoring Ta =I(B, U1).?(C, Us)

Program Program Program
Alice Bob Carol
- Process language

- Execution model of I/O actions by roles

- A system of well-behaved processes is free from deadlocks,
orphan messages and reception errors

- The framework has been applieg to Java, Python, MPI/C, Go...



Part Two
Let 1t Recover
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Recovery (and talk) Workflow

| Protocol | recovery algorithm implementation

i! Deﬁpendency Graph ﬂ i§ RecoveryTabIe H dErIangRuntime H

(B:1) (C:2)
recovery points
{A,:0} Protocol Supervisor
{A,:0,A,:0} PE,
{A2:0,A,:0} / / \
{C:1,A2:0,A,:0} 2 1 A
{B,:3,B;:2} Local Type Local Type Local Type Local Type

{D:3,B,:2,B;:2}
{C:1,A;:0,4,:0} (3:A)
{C:1,A;:0,A,:0,D:3,B,:2,B,:2,E:4} _ :

r
A
Ay
A;
C
B
D
C
E
D {DZ3,B222,Bl 2}
E [{C:1,A;:0,A,:0,D:3,B;:2,B;:2,E:4}
C.E
D.E
ED
any
any

| : :

I ) 4 - Y N\
E|{C:1,A;:0,A:0,D:3,B,:2,B;:2,E:4} -‘- Process Process Process| |Process
,E|{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} A B C D
JD[{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} \ b

%]
1) Initial Failure| |Recovered| |Ignore Failure||Unaffected

V0NN EBRWW=—=O O

- Arecovered system is free from deadlocks, orphan messages
and reception error.

- Outperforms one of the built-in recovery strategies in Erlang
20




This talk: Safe Recovery for Session Protocols

| Approach

- Recovery algorithm to analyse a global protocol as to calculate
the dependencies of a failed process.

- Local supervisors monitor the state of the process in the protocol

- Protocol supervisors use the algorithms at runtime to decide which
process to recover

Protocol Supervisor

b 4
.
- . "
-~ % fe.
- ’ %
P 3
-~ %
- <4

Local Type Local Type Local Type Local Type

fp 192 [ 116,

b ‘.
Process Process Process Process
A B C D
J

Initial Failure| |Recovered| |Ignore Failure||Unaffected




Causalities

—; o -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A— B;:B—C: n1 ~io N2
W_/ H,_/
3 U,
<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

>
A — B: C—B; ng <l N4
: A ,
T3 N4

n37éio 7!

| Queue of B |




Causalities

—; o -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A— B;:B—C: n1 ~io N2
W_J W_J
ni U,
<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

A — B: C—B: N3 <1 ng N3~ N4
W_/ W_/
T3 T4

=+ -guarded dependencies (represent dependencies of the
failed node) should not recover

A— B.B—C; ny <+ N2
— Y¥——
n]_ n2 23




Part Three
Recovery Algorithm
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Recovery Algorithm

Algorithm Calculating affected nodes
Input: n; (a failed node), p (a failed role)
Output: .+ (a set of affected nodes)
1. A/ =A7"={n|nj<n An=r—p}U{n;}
L={n|((n<an’An =p—>r)vn' =n)An" Kon}\{n;}
repeat
N ={n|n<Kpn V(inanAneSs) An ey}
N7 ={n|n"<an Anes}\(SUY)
N =NINT =L \N
until /"~ =47 =9
return .4

XN BRWN

25



Recovery Algorithm
- Step 1: Initialise the =+ dependencies of the failed node @_\‘

. Step 2: Backward traversal of <;, dependencies

- Step 3: Forward Traversal of <] dependencies

. Step 4: Repeat 2-3 until no new dependencies are added

20



Step 1: Initialise the <+ dependencies of the failed node

1.B— E; 2.C—E;
3:B— A:4.C—A; 5:A—D;
o:D— E; 7:B—FE;

- Step 2: Backward traversal of <;, dependencies

Step 3: Forward Traversal of <] dependencies

. Step 4: Repeat 2-3 until no new dependencies are added

1<I 2 <I®<]®’<io5 '<i06< !

(0]

Initialise <o < Final condition

| not done

27



Recovery points

© recovery point: take the top node from the set of recovery nodes

1.B— C; 2.C—FE;
®<]@<.<]. 3:.B— A;4:.C—A;

- Global Recovery Table

Failure Recovery points

< A3, B:3, Ci4
< AG B3, C:5
4, C  [OF2m=2

4 A [OANAE

28



Main Results: Transparency and Safety (informally)

| Theorem: Transparency

The recovered protocol is a reduction of the initial protocol.
The configuration of the system after a failure is reachable from
the initial configuration.

1Theorem:Safety i

Any reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a
reception error.

Recovered protocol




Part Four
Recovery Implementation
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Enabling Protocol Recovery In

Protocol Supervisor prOtOCOI supervisor

/ / \ (recover processes)
- P R

Local Type Local Type Local Type Local Type

A ) 180] 20

A

local supervisors

(monitor the process behaviour)

l Prog\ess \ Pro;ess Progess ‘ Progess g en_server

(used to implement processes)

Initial Failure| |Recovered| |lgnore Failure||Unaffected

mnesias (& Scribble
gen_server stores recovery tables  protocol specification

31



Enabling Protocol Recovery in Erlang: Example

gen_server:cast(Roleld, Msg) gen_protocol:cast(id, Msg)
role:send(id, A, method, Args) > > method(Args)
checkMsg checkMsg

global protocol Trading ( % Handlers for C and D
role A, role B, quote({msg,Val},State) —
role C, role D) { role:send(Statef#state.role, ?E, quote, Val).

gucte (int) from A to (C;

gucte (int) from B to D;
% Handlers for E
gucte (int) from C to E; » quote ({msg, Val},State) when State.prev==undef —
quote (int) from D to E; {noreply, State#state{prev=Vval}};;
choice at E {
accept () from E to C;
accept () £from E to D;

quote ({msg, Val},State) when State#state.prev>Val —
> role:send (State#state.role, ?2C, rqject, empty),
role:send (State#state.role, ?D, accept, empty),

or ({ {noreply, State};
reject () from E to (C;
reject () from E to D; quote ({msg, Val},State) when State#state.prev<vVal —
} role:send (State#state.role, ?C, accept, empty),
} role:send (State#state.role, ?D, reject, empty),
{noreply, State}.
A
(& scribble
32 ERLANG




Evaluation: Web Crawler Example

- - - . - Fr—: [
: W protocol-recovery " all-for-one Web Crawler Example @
6 mmmmmm eCrawl Scraper
5

A

IIIII

2 3 4
number of crashes

- A process is chosen at random at the start

- Improvement when several failures occur

- By mistake initially we implemented all-for-one that
introduced a deadlock

soufce: hitp:



http://foat.me/articles/crawling-with-akka/

1.4

Evaluation: Concurrency Patterns

1.2}

1.0}

seconds

0.4}

0.2}

0.0

0.8|

0.6/

" no failure M protocol-recovery = all-for-one
Ring MapReduce Calculator
[ Ring
ping ping

o pong pong

Example #roles #states GRT (sec) affected roles
MapReduce [21] n+l n+2 0.11 W[1l] ... W[n]
Ring [21] n 2*n 0.16 W[1l] ... W[n]
Calculator [18] n+1 4*n 0.75 All]

52% Improvement when
- intense local computation

- disconnected interactions
Up to 7% overhead when all roles

are restarted

d Map Reduce

] Calculator

val.

1
vall cont. s
(Y / expr. ¢

- 1
- result
@; - - ’



Future work & Resources

‘i Framework summary

Ensure processes are safe and conform to a protocol (even in cases of
failures)

- Create supervision trees and link processes dynamically based on a
protocol structure

j Future work

o Support for stateful processes
- Integration with checkpoints
- Replications and recovery actions

i,,
|

JAdditionaI Resources

- Scribble webpage: scribble.doc.ic.ac.uk
- Project source: https://qgitlab.doc.ic.ac.uk/rn/710/codelNspire
- MRG webpage: http://mrg.doc.ic.ac.uk/
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Q&A

o
* THANK YOU °

", FOR CRASHING °
« MY PARTY ,
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