Let it Recover:
Multiparty Protocol-Induced Recovery

Rumyana Neykova, Nobuko Yoshida
Imperial College London

Session Type Mobility Group

£2
pw oY -
:(\lll\\ — g~ 85
O -0 L] Q‘Q = /6/@ @
T v W W
N ot QM/Q RN

www.mrg.doc.ic.ac.uk

Academic Staff

Us € Mobility Eesearch Group Nobuko Yoshida

Research Associate

TT MobilityReadingGroup Raymond Hu

ri-calculus, Session Types research at Imperial College

Julien Lange

NEWS SELECTED
ureanrearsorce PIUBLICATIONS

Liveness and Safety for Channel- XI nyu N | U

based Programming was
summarised on The Morning
Paper blog. 2017

Nicholas Ng

2 Feb 2017 Raymond Hu , Nobuko Yoshida : Explicit Connection Actions in Multiparty Alceste Scalas

Session Types. To appear in FASE 2017 .

Weizhen passed her viva today,
congratulations Dr. Yang!

Julien Lange, Nicholas Ng, Bernardo Toninho , Nobuko Yoshida : Fencing . Bernardo Toninho
2o off Go: Liveness and Safety for Channel-based Programming. POPL 2017 .
Mariangiola Dezani-Ciancaglini, a
long-term collaborator with our Rumyana Neykova , Nobuko Yoshida : Let It Recover: Multiparty Protocol-
group working on Session Types Induced Recovery. CC 2017 . PhD Student
turns 70 today, more details here.
23 Dec 2016 Julien Lange , Nobuko Yoshida : On the Undecidability of Asynchronous
Session Subtyping. To appear in FoSSaCS 2017 . Assel Altayeva

Rumyana passed her viva today,

Juliana Franco

http://mrg.doc.ic.ac.uk/

Rumyana Neykova

Weizhen Yang

http://mrg.doc.ic.ac.uk/

OO0OI Collaboration

K TCS’16: Monitoring Networks through Multiparty Sessin Type Laur'Bocchi , |

. Tzu-Chun Chen , Romain Demangeon , Kohei Honda , Nobuko Yoshida
| * LMCS’16: Multiparty Session Actors. Rumyana Neykova, Nobuko Yoshida
« FMSD’15: Practical interruptible conversations: Distributed dynamic verification
}» with multiparty session types and Python. Romain Demangeon , Kohei Honda ,
Raymond Hu , Rumyana Neykova , Nobuko Yoshida
« TGC’13: The Scribble Protocol Language. Nobuko Yoshida , Raymond Hu ,

Rumyana Neykova , Nicholas Ng

www.scribble.org

Home Getting Started Downloads Documentation ~ Community v

Scribble: Describing Multi Party Protocols

Scribble is a language to describe application-level protocols among communicating systems. A protocol
represents an agreement on how participating systems interact with each other. Without a protocol, it is hard to
do meaningful interaction: participants simply cannot communicate effectively, since they do not know when to

expect the other parties to send data, or whether the other party is ready to receive data. However, having a
description of a protocol has further benefits. It enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences, such as deadlocks.

Describe ¢* Verify uls Project X Implement = Monitor Q

Scribble is a language for Scribble has a theoretical foundation, Endpoint projection is the Various options exist, including (a) using Use the endpoint

describing multiparty based on the Pi Calculus and Session term used for identifying the endpoint projection for a role to projection for roles defined

protocols from a global, or Types, to ensure that protocols described the responsibility of a generate a skeleton code, (b) using session within a Scribble protocol,

endpoint neutral, using the language are sound, and do not particular role (or type APIs to clearly describe the behaviour, to monitor the activity of a

perspective. suffer from deadlocks or livelocks. endpoint) within a and (c) statically verify the code against the particular endpoint, to

protocol. projection. ensure it correctly

implements the expected
behaviour.

http://www.scribble.org
http://www.scribble.org/

On].lne tOOl . http://scribble.doc.ic.ac.uk/

module examples}

~ global protocol HelloWorld(role Me, role World) {
hello() from Me to Worldjs
v choice at World {
goodMorningl() from World to Mej
- }or {
goodMorningl() from World to Mej
}
}

Load a sample a Check Protocol: examples.Helloworld Role: Me

Project

Generate Graph

http://scribble.doc.ic.ac.uk/
http://scribble.doc.ic.ac.uk/

Interactions with Industries

Strange Loop

SEPTEMBER 15-17 2016 / PEABODY OPERA HOUSE / ST. LOUIS, MO

, w, Adam Bowen @adamnbowen - Sep 15 .
x | didn't even know that session types existed an hour ago, but thanks to Nobuko Nobuko Yoshida
. Yoshida's great talk at #pwlconf, | want to learn more. Imperial College, London

DoC researcher to speak at Golang UK conference , _ rocking on
by Vicky Kapogianni ' . .
20ty 2016 about static deadlock detection in

_
g UK Conference

DoC researcher to speak at industry-focused Golang UK Click here to add content Th G |
conference on results of concurrency research e O a

Interactions with Industries

F#unctional Londoners Meetup Group

6 days ago - 6:30 PM
Session Types with Fahd Abdeljallal

« “ [[”»? 4 :
s 1 _". : é %“_‘ N
LS Y = i -

43 Members

Synopsis: Session types are a formalism to codify the structure of
a communication, using types to specify the communication
protocol used. This formalism provides the... Learn more

Current State

* behaviors can be composed both sequentially
and concurrently

Dr. Roland Kuhn » effects are not yet tracked

@rolaeE I /X » Scribble generator for Scala not yet there

* theoretical work at Imperial College, London
(Prof. Nobuko Yoshida & Alceste Scalas)

actyx

Selected Publications 2016/2017 7{

¢ [FOSSaCS’17] Julien Lange , NY : On the Undecidability of Asynchronous
Session Subtyping.

e [FASE’17] Raymond Hu , NY : Explicit Connection Actions in Multiparty Session
Types.

e [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced
Recovery.

e [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off Go:
Liveness and Safety for Channel-based Programming.

e [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY, Wayne Luk
. EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits.

e [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala

¢ [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by Global
Session Graph Synthesis.

e [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint API
Generation.

e [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.

e [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative
Expressiveness of Higher-Order Session Processes.

e [POPL’16] Dominic Orchard, NY: Effects as sessions, sessions as effects .

Selected Publications 2016/2017 U

¢ [FoSSaCS’17] Julien Lange , NY : On the Undecidability of Asynchronous
Session Subtyping.

e [FASE’17] Raymond Hu , NY : Explicit Connection Actions in Multiparty
Session Types.

¢ [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced
Recovery.

e [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off
Go: Liveness and Safety for Channel-based Programming.

¢ [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY,
Wayne Luk: EURECA Compilation: Automatic Optimisation of Cycle-
Reconfigurable Circuits.

e [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala

¢ [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by
Global Session Graph Synthesis.

e [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint
API Generation.

¢ [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.

e [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative
Expressiveness of Higher-Order Session Processes.

e [POPL’16] Dominic Orchard, NY: Effects as Sessions, Sessions as Effects.

Let’s Start

Let it Recover
Multiparty Protocol-Induced Recovery

11

“Fail fast and recover qm’cﬁfy”

Erlang proverb

“Fail fast and recover cluicﬁfy and safe[y 7

CC proverb (after this talk)

12

The Erlang programming language

m
~
-
>
Z
@

factorial(0) -> 1;
factorial(X) when X > 0 -> X * factorial(X-1).

Upgradable ~ YTeESENCedystem streamurienteavata

HomeCoding BusinessSoftware
NewProjects BlnaryDataProcessing
L}

S Rl NoPtaRreaalllteilme Me S S a g l n g CoordinationAndControl

Playing Middleware

NotProduction smallProjects Ne tWO rkS e rv i C e s

_ Robust Embedded SmallTeams
T hrorormes 0CA LA L€
Ofél}}etsltcg;::ion Teaching < 5
seaioeD1StributedSystems

Exchanges

ey b Glee Available
GndComputlpg Re l a e ProcessController
DataBrowsing

IoIntensive Mari)\ctors NOtGUl CommunicationServices

y)
s CONCUrrent
omp.lexsystems
. I;cgltfingy sofERee]é?,gime MultiplayerGames
g Databases [@) NotCompute

SystemsIntegration

et FaultTolerant

ded 1
aameservers __ HighThroughput

NotStringProcessing

Infrastructure yoeyorksystemsiithioLoad
TransactionProcessing

StandaloneProjects
NetworkSecuritySystem

13

Erlang’s coding philosophy

-

A problem has bee letected and windows has shut down TO prevent damage

L0 your compu

problem seems
PAGE_FAULT_IN

IT this 1s the first time you ve seen tl

restart your computer. If this screen appears

—
.

_LET_IT_CRASH_

; ol l ﬂf'—‘f’]u_ ‘ . 1F lii-ﬂt _]r'—‘ or r‘,’.n” A\~ _:[j

software. Disable BIOS memory options such as caching or shadowing.

> - ” ‘ >

vou need S safte Mode to remove or disable 'IWpHHPW"

H;wwj Iinstal led hardware

>, Frestart

computer, press F8 to select Advanced Startup Options, and then

select safe Mo

SPCMDCON. SYS - 55 hase . BFES000, DateStamp 3d6dd67c¢

Let it crash: Erlang’s fault tolerance model

- Organise your processes in supervision trees

Supervisor

one forone il Supgrvision Strategies §
s one-for-one
r—— e BN S - all-for-one
th ”¥ v - rest-for-one

A A B B

- Do not program defensively, let the process crash
- In case of error, the process is automatically terminated

> Processes are linked. When a process crashes linked
process are notified and (can be) restarted.
S

. Recently adopted by Al Gogle

15

Supervision strategies: Drawbacks

© Supervision strategies are: statically defined, error-prone

unsound | inefﬁCient |

Supervisor Supervisor

one-for-one all-for-one

1 I

/ . / .

I 1 I |

Supervisor : ' Supervisor M 7

all-for-one n i all-for-one i |
0 | 1
i

/N / \
) () (] [1] o] (2] [)

- Arecovery may cause deadlocks, orphan messages, reception
errors

16

“inefficient |

Supervisor

all-for-one

Supervisor
all-for-one

/[\

Bie

J |

unsound I

Supervisor
one-for-one

I
|
1

Supervisor
all-for-one

/
o1 (2]

17

Session Types Overview

Dynamic Monitoring :
[RV'13, COORDINATION'14, FMSD'15] | Global protocol (session type)
Sl G=A—B:(Ui).B— C:(U).C— A: (Us)

Projection
/ l \ - Local protocol (session type)

e e el - Slice of global protocol relevant to one role
Q?§ gng - Mechanically derived from a global protocol
A A =
: D : D :
vonioning Voniorng | Monitoring Ta =I(B, U1).?(C, Us)

Program Program Program
Alice Bob Carol
- Process language

- Execution model of I/O actions by roles

- A system of well-behaved processes is free from deadlocks,
orphan messages and reception errors

- The framework has been applieg to Java, Python, MPI/C, Go...

Part Two
Let 1t Recover

19

Recovery (and talk) Workflow

| Protocol | recovery algorithm implementation

i! Deﬁpendency Graph ﬂ i§ RecoveryTabIe H dErIangRuntime H

(B:1) (C:2)
recovery points
{A,:0} Protocol Supervisor
{A,:0,A,:0} PE,
{A2:0,A,:0} / / \
{C:1,A2:0,A,:0} 2 1 A
{B,:3,B;:2} Local Type Local Type Local Type Local Type

{D:3,B,:2,B;:2}
{C:1,A;:0,4,:0} (3:A)
{C:1,A;:0,A,:0,D:3,B,:2,B,:2,E:4} _ :

r
A
Ay
A;
C
B
D
C
E
D {DZ3,B222,Bl 2}
E [{C:1,A;:0,A,:0,D:3,B;:2,B;:2,E:4}
C.E
D.E
ED
any
any

| : :

I) 4 - Y N\
E|{C:1,A;:0,A:0,D:3,B,:2,B;:2,E:4} -‘- Process Process Process| |Process
,E|{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} A B C D
JD[{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4} \ b

%]
1) Initial Failure| |Recovered| |Ignore Failure||Unaffected

V0NN EBRWW=—=O O

- Arecovered system is free from deadlocks, orphan messages
and reception error.

- Outperforms one of the built-in recovery strategies in Erlang
20

This talk: Safe Recovery for Session Protocols

| Approach

- Recovery algorithm to analyse a global protocol as to calculate
the dependencies of a failed process.

- Local supervisors monitor the state of the process in the protocol

- Protocol supervisors use the algorithms at runtime to decide which
process to recover

Protocol Supervisor

b 4
.
- . "
-~ % fe.
- ’ %
P 3
-~ %
- <4

Local Type Local Type Local Type Local Type

fp 192 [116,

b ‘.
Process Process Process Process
A B C D
J

Initial Failure| |Recovered| |Ignore Failure||Unaffected

Causalities

—; o -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A— B;:B—C: n1 ~io N2
W_/ H,_/
3 U,
<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

>
A — B: C—B; ng <l N4
: A ,
T3 N4

n37éio 7!

| Queue of B |

Causalities

—; o -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

A— B;:B—C: n1 ~io N2
W_J W_J
ni U,
<] -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

A — B: C—B: N3 <1 ng N3~ N4
W_/ W_/
T3 T4

=+ -guarded dependencies (represent dependencies of the
failed node) should not recover

A— B.B—C; ny <+ N2
— Y¥——
n]_ n2 23

Part Three
Recovery Algorithm

24

Recovery Algorithm

Algorithm Calculating affected nodes
Input: n; (a failed node), p (a failed role)
Output: .+ (a set of affected nodes)
1. A/ =A7"={n|nj<n An=r—p}U{n;}
L={n|((n<an’An =p—>r)vn' =n)An" Kon}\{n;}
repeat
N ={n|n<Kpn V(inanAneSs) An ey}
N7 ={n|n"<an Anes}\(SUY)
N =NINT =L \N
until /"~ =47 =9
return .4

XN BRWN

25

Recovery Algorithm
- Step 1: Initialise the =+ dependencies of the failed node @_\‘

. Step 2: Backward traversal of <;, dependencies

- Step 3: Forward Traversal of <] dependencies

. Step 4: Repeat 2-3 until no new dependencies are added

20

Step 1: Initialise the <+ dependencies of the failed node

1.B— E; 2.C—E;
3:B— A:4.C—A; 5:A—D;
o:D— E; 7:B—FE;

- Step 2: Backward traversal of <;, dependencies

Step 3: Forward Traversal of <] dependencies

. Step 4: Repeat 2-3 until no new dependencies are added

1<I 2 <I®<]®’<io5 '<i06< !

(0]

Initialise <o < Final condition

| not done

27

Recovery points

© recovery point: take the top node from the set of recovery nodes

1.B— C; 2.C—FE;
®<]@<.<]. 3:.B— A;4:.C—A;

- Global Recovery Table

Failure Recovery points

< A3, B:3, Ci4
< AG B3, C:5
4, C [OF2m=2

4 A [OANAE

28

Main Results: Transparency and Safety (informally)

| Theorem: Transparency

The recovered protocol is a reduction of the initial protocol.
The configuration of the system after a failure is reachable from
the initial configuration.

1Theorem:Safety i

Any reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a
reception error.

Recovered protocol

Part Four
Recovery Implementation

30

Enabling Protocol Recovery In

Protocol Supervisor prOtOCOI supervisor

/ / \ (recover processes)
- P R

Local Type Local Type Local Type Local Type

A) 180] 20

A

local supervisors

(monitor the process behaviour)

l Prog\ess \ Pro;ess Progess ‘ Progess g en_server

(used to implement processes)

Initial Failure| |Recovered| |lgnore Failure||Unaffected

mnesias (& Scribble
gen_server stores recovery tables protocol specification

31

Enabling Protocol Recovery in Erlang: Example

gen_server:cast(Roleld, Msg) gen_protocol:cast(id, Msg)
role:send(id, A, method, Args) > > method(Args)
checkMsg checkMsg

global protocol Trading (% Handlers for C and D
role A, role B, quote({msg,Val},State) —
role C, role D) { role:send(Statef#state.role, ?E, quote, Val).

gucte (int) from A to (C;

gucte (int) from B to D;
% Handlers for E
gucte (int) from C to E; » quote ({msg, Val},State) when State.prev==undef —
quote (int) from D to E; {noreply, State#state{prev=Vval}};;
choice at E {
accept () from E to C;
accept () £from E to D;

quote ({msg, Val},State) when State#state.prev>Val —
> role:send (State#state.role, ?2C, rqject, empty),
role:send (State#state.role, ?D, accept, empty),

or ({ {noreply, State};
reject () from E to (C;
reject () from E to D; quote ({msg, Val},State) when State#state.prev<vVal —
} role:send (State#state.role, ?C, accept, empty),
} role:send (State#state.role, ?D, reject, empty),
{noreply, State}.
A
(& scribble
32 ERLANG

Evaluation: Web Crawler Example

- - - . - Fr—: [
: W protocol-recovery " all-for-one Web Crawler Example @
6 mmmmmm eCrawl Scraper
5

A

IIIII

2 3 4
number of crashes

- A process is chosen at random at the start

- Improvement when several failures occur

- By mistake initially we implemented all-for-one that
introduced a deadlock

soufce: hitp:

http://foat.me/articles/crawling-with-akka/

1.4

Evaluation: Concurrency Patterns

1.2}

1.0}

seconds

0.4}

0.2}

0.0

0.8|

0.6/

" no failure M protocol-recovery = all-for-one
Ring MapReduce Calculator
[Ring
ping ping

o pong pong

Example #roles #states GRT (sec) affected roles
MapReduce [21] n+l n+2 0.11 W[1l] ... W[n]
Ring [21] n 2*n 0.16 W[1l] ... W[n]
Calculator [18] n+1 4*n 0.75 All]

52% Improvement when
- intense local computation

- disconnected interactions
Up to 7% overhead when all roles

are restarted

d Map Reduce

] Calculator

val.

1
vall cont. s
(Y / expr. ¢

- 1
- result
@; - - ’

Future work & Resources

‘i Framework summary

Ensure processes are safe and conform to a protocol (even in cases of
failures)

- Create supervision trees and link processes dynamically based on a
protocol structure

j Future work

o Support for stateful processes
- Integration with checkpoints
- Replications and recovery actions

i,,
|

JAdditionaI Resources

- Scribble webpage: scribble.doc.ic.ac.uk
- Project source: https://qgitlab.doc.ic.ac.uk/rn/710/codelNspire
- MRG webpage: http://mrg.doc.ic.ac.uk/

35

http://scribble.doc.ic.ac.uk
https://gitlab.doc.ic.ac.uk/rn710/codeINspire
http://mrg.doc.ic.ac.uk/

Q&A

o
* THANK YOU °

", FOR CRASHING °
« MY PARTY ,

36

