
Let it Recover:
Multiparty Protocol-Induced Recovery

1

http://mrg.doc.ic.ac.uk/

Us ∈ Mobility Research Group

http://mrg.doc.ic.ac.uk/

www.scribble.org

http://www.scribble.org
http://www.scribble.org/

Online tool : http://scribble.doc.ic.ac.uk/

http://scribble.doc.ic.ac.uk/
http://scribble.doc.ic.ac.uk/

Interactions with Industries

Interactions with Industries

Selected Publications 2016/2017
• [FoSSaCS’17] Julien Lange , NY : On the Undecidability of Asynchronous

Session Subtyping.
• [FASE’17] Raymond Hu , NY : Explicit Connection Actions in Multiparty Session

Types.
• [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced

Recovery.
• [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off Go:

Liveness and Safety for Channel-based Programming.
• [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY, Wayne Luk

: EURECA Compilation: Automatic Optimisation of Cycle-Reconfigurable Circuits.
• [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala
• [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by Global

Session Graph Synthesis.
• [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint API

Generation.
• [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.
• [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative

Expressiveness of Higher-Order Session Processes.
• [POPL’16] Dominic Orchard, NY: Effects as sessions, sessions as effects .

Selected Publications 2016/2017
• [FoSSaCS’17] Julien Lange , NY : On the Undecidability of Asynchronous

Session Subtyping.
• [FASE’17] Raymond Hu , NY : Explicit Connection Actions in Multiparty

Session Types.
• [CC’17] Rumyana Neykova , NY: Let It Recover: Multiparty Protocol-Induced

Recovery.
• [POPL’17] Julien Lange , Nicholas Ng , Bernardo Toninho , NY: Fencing off

Go: Liveness and Safety for Channel-based Programming.
• [FPL’16] Xinyu Niu , Nicholas Ng , Tomofumi Yuki , Shaojun Wang , NY,

Wayne Luk: EURECA Compilation: Automatic Optimisation of Cycle-
Reconfigurable Circuits.

• [ECOOP’16] Alceste Scala, NY: Lightweight Session Programming in Scala
• [CC’16] Nicholas Ng, NY: Static Deadlock Detection for Concurrent Go by

Global Session Graph Synthesis.
• [FASE’16] Raymond Hu, NY: Hybrid Session Verification through Endpoint

API Generation.
• [TACAS’16] Julien Lange, NY: Characteristic Formulae for Session Types.
• [ESOP’16] Dimitrios Kouzapas, Jorge A. Pérez, NY: On the Relative

Expressiveness of Higher-Order Session Processes.
• [POPL’16] Dominic Orchard, NY: Effects as Sessions, Sessions as Effects.

Let’s Start
Let it Recover:

Multiparty Protocol-Induced Recovery

11

“Fail fast and recover quickly”
 Erlang proverb

“Fail fast and recover quickly and safely ”
 CC proverb (after this talk)

12

The Erlang programming language

 factorial(0) -> 1;
 factorial(X) when X > 0 -> X * factorial(X-1).

13

Erlang’s coding philosophy

14

Organise your processes in supervision trees

Let it crash: Erlang’s fault tolerance model

Do not program defensively, let the process crash

In case of error, the process is automatically terminated

Processes are linked. When a process crashes linked
process are notified and (can be) restarted.

Recently adopted by

- one-for-one
- all-for-one
- rest-for-one{
Supervision Strategies

15

unsound

A recovery may cause deadlocks, orphan messages, reception
errors

Supervision strategies: Drawbacks

Supervision strategies are: statically defined, error-prone

16

inefficient

unsoundinefficient

How to generate sound and efficient supervision strategies?

By using Session Types!

17

Session Types Overview

Global protocol (session type)

Local protocol (session type)
Slice of global protocol relevant to one role
Mechanically derived from a global protocol

A system of well-behaved processes is free from deadlocks,
orphan messages and reception errors

The framework has been applied to Java, Python, MPI/C, Go…

Process language
Execution model of I/O actions by roles

18

Part Two
Let it Recover

19

Protocol

Dependency Graph Recovery Table Erlang Runtime

Recovery (and talk) Workflow
recovery algorithm implementation

A recovered system is free from deadlocks, orphan messages
and reception error.

Outperforms one of the built-in recovery strategies in Erlang
20

(3:A)

†

(B:1) (C:2)

This talk: Safe Recovery for Session Protocols

Recovery algorithm to analyse a global protocol as to calculate
the dependencies of a failed process.

Local supervisors monitor the state of the process in the protocol

Protocol supervisors use the algorithms at runtime to decide which
process to recover

Approach

21

Causalities

A B; B C;

A B; C B;

{ {

 -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

 -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

{ {
n1 n2

n3 n4

n1 n2

n3 n4 n3 n4C

�
io

C

�
io

⌃
io

Queue of B

…
…

…

…

Causalities

A B; B C;

A B; C B;

{ {

 -input-output dependencies (assert the order between a
reception of a message and a send action) should recover

 -precedence dependencies (represent the order between
two nodes which have a common participant) should recover

{ {
n1 n2

n3 n4

n1 n2

n3 n4 n3 n4C

�
io

C

�
io

⌃
io

 -guarded dependencies (represent dependencies of the
failed node) should not recover
�†

A B; B C;{ {

n1 n2

n1 n2�†

23

Part Three
Recovery Algorithm

24

Recovery Algorithm

25

Recovery Algorithm
Step 1: Initialise the dependencies of the failed node

Step 2: Backward traversal of dependencies

Step 3: Forward Traversal of dependencies

Step 4: Repeat 2-3 until no new dependencies are added

�
io

C

�† †

†

†

�
io

�†

C

26

3:B A; 4:C A; 5:A D;

4 53 �
ioC

Initialise
 :5, 6, 7

Final condition
 3 3, 4 3, 4

1:B E; 2:C E;

6:D E; 7:B E;

21 C 76 C�
ioC

�
io

27

�
io

C
�†

3 4

 4 4 3, 4 done

not done

Recovery points

recovery point: take the top node from the set of recovery nodes

Failure Recovery points
… …

3, A A:3, B:3, C:4
3, B A:3, B:3, C:5
4, C C:2, E:2
4, A C:1, B:1, …
… …

Global Recovery Table

28

C21 C C 3 4 3:B A; 4:C A;
1:B C; 2:C E;

Main Results: Transparency and Safety (informally)

The recovered protocol is a reduction of the initial protocol.
The configuration of the system after a failure is reachable from
the initial configuration.

Any reachable configuration which is an initial configuration of well-
formed global protocol is free from deadlock, an orphan massage and a
reception error.

Theorem: Transparency

Theorem:Safety

Part Four
Recovery Implementation

30

Enabling Protocol Recovery in

gen_server

local supervisors

protocol supervisor

gen_server stores recovery tables protocol specification
31

(monitor the process behaviour)

(used to implement processes)

(recover processes)

Enabling Protocol Recovery in Erlang: Example

32

number of crashes

Evaluation: Web Crawler Example

A process is chosen at random at the start

Improvement when several failures occur

By mistake initially we implemented all-for-one that
introduced a deadlock

se
co

nd
s

source: http://foat.me/articles/crawling-with-akka/ 33

http://foat.me/articles/crawling-with-akka/

Evaluation: Concurrency Patterns
se

co
nd

s

Map ReduceRing Calculator

52% improvement when
intense local computation
disconnected interactions

Up to 7% overhead when all roles
are restarted

34

Future work & Resources

Ensure processes are safe and conform to a protocol (even in cases of
failures)
 Create supervision trees and link processes dynamically based on a
protocol structure

Framework summary

Additional Resources

Future work

Scribble webpage: scribble.doc.ic.ac.uk
Project source: https://gitlab.doc.ic.ac.uk/rn710/codeINspire
MRG webpage: http://mrg.doc.ic.ac.uk/

Support for stateful processes
Integration with checkpoints
Replications and recovery actions

35

http://scribble.doc.ic.ac.uk
https://gitlab.doc.ic.ac.uk/rn710/codeINspire
http://mrg.doc.ic.ac.uk/

Q & A

36

