

UpScale Project (FP7)
• CWI, Imperial College London, University of Oslo and

Uppsala University

• Study how an OO PL can support the development of
applications that seamlessly scale to the available
parallelism of manycore chips.

• Take an actor-based concurrency model as a starting
point, rather than multi-threading, and use types to "open
up the actors" for further parallelism, keeping the amount
of concurrency implicit in the language.

• Capability types, Ownership types, Session Types, etc.

UpScale @ Imperial College London

Sophia
DrossopoulouNobuko

Yoshida
Juliana
Franco

An overview of

STOPS: Session Types +
OwnershiP + Sizes

•A language that combines binary session types,
ownership types and size annotations to calculate
communication costs for OO distributed programs.

•The goal is to optimise performance of distributed
programs by:
✴ changing the topology of the participants,
✴ change the order of messages sent and received,
✴ avoid the serialisation of unnecessary data,
✴ etc

J. Franco, S. Drossopoulou and N. Yoshida Calculating communication costs with
Sessions Types and Sizes, ICCSW’14.

Paper:

B-COOL!: Behaviour for in
Location-aware OO Code

• Behavioural and Ownership
Types for Non Uniform Memory
Access systems

• A small OO language that
combines behavioural types with
ownership types.

• Ownership types represent the
topology.

• Behavioural types describe
reads, writes and messages sent
to remote locations.

Juliana Franco and Sophia Drossopoulou, Behavioural types for NUMA, PLACES’15.
Paper:

ORCA: Ownership and Reference
Count collector for Actors

Collaboration with:

• Sylvan Clebsch, Sebastian
Blessing, Juliana Franco and  
S o p h i a D r o s s o p o u l o u .
Ownership and Reference
Count ing based Garbage
Collection in the Actor World.
ICOOOLPS’15

• Another paper in preparation.

•GC protocol for actor-based object
oriented languages.

•B a s e d o n O w n e r s h i p a n d
Reference Counting

•It relies on the type system and on
message passing

•No Stop the World Steps: the
application does not need to stop
in order to do object deallocation

•No Synchronisation mechanisms
required for Heap Mutation

Papers:

An Overview of
UPSCALE @ UPPSALA

Stephan Brandauer, Dave Clarke, Elias Castegren,
Kiko Fernandez-Reyez, Phuc Vo, Tobias Wrigstad, Albert Yang

The Encore Language

A scalable programming language

Actors as the fundamental unit of concurrency

Asynchronous messages returning futures

Support for millions of concurrent actors  
that block or await future results

Cooperative scheduling at the implementation level  
(also at surface level using suspend/await)

Runs on-top of the PonyRT extended with futures 
and lightweight threading

Extends a subset of the ABS family of languages  
but not intended as a modelling language

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

Parallel
Combinators

Reference
Capabilities

Hot
Objects

Disjointness
Domains

Problem
Actors are sequential;
need to abstractly specify
parallel computations for
scheduler flexibility

Avoiding data-races/
copying/non-
determinism both at
application level and in
the run-time

Popular actors risk
becoming bottlenecks—
lowering throughput;
increasing latency

Sharing semantics of
object-oriented programs
misaligned with
language defaults

Approach
Strongly typed mini-DSL
for orchestrating
parallel computation

A hierarchy of
annotations that express
how programmers share
objects across
computations

New class of actors
whose message
processing semantics is
controlled from
deployment spec.

Invert defaults — track
sharing instead of alias-
freedom

Details
Reify pipeline;
operations on pipeline
for forking, pruning,
speculating, etc.

Capabilities are tracked
in types which are
formed from sharing
modes and traits

Several possible
implementations: lock-
based synchronous
actors, STM, lock-free
capabilities

Sharing is tracked
through types; what
parts of a program may
alias statically visible

Difficulties
Integration with
scheduling of actors;
killing on-going
computation

Balancing expressivity
and syntactic overhead;
capturing the relevant
properties;
polymorphism

Actor semantics
sequential, difficult
engineering to get good
performance

Balancing expressivity
and syntactic overhead;
measuring how aliasing
is used in practise

Deliver-
ables

Submitted to
COORDINATION’16 +
UU Master Thesis
Implemented in Encore

IWACO’14, submitted to
ECOOP’ 16, submission in
prep for OOPSLA’16
Partial impl. in Encore

In prep.
Implementation on-going

Published OOPSLA’15,
submission in prep for
OOPSLA’16

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

prog.enc prog_enc/*.c prog

encorec clang/gcc

runtime library

linking

PonyRT

EncoreRT

EncoreThreads

Encore Program

Encore Compiler

• Haskell front-end and C back-end

• Currently: Source-to-source translation
from Encore to (readable) C

• Future: replace C back-end with LLVM
back-end

• LLVM back-end will enable ”deep
optimisations”, e.g.,

– alias analysis

– allocation analysis

An Overview of UPSCALE @ OSLO

Shiji Bijo, Einar Broch Johnsen, Violet Ka I Pun, S. Lizeth Tapia Tarifa

Modelling Execution of Programs

in Parallel Architectures

Core

Core

…

Parallel
Program

Parallel
Architecture

Movement of
 data is slow

Movement of
data is fast Coherency

Cache

Cache

Shared Memory

Register

Cache

Main Memory

…

Access time (Increase)Storage size (Increase)

Model-based exploration of deployment concerns for multicore architectures

Guide decisions about scheduling, load-balancing and locality

using abstract models of architectures

Achievements

Problem: Understand how data moves between caches and memory

Approach: Formal model of multicore architectures with cores, caches and memory

Details: SOS with labels for parallel communication between cores

Di�culties: model the parallel communication, cache coherency

Status: Accepted paper at SAC 2016, MUSEPAT track

Problem: Enable exploration in the abstract model

Approach: Enable measurements and configurable parameters in the model

Details: Executable model for simulations and analysis implemented in Maude

Di�culties: Transform declarative aspects of the SOS to make the model executable

Status: Accepted paper at WRLA2016

Problem: Establish a formal basis for the development of Encore

Approach: SOS of a fragment of Encore via a calculus called µEncore

Details: concurrency model of Encore with strong notion of locality

Di�culties: SOS with sheep cloning and closures

Status: Collaboration with Uppsala University. Book chapter at SFM 2015

Ongoing Work

Problem: Extend the model with multilevel caches in an abstract way

Approach: Define an abstract notion of penalty to capture the distance to the data

Details: Categorize tasks in classes reflecting average/worst-case data access

Di�culties: Extract the worst-case abstract description from real programs

Status: Ideas still in early phase

Problem: Scheduling decisions depending on data layout - model

Approach: Make the scheduler in the model aware of where data is located

Details: Annotations determine data layout, infer logical locations for data accesses

Di�culties: Use behavioural descriptions to infer better scheduling

Status: Collaboration with Imperial College London. Work in progress.

An Overview of
UPSCALE @ CWI

 Keyvan Azadbakht, Frank de Boer

Overview

 Transferring parallelism from inter-

object to intra-object level
 Notion of Multi-threaded Actors

 Extending the notion of Cooperative
Scheduling

 E�cient await on boolean conditions by means
of Promises in Haskell

Cooperative Scheduling

 Await on boolean conditions in a wait-
notify manner by means of promises

 Extending ABS2Haskell to support the await

 The Preferential Attachment case study
 Well-known problem in the context of social

networks

 The solution:

 No need for explicit complex low-level synchronization
mechanisms

 Implemented in ABS and compiled in ABS2Haskell

Multi-threaded Actors

 Active objects share a queue of messages
 A notion complementary to COG in ABS where the

objects share the control

 The Actor contains active objects and has an identity
and the shared queue

 The temporal order of the events with the same
values of synchronized arguments is guaranteed on
activation.

 Operational semantics

 Type system

 Runtime system in Java 8

