Open Problems and State-of-Art of

Session Types

(

http://mrg.doc.ic.ac.uk/

Nobuko Yoshida
Imperial College London

Questions on Mobile Processes

» How to apply mobile process theories to real distributed and

concurrent applications and programming languages?

» Common Questions on Session (Protocol) Types

> 1 wish to extend (Multiparty) Session Types to XXX.

> T wish to learn (Multiparty) Session Types. What is the
best paper?

> (Multiparty) Session Types can verify/specify XXX?

> What is a relationship between (Multiparty) Session Types
and MSCs/Petr1 Nets/State Machines/...?

Usage on Multiparty Session Types

» Static Type Checking via End Point Projection

— Java, C, Haskell, Ocaml

» Dynamic Type Checking

—> Runtime Monitoring, Python, Erlang, Java, ...

Synthesis

—> Generating BPMN Choreographies and Legacy Code
Analysis

Code Generation

—> MPI Parallel Programming

Ocean Observatories Initiative

» A NSF project (400M$, 5 Years) to build a cyberinfrastructure for
observing oceans around US and beyond.

»> Real-time sensor data constantly coming from both off-shore and

on-shore (e.g. buoys, submarines, under-water cameras, satellites),
transmitted via high-speed networks.

Visible & UV

Radiation
sensible

heat

g transfer

' . Infrared

Ry Radiation

T S Internal
Wave
Hadiation

f Jayne Doucette
!) WHOI Graphics

Ocean Observatories Initiative

e

Science

Cyberinfrastructure

CANARIE n*10Gb

o TransLight 10Gb

Pacific Wave 2*10Gb | ‘

National LambdaRail n*10Gb \\"
Internet2-DCN n*10Gb \\\
UltraLight 10-20Gb *®

“M\aSan Diego

T Tijuana
WHREN-LILA®RGb

‘;""""‘—Eaton

CANARIE-
GLORIAD 2.5Gb |
. CANARIE n*1
CSTNet- 8 g
GLORIAD 1Gb S N\ e —

NLR n*10Gb-
GLORIAD 10Gb

., \ S -
1 anapoN‘

Kansas Clty// Oal’™
Tulsa . Jatel
National
LambdaRail

n*"10Gb -

iL=sTened 10Gb

Internet2- DCN\
n*10Ghb Atlanta \\\

Internet2-DCIT™10Gb
LONI 10Gb \\ National LambdaiZ#a:10Gb

®\ Jacksonville

Rouge
Fiouston v AtlanticWave 10Gb

AMPATH #
| ETT

Ocean Observatories Initiative

Challenges

» The need to specify, catalogue, program, implement and
manage multiparty message passing protocols.
» Communication assurance
> Correct message ordering and synchronisation
Deadlock-freedom, progress and liveness

Dynamic message monitoring and recovery

Logical constraints on message values

» Shared and used over a long-term period (e.g. 30 years in
OO0I).

Why Multiparty Session Types?

»> Robin Milner (2002): Types are the leaven of computer
programming, they make it digestible.

—> Can describe communication protocols as fypes
—> Can be materialised as new communications

programming languages and tool chains.

» Scalable automatic verifications (deadlock-freedom, safety
and liveness) without state-space explosion problems

(polynomial time complexity).

» Extendable to logical verifications and flexible dynamic

monitoring.

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

U
Formalisation of W3C WS-CDL [ESOP’07)

J
Scribble at T4 Technology

CDL Equivalent

* Basic example:

package HelloWorld {
roleType YouRole, WorldRole;
participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole

relationship=YouWorldRel channel=worldChannel {
request messageType=Hello;

Dr Gary Brown (P14 Tech) 1n 2007

Scribble Protocol

» "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

* Basic example:

protocol HelloWorld {

role You, World;
Hello from You to World;

Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

|
Formalisation of W3C WS-CDL [ESOP’07]

Y
Scribble at T4 Technology

4

Multiparty Session Types [POPL08]
Y

®. SCIj.bb].e redhat

Dialogue between Industry and Academia

Binary Session Types [PARL'94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

|
Formalisation of W3C WS-CDL [ESOP’07]

Y
Scribble at T4 Technology

4

Multiparty Session Types [POPL08]
Y

\ A
OQL (& scribble % SAVARA ©

Cognizant

Binary Sesston T)/PES : BU)/ey»- Seller P P'o'tc:cal

(Buyer Seller

branch

! String ;2 Int) @ ok.:Tstring i PDate jend, qUTT :end §

bran ch

!.S-m-nj ;2Int; @{ok:"string:?Date jend, qUTt rend]
doal ? String; TInt 5 8 {ok: ?5tring,! Datejend quit:end}

Session Types Overview

Projection

Type
checking

P, alice

» Properties

P, carol

Global
type

Local
types

- Processes

G = alice—bob(nat);
bob—carol(nat);end

Thob = ?(alice, nat).
I (carol, nat).end

Poob = 7(alice)(x).

I (carol,x+1).0

Communication safety (no communication mismatch)

Communication fidelity (the communication follow the protocol)

Progress (no deadlock/stuck in a session)

Evolution Of MPST

» Binary Session Types [THK98, HVK 98]

» Multiparty Session Types [POPL'08]

» ATheory of Design-by-Contract for Distributed Multiparty Interactions [Concur’| |]
» Multiparty Session Types Meet Communicating Automata [ESOP’12, ICALP’| 3]

» Network Monitoring through Multiparty Session Types [FMOODS’| 3]

T e R —— — - —— E—— E— E—— e

» Distributed Runtime Verification with Session Types and Python [FMSD
« Multiparty Session Actors [COORDINATION'14]

| — —

Session Types for Runtime Verification

» Methodology
Developers design

protocols in a dedicated
language - Scribble

Well-fomedness is checked
by Scribble tools

Protocols are projected
into local types

Local types generate
monitors

Specification
(Scribble)

<

Implementation
(Java, Scala, C, h
Ocaml, Fython)

Verifying
Communication
(Static & Dynamic)

\ 4

Global Protocol

Projection

/

Local Local Local
Specifications Specifications Specifications 1

Source Code Source Code Source Code|| Static

" Type
Checker

Conversation Conversation Conversation

Runtime Runtime Runtime

|

Safe Network __ /)

www.scribble.org

(S Scribble

What is Scribble? An example

Soribble is a language to descoibe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do meaningful interaction: participants global protocol Helloworld(role e, role World) {
simply cannct communicate effectively, since they do not know when to expecdt the hello{Greetings) from Me to world;

other parties to send data, or whether the other party is ready to receive data. choice at world {

module examples;

However, having a desoription of a8 protocol has further benefits. It enables verification 3 : R i A Lo =
or

to ensure that the protoccol can be implemented without resulting in unintended hello{ £+) rom Wordd to Meg

conseguences, such as deadlooks.

Find out more ___

A very simply example, but this illustrates the basic syntax for 8 hello world interaction,
where a party performing the role Me sends a message of type Greelings to ancther
party performing the role "World”, who subseguently makes a decisicn which determines
which path of the choice will be followed, resulting in 8 Goodioming or
GoodAfiemoon message being exchanged.

Describe #' Verify 15 Projectz « Implement & Monitor Q

scribble is a language =cribble has a theoretical foundation, Endpeint projection is Various options exist, including (a) Use the endpoint
for describing based on the Pi Calculus and Session the term used for using the endpoint projection for a projection for roles
multiparty protocols Tvpes, to ensure that protocols identifying the role to generate a skeleton code, (b} defined within a

Two Buyer Protocol in Scribble

le Bookstore;

<java> "java.lang.Integer" from "rt.jar" as Integer;
<java> "java.lang.String" from "rt.jar" as String;

1l protocol TwoBuyers(role A, role B, role S) {
.itle(String) from A to S;
luote (Integer) from S to A, B;
‘ec LOOP {

share (Integer) from A to B;

choice at B {
accept (address:String) from B to A, S;
date(String) from S to B;

Buyeri, Seller

___ title ——ﬁ
— quote —

e~ Tﬂﬂeéﬁl‘l

Buyer: A local projection

module Bookstore_TwoBuyers_A;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

local protocol TwoBuyers_A at A(role A, role B, role S) {
title(String) to S;
quote (Integer) from S;
rec LOOP {
share(Integer) to B;
choice at B {
accept (address:String) from B;
} or {
retry() from B;
continue LOOP;
} or {
quit() from B;
1}

OOl

agent negotiation

Consumer
Agent

Megatiation starting by a
Carsumar making a proposal
then accepled by Provder and

canfimad by Cansumar

ALT

Magatiabon staring by the
Providar inviling a Consurmear
with a proposal. acoepled by
Coreumaer and canfrmed by

Provider

ALT

Megotiation staring by a A
Consurmes makirg a proposal,
The recipienl {Provider) makes
a counler-aropasal supplanling
SAP_1, which & then accepled
by Cansumear ard canfirmed by
L& Pronvider.

ALT

Megotalion slarting by &
Consumer makifg & proposal,
rejeciad by the Provider erding

the Mapgaolialan

» https://confluence.oceanobservatories.org/display/syseng/

1/5

Ag

Provider

ent

negotiate: raquast{SAP_1)

negoliate: accept(SAP_1, details)

Confirm is the
complementary accept
by the other party (both

negotiate: confirm(SAP 1)

—

must accept for an
ggreement), |

RV PRVRRE L .. -

negotiate: invite(SAP 1)

With a mutual accept, at
lezst one commitment
on each side of the
ponversation results

negotiate: accept{SAP 1, details)

imay be mulbiple). The

negotiate: confirniSAP_1)

contract is as stated in

negotiate: request{3AF_1)

negotiate: counter-propose{3AP_2)

__/,-——’J A counter-propose is a
new SAP, but it typically

negotiate: accept{SAP_2, details)

refinas or partially
madifies the prior SAP,

negotiate: confirm(SAP_Z)

negotiate; requestiSAP_1)

Any party can reject

negotiate: reject{SAP_1) ————_

instead of counter-
— propose (or acoept)

CIAD+COI+0V+Negotiate+Protocol

11/ 42

OOI agent negotiation 2/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

Consumer Provider
Agent Agent
negotiate: raquesi{SAP_1) Torim s the

Nrgotiation starting by & complementary accept
ool g warkiater stoppliSAP_Y, delalis) by the other party (both

S negatiate: confirm(SAP 1) ‘;'_"":_-l must accept for an

ggreement) |
_______J With a mutual accept, at
————————————————————————:E—\‘ least one commitment
AT on each side of the

Mepaliabon staring by tho
Providar inviling & Cansumar
with a proposal, accepbed by
Comsumar and canfirmed by

Provider

ALT

Megotialion staring by a
Congumes rmaking 8 proposal.
The recipienl |Provider) makes

A eouriler-propassl supplanling

SAP_1, which i then accepled

Ly Consurmer and confirmed by
Lhe Prowider.

ALT

Megesalion starting by &

Censumer making & proposal,

rajected by te Provider arding
the Kegoliaton

negotiate: invite(SAP_1)

conversation results

negotiate: accept(SAP_1, details)

(may be multiple}. The
contract is as stated in

negotiate: confirm(SAP_1)

negotiate: request{SAP_1)

A counter-propose is a

negotiate: counter-propose{SAP_2)

rew SAP, but it typically
refines or partially

negotiate, accept(SAP_2, details)

modifies the prior SAP,

negotiate: confirm({SAP_2)

negotiate: request{SAF_1)

Any party can reject

instead of counter-

negotiate: reject{SAP_1) —-ﬁ—__‘ proposa (or accept)
|

12 /42

OOl agent negotiation 3/5 (choice)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

choice at P {
accept() from P to C;
confirm() from C to P;
} or A
reject() from P to C;
} or {
propose(SAP) from P to C;

I,

Consumer
Agent

Consumar making a proposal
than accepted by Provider and

Nagatiation starting by a
confimed by Cansumar

ALT

Mepaliabon staring by tho
Providar inviling & Cansumar
with a proposal, accepbed by
Comsumar and canfirmed by

Provider

ALT

Megotialion staring by a
Consumes rsking 8 proposal,
The recipienl |Provider) makes
@ eounler-propasal supplanling
SAP_1, which &= ihen accepled
by Cansumer and confirmed by

Lhe Proyider.

ALT

Megotialion staring by &
Consumer making & propoesal,
rejectad by the Provider ending
fhe Kegaliahan.

negotiate: raquesi{SAP_1)

Provider
Agent

Confirm is the

negoliale: accept(SAP_1, details)

complementary accept
by the other party (both

negotiate: confirm({SAP 1)

must accept for an
— agreament)

negotiate: invite(SAP_1)

PPN .. -

With a mutual accept, at
least one commitment
on each side of the
conversation results

negotiate: accept(SAP_1, details)

(may be multiple}. The
contract is as stated in

negotiate: confirm(SAP_1)

negotiate: request{SAP_1)

,_,r--l A counter-propose is a

negotiate: counter-propose{SAP_2)

rew SAP, but it typically
refines or partially

negotiate, accept(SAP_2, details)

modifies the prior SAP,

negotiate: confirm(SAP_2)

negotiate: request{SAF_1)

Any party can reject

instead of counter-

negotiate: reject{SAP_1) —-"—_'-_'——'_-—-_| propose (or accept)
|

13 /42

OOl agent negotiation 4/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose(SAP) from C to P;

choice at P {

F o+l

accept() from P to C;
confirm() from C to P;
or {
reject() from P to C;
or {
propose(SAP) from P to C;
choice at C {

accept() from C to P;

confirm() from P to C;
} or Ao

reject() from C to P;
} or A{

propose(SAP) from C to P;

Consumer
Agent

negotiate: raquesi{SAP_1)

Provider

Agent

Confirm is the

Consumar making a proposal
than accepted by Provider and

negoliale: accept(SAP_1, details)

complementary accept
by the other party (both

Nagatiation starting by a l

confimed by Cansumar

negotiate: confirm({SAP 1)

— must accept for an
1

agresment)

el e e e N

ALT

negotiate: invite(SAP_1)

With a mutual accept, at
least one commitment
on each side of the
conversation results

Mepaliabon staring by tho
Providar inviling & Cansumar

negotiate: accept(SAP_1, details)

(may be multiple}. The
contract is as stated in

with a proposal, accepbed by
Comsumar and canfirmed by
Provider

negotiate: confirm(SAP_1)

ALT

negotiate: request{SAP_1)

,,._—-I A counter-propose is a

Megotialion staring by a

negotiate: counter-propose{SAP_2)

rew SAP, but it typically

refines or partially

Consumes rsking 8 proposal,
The recipient {Provider) makes
@ eounler-propasal supplanling

negotiate, accept(SAP_2, details)

modifies the prior SAP,

SAP 1, which i then acepled
by Camsurress ard eonfirmed by

negotiate: confirm(SAP_2)

Lhe Proyvider.

negotiate: request{SAF_1)

Any party can reject

Megotalion starfing by a
Consumer making & propoesal,

instead of counter-

rejectad by the Proviter ending
the Nagalisan

negotiate: reject{SAP_1) —-f-_'—-l_-—-_‘ propose (or accept)
|

14 / 42

OOI agent negotiation 5/5 (recursion)
type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;
rec X {
choice at P {
accept() from P to C;
confirm() from C to P;
} or A{
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
} or Ao
reject() from C to P;
} or A{
propose(SAP) from C to P;
continue X;

+
+

Consumer
Agent

negotiate: raquesi{SAP_1)

Provider

Agent

Confirm is the

Consumar making a proposal
than accepted by Provider and

negoliale: accept(SAP_1, details)

complementary accept
by the other party (both

Nagatiation starting by a l

confimed by Cansumar

negotiate: confirm({SAP 1)

—

must accept for an
agresment)

el e e e N

ALT

negotiate: invite(SAP_1)

With a mutual accept, at
least one commitment
on each side of the
conversation results

Mepaliabon staring by tho
Providar inviling & Cansumar

negotiate: accept(SAP_1, details)

(may be multiple}. The
contract is as stated in

with a proposal, accepbed by
Comsumar and canfirmed by
Provider

negotiate: confirm(SAP_1)

negotiate: request{SAP_1)

,,._—-I A counter-propose is a

negotiate: counter-propose{SAP_2)

rew SAP, but it typically
refines or partially

ComsLamer g & proposal.
The recipient {Provider) makes
@ eounler-propasal supplanling

negotiate, accept(SAP_2, details)

modifies the prior SAP,

SAP 1, which i then acepled
by Camsurress ard eonfirmed by

negotiate: confirm(SAP_2)

Lhe Proyvider.

negotiate: request{SAF_1)

Any party can reject

Megotalion starfing by a
Consumer making & propoesal,

instead of counter-

rejectad by the Proviter ending
the Nagalisan

negotiate: reject{SAP_1) —-f-_'—-l_-—-_‘ propose (or accept)
|

15 / 42

Local protocol projection (Negotiation Consumer)

// Global
propose(SAP) from C to P;
rec START {
choice at P {
accept() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
+ or {
reject() from C to P;

} or {

propose(SAP) from C to P;

continue START;
2

// Projection for Comnsumer
propose (SAP) to P;
rec START {
choice at P {
accept() from P;
confirm() to P;
} or {
reject() from P;
} oor {

propose(SAP) from P;

choice at C {
accept() to P;
confirm() from P;

} or {
reject() to P;

} oor {
propose(SAP) to P;
continue START;

o+l

19 / 42

20 / 42

(mguos,, d IT s
OGN
(ndasoe;g] (noabrg 0 9

(Jasodoxd; g5\, (hdaooe, g/ (hoabir g

(Jasodoad; g

(Jasodoxd;g

FSM generation (Negotiation Consumer)

Scribble Community

» Webpage:
» GitHub:

» Tutorial:

» Specification (0.3)

'Scribble online checker: scribble.doc.ic.ac.uk |

= E— e

http://scribble.doc.ic.ac.uk

MU'Tl‘Pan*y ComPattbilrr): " Commumcafrhj

Auto matq

Synthests and Characterisation of
‘ Hu'ﬁpar't)' Sesston Tyres

ICALP’13

Nobuke Yoshide Prerre ~Malo Denteldy,

; 'Ok ?
. Deterministic '“CH 'OKC{‘),G i
9. No- Mixed State Q?A . Q
faate, | '
3. Compatible @ dual dm

[GOUda et al |qg6} Two ComPaﬂble machimes
without m7xed States u}'h]‘ch are deterministic

saﬁsw‘y deadlock - freedom.

http:/ /www.zdlc.co/faq/

) LWynicam Home ZDLC Solutions FAQ Resources Events Blog Contact Partners Cognizant

Professor Steve Ross-Talbot

Managing Director, ZDLC BU
Cognizant Technical Services

Zero

Deviation Life Cycle Platform

i System
Behaviour

Application
Logs

e - ———— —_—

THB L

' System logs,
' DB Logs

i Adapters

C/C++

JAVA

NET

IBM BPM

TANDEM

ORACLE DB

.
()
'
[
e
f
L
L
L)
e
f
L
f
o
.y
e
'
'
f
'
L}
L
[
e
L
Ly
o
e
[
L
'
f
'
[
e
'
o
'
L}
f
'
e
'
'
f
'
[
L
'
f
L
[
[
'y
'y
)
)
f

Reverse Report i
Engineering || Composer i
Core Module | ¥

Configuration
Matrix

2
>
©
0
2
80
=
=
o)
a
0
-2

Generic
Parser ||

SCRIBBLE

l UML & BPMN2 I
~

From Communicating Machines to Graphical
Choreographies [POPL’15]

;

f }
{ N 1 (IC—D:busy)
(A—>C:cwin) (A—B:bwin)
Y Y
[C—»B blose B—>C close

[v
(B—A:sig) T‘

|A—C:score)

[ESOP'10,ESOP'12,CONCUR'12,CONCUR'14]

A complete parallel programming workflow

Message Passing Algorithms [CC’15]

Captures parallel interaction patterns by Pabble language
Combines with sequential computation kernels in C
Generates communication safe & deadlock free MP| programs
Optimisation as part of merging technique

a-2 @
Custom Pabble :fr/

global protocols |.'epository

Communication protocol

Sequential code

1
Common

b

protocols Sequential
kernels (C99)

s

(

Pabble tool j

¥

Endpoint protocol

x_;

Protocol compiler
(Automatic)

o

MPI codegen]
C] !
MPI ba

ckbone

d.e :
/ LARA weaver

Output(s)

/

Optimised MPI
application

/i

Non-Optimised MPI
application

J

http://mrg.doc.ic.ac.uk

3

Evaluation

Productivity: Flexibility "
nbody
Reusable protocols
e e.g. scatter-gather wordcount
e e.g. stencll adpredictor
montecarlo

Berkeley Dwarfs [cACM 09]
e Representative

montecarlo-mw

: LEsolver
parallel computing
patterns atvec
e 4 of 5 HPC patterns
fft64

7C

stencil*

ring*
scatter-gather*
scatter-gather*
scatter-gather*
master-worker*

wraparound mesh

custom

6-step butterfly

Repository Berkeley HPC Dwarfs

Yes

Yes

Yes

Yes

Yes

Yes

Structured Grid

Particle Methods

Structured Grid

Dense Matrix

Spectral (FFT)

http://mrg.doc.ic.ac.uk 20

Pabble Backbone Kernel Effort
. LOC(P) LOC (B) LOC(K)
Evaluation |
heateq stencil* 154 335 0.69
Productivity: Effort nbody ring* 93 298 0.71
Protocols in repository ~ wordcount scatter-gather* 76 176 0.70
e Use backbone directly adpredictor scatter-gather* 76 182 0.71
e \Write kernel
o Effort=K/B+K montecarlo scatter-gather* 76 70 0.48
montecarlo-mw master-worker* 82 70 0.46
Custom protocols LEsolver wraparound mesh | 15 132 208 0.66
e \Write Pabble protocol
e T[ool generate backbone matvec custom 15 130 117 0.41
o \Write kernel
6-step butterfl
o Effort = P+K | B+K fft64 stepbutterfly | 11 64 134 0.68
Eff_ort ratio

JU LOC savings

http://mrg.doc.ic.ac.uk 21

Session Type Reading List

» Home Page http://mrg.doc.ic.ac.uk/

»> [ESOP'98] Language Primitives and Type Disciplines for Structured

>

Communication-based Programming, Honda, Vasconcelos and
Kubo

[SecRet’06] Language Primitives and Type Disciplines for Structured

Communication-based Programming Revisited, Yoshida and
Vasconcelos, ENTCS.

[SFM’15] Gentle Introduction to Multiparty Asynchronous Session
Types, Coppo et al.

[POPL’15] From communicating machines to graphical
choreographies, Lange, Tuosto and Yoshida.

[COB’14,TGC’13] The Scribble Protocol Language, Honda et al.

[ECOOP’08] Session-Based Distributed Programming in Java, Hu,
Yoshida and Honda.

[FMSD’15] Practical interruptible conversations: Distributed dynamic
verification with multiparty session types and Python, Demangeon,
Honda, Hu, Neykova and Yoshida.

[CC’15] Protocols by Default: Safe MPI Code Generation based on

Session Types, Ng, Coutinho and Yoshida.

