Concurrent Types as Engineering Principles
for Large Distributed Systems

http://mrg.doc.ic.ac.uk/

Nobuko Yoshida
Imperial College London

The Kohei Honda Prize for Distributed Systems aueen mary, University of Londor

Posted with permission from QN n ec 2013. Original article written by Edmund Robinson

This prize was instituted in 2013 and is awarded annually to one undergraduate student and one postgraduate student in recognition of their achievement in applying the highest
quality scientific and engineering principles in the broad area of Distributed Systems. This is the area in which Dr Honda concentrated most of his teaching, and it is also the area in
which he conducted his research. Its primary funding comes from a donation from his family, who wished to commemorate Dr Honda in this way. Additional funding has come from Dr
Honda's own ETAPS Award. This prize is sponsored by Springer Verlag, and awarded annually by the ETAPS committee in recognition of an individual's research contribution. Dr
Honda received the first such award posthumously, and the awarding panel expressed a wish that the funding be used to supplement this prize fund. The laudation for this award,
written by Dr Honda's colleague, Prof Viadimiro Sassone is included later.

About Dr Honda

Kohei Honda was born and lived the first part of his life in Japan. Like many scientists he was fascinated by the idea of finding basic |
explanatory theories, like the physicists looking for grand unified theories of the universe. Kohei, though, was passionately
interested in finding the right basic explanatory theory for the process of computation. Most academics agree that the basic theory

Winners 2013

e B
W Queen Mary

R | 68 Lt

"% The School of Electronic

e

Ms Anna Pawlicka Mr. Valdmir Negacevshi
2013 winner (Undergraduate) source: QUL 2013 winner {Postgraduate) source: GMUL

Open Problems

» The way to organise software is increasingly based on

communications (Cloud Computing, Many Cores,...)

» Question

> How to formally abstract/specify/implement/control

communications?

> How to apply mobile processes and their type theories to

real distributed applications and programming languages?

Open Problems

» The way to organise software is increasingly based on

communications (Cloud Computing, Many Cores,...)

» Question —> Multiparty session type theory

> How to formally abstract/specify/implement/control

communications?

> How to apply mobile processes and their type theories to
real distributed applications and programming languages?

—> large-scale cyberinfrastructure for e-Science

Ocean Observatories Initiative

» ANSF project (400M$, 5 Years) to build a cyberinfrastructure for
observing oceans around US and beyond.

»> Real-time sensor data constantly coming from both off-shore and

on-shore (e.g. buoys, submarines, under-water cameras, satellites),
transmitted via high-speed networks.

Visible & UV
Radiation

sensible
heat
o transfer

Infrared
R 1w Radiation

Evaporation

B Internal
Wave
Hadiation

f } Jayne Doucette
\ WHOI Graphics

Ocean Observatories Initiative

—_—

Science

Cyberinfrastructure

Vancouver

Seattle

I
Pacific Wave 2*10Gb »‘

National LambdaRail n*10Gb
Internet2-DCN n*10Gb \

UltraLight 10-20Gb

CANARIE n*10Gb

i TransLight 10Gb

WHREN-LILA2GDb

_’r""i"‘;‘galon

Sl
= Wlnni'eg :

CANARIE-
GLORIAD 2.5Gb |
GLORIAD 1Gb

NLR n*10Gb-
GLORIAD 10Gb

2
National

ﬂ LambdaRail
| n*10Gb n 10Gb

LONI 10Gb

\ hnapoN

CANARIE n*10Gb

CANARIE n*1

Montreal
| — ————
k Toro& i/\\‘

y &
t 2.5(H

Qal™\ .
Ridge
.

D
iLsHTened 10Gb

\Inteme12 DCI™J10Ghb

National Lambam. s 10Gb

®\ Jacksonville

Houston Rouge

Ocean Observatories Initiative

AtlanticWave 10Gb

AMPATH #
ET]

Boston

Challenges

» The need to specify, catalogue, program, implement and
manage multiparty message passing protocols.
» Communication assurance
> Correct message ordering and synchronisation
> Deadlock-freedom, progress and liveness
> Dynamic message monitoring and recovery

> Logical constraints on message values

» Shared and used over a long-term period (e.g. 30 years in
OO0l).

Why Multiparty Session Types?

» Robin Milner (2002): Types are the leaven of computer
programming; they make it digestible.

—> Can describe communication protocols as types
—> Can be materialised as new communications

programming languages and tool chains.

» Scalable automatic verifications (deadlock-freedom, safety
and liveness) without state-space explosion problems

(polynomial time complexity).

» Extendable to logical verifications and flexible dynamic

monitoring.

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

Pi calculus versus Petri nets: Let us eat “humble
pie” rather than further inflate the “Pi hype”

W.M.P. van der Aalst

Abstract. In the context of Web Service Composition Languages (WS-
CLs) there is on ongoing debate on the best foundation for Process-
Aware Information Systems (PAISs): Petri nets or Pi calculus. Example
of PAISs are Workflow Management (WFM), Business Process Manage-
ment (BPM), Business-to-Business (B2B), Customer Relationship Man-
agement (CRM), Enterprise Resource Planning (ERP) systems. Clearly,
the web-service paradigm will change the architecture of these systems
dramatically. Therefore, triggered by industry standards such as SOAP,
WSDL, UDDI, etc., standards are being proposed for orchestrating web
services. Examples of such WSCLs are BPELAWS, BPML, WSFL, WSCI,
and XLANG. In the debate on Petri nets versus Pi calculus many players
in the “WSCL marketplace” are using demagogic arguments not based

Petri-Pi Working Group led by R. Milner and
W.M.P van der Aalst started in 2003

Beginning: Petri-P1

From: Robin Milner

Date: Wed, February 11, 2004 1:02 pm

Steve

Thanks for that. I believe the pi-calculus team ought to be able to do

something with it -- you seem to be taking it in that direction already.

Nobuko, Kohei: I thought we ought to try to model use-cases 1in
pi-calculus, with copious explanations in natural language, aiming at
seeing how various concepts like role, transaction, .. would be
modelled in pi. I am hoping to try this one when I get time; you might
like to try too, and see if we agree!

Robin

CDL Equivalent

* Basic example:

package HelloWorld {
roleType YouRole, WorldRole;
participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel,

interaction operation=hello from=YouRole to=WorldRole

relationship=YouWorldRel channel=worldChannel {
request messageType=Hello;

Dr Gary Brown (Pi4 Tech) in 2007

Scribble Protocol

» "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling" - Kohei Honda 2007

e Basic example:

protocol HelloWorld {

role You, World;
Hello from You to World;

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

4

@> SCIlbble red|:) at

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4
Multiparty Session Types [POPL 08]

Cognizant |

Binary Se.SSan TYPQS . BU)IEV"' S&“EV" PPOTQC'QI

BUYEY' _.Sel\EV‘

branch

! S‘lﬁnj ;2Int) @ ok.:Istring; Date jend, qUTT cend }

branch

I S-rrmj ;2 Int) @{OK‘-!.STrrnji?DMe;ehd, qQuTt zend 3

dal ? String s TInt 5 8 {ok: PString;! Datejend, quit:end}

Hul-l-?quf)/ Session Types
Buyeri, Seller B'J)/EF2

Hul-l-?quf)/ Session Types
Buyeri, Seller B'J)/EF2

Session Types Overview :TD

By 08l G = alice—bob(nat);
: type bob—carol(nat);end
Projection
........... Local Thob = ?(alice, nat).
| types I (carol, nat).end

Type
checking

Poob = ?(alice)(x).

I {carol,x +1).0

Paiice - Poob |- Pearol | Processes

» Properties
Communication safety (no communication mismatch)
Communication fidelity (the communication follow the protocol)

Progress (no deadlock/stuck in a session)

Evolution Of MPST

» Binary Session Types [THK98, HVK98]

%

» Multiparty Session Types [POPL08]

L

» ATheory of Design-by-Contract for Distributed Multiparty Interactions [Concur’l |]

Y

» Multiparty Session Types Meet Communicating Automata [ESOP’12, ICALP’ | 3]

v

» Network Monitoring through Multiparty Session Types [FMOODS’ | 3]

v

» SPY: Local Verification of Global Protocols [RV’ | 3]
» Distributed Runtime Verification with Session Types and Python [RV’| 3]

Session Types for Runtime Verification

» Methodology
Developers design

protocols in a dedicated
language - Scribble

Well-fomedness is checked
by Scribble tools

Protocols are projected
into local types

Local types generate
monitors

Specification J

(Scribble)

Implementation
(Java, Scala, C, A
Ocaml, Fython)

Verifying
Communication<
(Static & Dynamic)

\/4

Local
Specifications

Global Protocol

Projection

Local Local
= Specifications Specifications 1

Source Code

Source Code

Source Code

Conversation
Runtime

Conversation
Runtime

Conversation

Runtime

Static

Type
Checker

Safe Network

www.scribble.org

(S Scribble

What is Scribble? An example

Soibble is a language to desoibe application-level protocels among communicating
systemns. A protocol represents an agreement on how participating systems interact with
each cther. Without a protocol, it is hard to do meaningful interaction: participants

module examples;

global protocel Helloeorld(role Me, role kiorld) {

simply cannot communicate effectively, since they do not know when to expect the hello(Greetings) from Me to world;

other parties to send data, or whether the other party is ready to receive data. choice at world {

However, having 8 description of a8 protocol has further benefits. It enables verification L8 D Ll fel, 3
to ensure that the protocol can be implemented without resulting in unintended perd hellof Fr e T G
conseguences, such as deadlooks. } !

Find out more ... A very simply example, but this illustrates the basic syntax for a hello world interaction,

where a party performing the role Me sends 8 message of type Greefings to ancther

party performing the role "Werld', who subsequently makes a decision which determines
which path of the choice will be followed, resulting in a GoodMoming or
GoodAftemoon message being exchanged.

- > = - LA -_— -
Describe # Verify 1 Project. s Implement= Monitor Q
Scribble i= a language Scribble has a theoretical foundation, Endpoint projection is Various options exist, including (a) Usze the endpoint
for describing bazed on the Pi Calculus and Session the term used for using the endpoint projection for a projection for roles
multiparty protocols Types, to ensure that protocols identifying the role to generate a skeleton code, (b) defined within a

Two Buyer Protocol in Scribble

module Bookstore;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

global protocol TwoBuyers(role A, role B, role S) {
title(String) from A to S;
quote (Integer) from S to A, B;
rec LOOP {

share (Integer) from A to B; vaeri. Seller Buyer 2
choice at B {
accept (address:String) from B to A, S;
date(String) from S to B; ___ title
}or A —_—|— quote
retry() from B to A, S; L——quo‘fe 1
continue LOOP; SRS quotei'l-"'—
} or {
quit() from B to A, S; ¢ -0k
}y } } addresS§—
date—m>

Buyer: A local projection

module Bookstore_TwoBuyers_A;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

local protocol TwoBuyers_A at A(role A, role B, role S) {
title(String) to S;
quote (Integer) from S;
rec LOOP {
share(Integer) to B;
choice at B {
accept(address:String) from B;
} or {
retry() from B;
continue LOOP;
} or {
quit() from B;
P}

'

©

OOl agent negotiati

on1/5

Consumer Provider
Agent Agent
negotiale: requast(SAF_1) Tonhmm 15 The
Megotiation starting by & complementary accep
Co ki a ;
confimed by Canrsumar ; must accept for an
negotiate: confim(SAP 1) _.f""___-"'.__—l i i,
With a mutual accept, at
————————————————————————:S; least one commitment
AT g 2 on each side of the
- : negotiate: invitel SAP 1) araation resus
habon s2ari 1 -
il riiting i il negotiate: accept{SAP_1, details) (may be multiple). The
with a propasal, accepted by contract is as stated in
Consumer and canfrmed by negotiate; confirmiSAP_1)
Provider
ALT

negotiate: requast{SAP_1)

Megotiation staring by a
Consumes making a proposal.

negotiate: counter-propose{SAP_2)

] a counter-propose s a

e SAP, but it typically

The racipient {Previder) meakes
@ eounler-propossl. supplanling

negotiate: accept(SAP_2, details)

refines or partially
modifies the prior SAP,

SAP 1, which i then accepled
by Carsurmer aed canfirmad by
I Pravider.

neqotiate: confirmi(SAP_Z)

ALT

negotiate: request{SAP_1)

Any party can raject

MNegotalion stading by a
Consumer making & proposal,
rejeciad by the Provider erding

negotiate: reject(SAF_1)

———

instead of counter-
T propose (or accept)

the Megoliatian

» https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Negotiate+Protocol

11/ 42

OOl agent negotiation 2/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

Negatiatian starting by a
Carsumar making a propasal
then accepted by Frovider and

wcanfimnad by Cansumar

Wegatiabion staring by the
Prewidar inviling & Cansumar
with a propasal. accepled by
Cansumer and candrmed by

Provider

Megolistion stariing by &
Consuries msking & proposal.
The racipienl (Provider) makes.

@ counler-propasal. supplanting
EAP 1, which i then accepled
Ly Carsumer snd eanfirmed by

Ihe Provides.

Consumer Provider
Agent Agent
negotiate: requast{SAP_1) i
complementary accept
negoliate: accept{SAP_1, details) by thF: other p;yrty {both
negotiate: confirm(SAP 1) ‘ﬁ:_——l st accept fa; LU

-a-\..:__‘ With a2 mutual accept, at

least one commitment

negotiate: invite(SAP_1)

on sach side of the
conversation results

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

negotiate: confirm({SAP_1)

negotiate: request{SAP_1)

negotiate: counter-propose{SAP_2)

,.-J—J A counter-propose is a

new SAP, but it typically

negotiate: accept|SAP_2, details)

refines or partially
modifies the prior SAP.

negotiate: confirm(SAP_2)

MNegodation staring by &
Consumer makirg & propoesl,
rejecied by Be Provider ending
the Negoliafon.

negotiate: request{SAF_1)

Any party can reject
instead of counter-

negotiate: reject(SAP_1) —-#___‘ propose (or accept)
|

12/ 42

OOI agent negotiation 3/5 (choice)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose(SAP) from C to P;

choice at P {
accept() from P to C;

Consumer Provider
confirm() from C to P; e | e
negotiate: requast{SAP_1) mis
} or { R ot accolSAP_1 detal) oo ey o
. C I A A negotiate: confim(SAP_1) .::i:_-—l mum;r -
reject() from P to C;
} or S . Y
R s ALT n.cgo.tiate_ invite(SAP_1) : tr%ﬁ;ﬁlfié?ﬁze
propose(SAP) from P to C; st reaRtale AP 1, el '

contract is as stated in
Cansumer and candrmed by negotiate: confirm{SAP_1)

Pravider
ALT negotiate: requast{SAP_1 =
got quash) _.J A counter-propose is a
o) it SAP, but it typlcally
Mesgotiati negotiate: counter-propose(SAP_2) fo
m..g.m::.'m"a"f.ﬂ:ﬂu. ot i refines or partially
Thes recipient (Provider) meakes iate. 7 madifies the prior SAP.
A sl St negotiate: accept(SAP_2, details) P
SAP_1, which i then accepied :
by C\;mml:r a:n:u“mu by negotiate: confirm({SAP_2)
b Provider.
ALT negotiate: request{SAP_1) Any party can reject
Megotalion starfing by a instead of counter-
Consumer making & propesal, negotiate: reject(SAP_1) —-=:__'.1___| coept
rejected by e Provider ending RRpOSR IO)
the Negoliafon. |

3

13/ 42

OOl agent negotiation 4/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

choice at P {

accept() from P to C;

confirm() from C to P;
} oor {

reject() from P to C;
} or {

propose(SAP) from P to C;

choice at C {

accept() from C to P;

confirm() from P to C;
} or {

reject() from C to P;
} or {

propose(SAP) from C to P;

P r}

Consumer
Agent

negotiate: requast{SAP_1)

Provider
Agent

m s

negoliate: accept{SAP_1, details)

complementary accept
by the other party (bath

negotiate: confirm{SAP 1)

must accept for an
— agreement}

-a-\..:__‘ With a2 mutual accept, at

negotiate: invite(SAP_1)

least one commitment
on each side of the
conversation results

5ol B by
Previitdar inviling a Cansumar

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepled by
Cansumer and candrmed by
Provider

negotiate: confirm{SAP_1)

negotiate: request{SAP_1)

_.--—J A counter-propose is a

Megatiation starting by 3
Comsueines rnshing 4 proposal.

negotiate: counter-propose{SAP_2)

new SAP, but it typically

The recipienl (Provider) makes
@ counler-propasal. supplanting

negotiate: accept|SAP_2, details)

refines or partially
madifies the prior SAP.

SAP 1, which i then aceepied
by Carssumar snt eanfrmed by

negotiate: confirm({SAP_2)

Ihe Provides.

ALT

negotiate: request{SAF_1)

Any party can reject
instead of counter-

MNegodation staring by &
Consumer makirg & propoesl,
rejected by te Provider ending

the Negoliakon.

negofiate: reject(SAP_1) ——==———_ propose (or acoept)
|

14 / 42

OOl agent negotiation 5/5 (recursion)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;
rec X {
choice at P {
accept() from P to C;
confirm() from C to P;
+ or {
reject() from P to C;
} or {

propose(SAP) from P to C;

choice at C {
accept() from C to P;
confirm() from P to C;
} or {
reject() from C to P;

} or {

propose(SAP) from C to P

continue X;

}
+

negotiate: requast{SAP_1)

Provider

Agent

m s

negoliate: accept{SAP_1, details)

complementary accept
by the other party (bath

Consumer
Agent
Megatiatian starting by a
Cansumar making # proposal
then accegited by Provider and
canfimmad by Carsumar

negotiate: confirm{SAP 1)

must accept for an
— agreement}

-a-\..:__‘ With a2 mutual accept, at

negotiate: invite(SAP_1)

least one commitment
on each side of the
conversation results

5ol B by
Previitdar inviling a Cansumar

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepled by
Cansumer and candrmed by
Provider

negotiate: confirm{SAP_1)

ALT

negotiate: request{SAP_1)

_.--—J A counter-propose is a

Megatiation starting by 3

negotiate: counter-propose{SAP_2)

new SAP, but it typically

refines or partially

Comsueines rnshing 4 proposal.
The recipient (Provider) rakes

negotiate: accept|SAP_2, details)

madifies the prior SAP.

@ counler-propasal. supplanting
SAP_1, which i ihen accepied
Ly Carsumer snd eanfirmed by

negotiate: confirm({SAP_2)

Ihe Provides.

ALT

negotiate: request{SAF_1)

Any party can reject
instead of counter-

MNegodation staring by &
Consumer makirg & propoesl,

negofiate: reject(SAP_1) ——==———_ propose (or acoept)
|

rejecied by Be Provider ending
the Negoliakon.

15/ 42

Local protocol projection (Negotiation Consumer)

// Global
propose (SAP) from C to P;
rec START A
choice at P {
accept() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
+ oor {
reject() from C to P;
} or {

propose(SAP) from C to P;

continue START;
3

// Projection for Consumer
propose(SAP) to P;
rec START A
choice at P {
accept() from P;
confirm() to P;
} or {
reject() from P;
} or {

propose(SAP) from P;

choice at C {
accept() to P;
confirm() from P;

+ or {
reject() to P;

} or {
propose(SAP) to P;
continue START;

}r}

19 / 42

20 / 42

(oo, g 1T s
SO CORN L
(ndasoeidl (haakrd ’ °

(asodoxd; 2N\ (hdasae g/ (Woabr g

(Jazodoad; g

(Jasodoxd; g

FSM generation (Negotiation Consumer)

Scribble Community

» Webpage:
» www.scribble.org

» GitHub:
» https://github.com/scribble

» Tutorial:

» www.doc.ic.ac.uk/~rhu/scribble/tutorial.html
» Specification (0.3)

» www.doc.ic.ac.uk/~rhu/scribble/langref.html

Figure 5: A coordinated set of autonomous underwater vehicles

Figure 3: Observatory comprised of ships, aircraft and autonomous vehicles linked to assimilation
modeling capabilities on shore

%-L OCEAN OBSERVATORY INITIATIVE

SEARCH

RESOURCES
@ All Resources
= Data Products v

BE Obszervatories

& Platforms

= Instruments

Welcome to Release 2 of the Ocean
Observatories |nitiative Observatory
{201). Yeu already have access to
many 00| features and real-time
data. lust elick on something that
looks interesting on this page to start
using the OO| as our Guest.

For persocnalized services, such as
setting up notifications and presery
ing settings for your next visit, create
a free account by clicking an "Create
Account” at the top of the page.

.:_' e
28

Mational Science Foundation working
with Consartium for Ocean Leadership

CURRENT LOCATION

DATA LEGEND

O Temperature
Salimity
0O Oxygen
Diensity
Currents
Sea Surface Height (55H)
Chlorophyll
0 Turbidity
pH
O Seismology

O Other

8

RECENCY

1 Hour
2 houwrs
3 hours
5 hours
2 hours
13 hours
18 haurs
24 hours
48 Hours
72 Hours

RECENT UPDATES

HARE TYFE
O 01 m Oregon Coast Morth Salinity Type

01 m Calitornia South 100m pH Type
0 31 m Califormia South salinity Type
O 23m on Morth Turbidity Type
O 05m on SouthTemparature Type

20 m Chregon Co Currents Type
O @1 h California South Seismclogy Type

 Gregon Coast South 1000m Ox

02 h Californiz Coast Seismology

0 04 h California North Seismology Type

FACEPAGE

EVENT
Ewant
Ewvent
Event
Event
Ewvent
Event
Bvent

Ewvent

RELATED

DESCRIPTION
Description goes here
Description goes here
Description goes here
Description goes here
Description goes here
Description goes here
Description goes here

Description goes here

Description goes here

COMPOSITE

FILTER]

MOTE
Note goes here
MNote goes here
Note goes here
Note goes here
MNote goes here
Nate goes here

Note goes here

Note goes here

MNote goes here

STATUS

CREATE ACCOUNT

Dashboard

RECENT IMAGES

=3

—

POPULAR

UNUSUAL

Glider

Last Modified: 2001-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

Gorgonian Coral

Last Modified: 2011-06-15
Last Wiewed: 2011-12-15
Last Updated: 2011-12-30,

Acoustic Release
Last Modified: 2011-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

RESOURCES

SeaBird COT

Last Modified: 2011-06-15
Last Viewsd: 2011-12-15
lLast Updated: 2011-12-30,

Marine caption

Last Modified: 2011-06-15
Last Viewed; 2011-12-15
Last Updated: 2011-12-30,

Surface Buoy

Last Modified: 2001-06-15
Last Viewed: 2011-12-15
Last Updated: 2011-12-30,

EVENTS

Oregon Coast Wave Heig

Last Modifed: 2001-06-15
Last Viewad: 2011-12-15
lLast Updated: 2011-12-30,

SIGM I

*

13.24

13.24

13.24

13.24

13.24

13.24

13.24

Water Surface Elevation

Last Modified: 2011-06-15
Last Viewed; 2011-12-15
Last Updated: 2011-12-30,

13.24

Language and Implementations

> Carrying out large-scale experiences with OOI, Pivotal, Red Hat,
Congnizant, UNIFI, TrustCare

>> JBoss SCRIBBLE [ICDCIT’10, COB’12] and SAVARA projects
) o High-performance computing

Session Java [ECOOP’08,ECOOP’10,Coordination’ 11]
— Session C & MPI [TOOLS’ 12][Hearts’ 12][EuroMPI’ 12][PDP’ 14]

) 4 Multiparty session languages Ocaml, Java, C, Python, Scala, Jolie

> Trustworthy Pervasive Healthcare Services via Multiparty
Session Types [FHIES 12]

>> Practical interruptible conversations: Distributed dynamic
verification with session types and Python [RV’13]

Multiparty Session Actors [Coordination’ 14]

http:/ /www.zdlc.co/faq/

@ %UB‘EC Home ZDLC Solutions FAQ Resources Events Blog Contact Partners Cognizant

WHAT DOES

Professor Steve Ross-Talbot
Managing Director, ZDLC BU
Cognizant Technical Services

Zero Deviation Life Cycle Platform

System
Behaviour

VM Logs,
Application
Logs

System IoEs,
DB Logs

Adapters

C/C++

JAVA

MAINFRAME

NET

IBM BPM

COBOL

TANDEM

ORACLE DB

MQs

Reverse
Engineering
Core Module

Configuration
Matrix

Generic

Parser

Report
Composer

2
5
©
0
=
8o
=
1=
@)
=
v
o

SCRIBBLE

3

UML & BPMN2

Synthesis of Graphical Choreographies 1/2

[Chareagraphy]

Synthesise

Local Type.l Local Tyrpej-

Validate Validate

Local Typep

Validate

Processy e Process; froe Process,,

@ Multiparty Session Types top-down approach (cf. POPL08 & ESOP’12)

@ Not applicable without a priori knowledge of a choreography

@ Synthesise a choreography from a set of local specifications

@ Concretely: from Communicating Finite-State Machines to Global Graphs

Synthesis of Graphical Choreographies 2/2

aclscore

LBlbwin

;
' '

{ ® l (C—D:busy]

(A—r C: cwin} [A—»B :bwin]

@ [C—»B:blosej (B—:-C:close:l
CD!bus clcse |
CElblose i
CD!busy CDlbusy @ @ 1
@ (C5)

CBlblose .
LC?score B—Alslg

BC?close

Carol Dave

Session Nets 1/2

Graphical global specification based on Petri Nets that
cannot be directly represented in the MPST linear syntax

3\

(Supplier
Supphier
- Provide ltem Deliver Item
§hbp8 Shipper
")
Supplier Shipper =
Deliver e
f) Planned Order Order & Delwery » Checkooint r Suppher N .
N Variations Variatons I
0 Request
Retailer Retailer Retaler Supplier (Supplier) 4
Provide item #{ Deliver Item
J
—- Consignee
D)
Consignee
fr——————— = -
Supplier ‘ Suppiier Consignee m i & Supplier
Finalized PO Accept PO and Retailer Confirmation of PO and Delive Update PO
O‘— and Delivery |-— Delvery t——| Confirmation j-— Delivery o ——— Schedule Moc'sy l4—— and Delivery |ja—
Schedule Schedule Received Schedule o Schedule
Retailer Retaler Rewiler Retaler Retaller | Retaer

An application of the Petri Nets token dynamics to
a conformance validation

Session Nets 2/2

P
/B
-

g = {a +> Planned, b + Order, ¢ +» OrderEnd, d > Checkpoint, e - Provide,
f ++ Deliver, g +— Provide, h + Update,,i +— Provide, j ++ Deliver, k + Provide,
| +— Update,, m + PO, n + POAck, o + PO, p + Accept,,q +> Confirmation,
r +» Retailer, s +» Accept,,t +» Finalized, u +» ProvideEnd}

