Scribble, Runtime Verification and
Multiparty Session Types

6.7 U2

% W

http://mrg.doc.ic.ac.uk/

Nobuko Yoshida

Imperial College London

In collaboration with:

Matthew Arrott (OOI)
Gary Brown (Red Hat)
Stephen Henrie (OOI)

Bippin Makoond (Cognizant/Qualit-¢)
Michael Meisinger (OOI)
Matthew Rawlings (ISO TC68 WG4/5)
Alexis Richardson (RabbitMQ/Pivotal)
Steve Ross-Talbot (Cognizant/Qualit-¢)

and all our academic colleagues

Laura Bocchi, Tzu-Chun Chen, Tiago Cogumbreiro, Romain Demangeon,

Pierre-Malo Denielou, Juliana Franco, Luca Fossati, Dimitrios Kouzapas,
Julien Lange, Rumyana Neykova, Nicholas Ng, Weizhen Yang

The Kohei Honda Prize for Distributed Systems
Original article

This prize was instituted in 2013 and is awarded annually to one undergraduate student and one postgraduate student in recognition of their achievement in applying the highest
quality scientific and engineering principles in the broad area of Distributed Systems. This is the area in which Dr Honda concentrated most of his teaching, and it is also the area in
which he conducted his research. Its primary funding comes from a donation from his family, who wished to commemorate Dr Honda in this way. Additional funding has come from Or
Honda's own ETAPS Award. This prize is sponsored by Springer Verlag, and awarded annually by the ETAPS committee in recognition of an individual's research contribution. Dr
Honda received the first such award posthumously, and the awarding panel expressed a wish that the funding be used to supplement this prize fund. The laudation for this award,
written by Dr Honda's colleague, Prof Viadimiro Sassone is included later.

About Dr Honda

Kohei Honda was born and lived the first part of his life in Japan. Like many scientists he was fascinated by the idea of finding basic |
explanatory theories, like the physicists looking for grand unified theories of the universe. Kohei, though, was passionately
interested in finding the right basic explanatory theory for the process of computation. Most academics agree that the basic theory

Winners 2013

v Queen Mary

W Queen Mary
ey o Lo

" The School of Electronic

ari”

The School of Electéonic

Ms Anna Pawlicka Mr. Valdmir Negacevshi
2013 winner (Undergraduate) source: QMUL 2013 winner (Postgraduate) source: QMUL

» Background
» Multiparty Session Types

» Scribble and Applications to a Large-scale
Cyberinfrastructure

» Monitoring Theory

» Summary

Communication 1s Ubiquitous

Internet, the WWW, Cloud Computing, the next-generation
manycore chips, message-passing parallel computations,
large-scale cyberinfrastructure for e-Science.

The way to organise software is increasingly based on

communications.

Applications need structured series of communications.

» Question

> How to formally abstract/specify/implement/control

communications?

Communication 1s Ubiquitous

Internet, the WWW, Cloud Computing, the next-generation
manycore chips, message-passing parallel computations,

large-scale cyberinfrastructure for e-Science.

The way to organise software is increasingly based on

communications.

Applications need structured series of communications.

B . NN
= Y

K«

\——d")

> Question

> How to formally abstract/specify/implement/control

communications?

Communication 1s Ubiquitous

Internet, the WWW, Cloud Computing, the next-generation
manycore chips, message-passing parallel computations,
large-scale cyberinfrastructure for e-Science .

The way to organise software is increasingly based on

communications.

Applications need structured series of communications.

B— e =
— = -
o = .

£

\———f")

» Question —> Multiparty session type theory

> How to formally abstract/specify/implement/control

communications?

Ocean Observatories Initiative

» ANSF project (400M$, 5 Years) to build a cyberinfrastructure for
observing oceans around US and beyond.

»> Real-time sensor data constantly coming from both off-shore and

on-shore (e.g. buoys, submarines, under-water cameras, satellites),
transmitted via high-speed networks.

Visible & UV
Radiation

sensible
heat
W transfer

Infrared
R\ Radiation

“‘.,‘ g ‘ ,
_.-) ——

——

R % Internal
Wave
Radiation

f) Jayne Doucette
\ WHOI Graphics

Ocean Observatories Initiative

T—
Science

Cyberinfrastructure

Regional ; .
BENTOR s o j v :
NETWORKS NS b 240 S General Public

CONTRCL
L NODES |

Np% CANARIE n*10Gb

ANARIE-
GLORIAD 25Gb |

CANARIE n*10Gb : A CANARIE n*1

CSTNet- SN : Montreal °
RIAD 1Gb S)\« B
. TransLight 10Gb L == =, Chicagy b T..?LQ"}S\V%‘ Ha

| RN . CA NLR n*10Gb- \ [E S aiwanflight 2.5Gb
Pacific Wave 2*10Gb | ‘ NS -~ GLORIAD 1?Gb . ~—= = ~ Boston -

*Salt Lake City.
ftérnet2-

Denver

\\'B DCN n*10Gh : ——— ‘
National LambdaRail n*10Gb \\\ JGN2pig Ka“sasc"y/ " A\,
Internet2-DCN n*10Gb W\ 0Gh. / Tulsa d alo ‘ raFiow 10Gb

UltraLight 10-20Gb By NS “ National

LambdaRail Internet2- DC?\'T\ \/// EnlSETened 10Gb
1 tlant
Ll n*10Gb s §\Imcmet2—0u‘ w10Gb

WHREN-LILA®Gb El Paso - \ : LQNI 10Gb o\ National Lambdaiia#a*10Gb
\;‘ﬁ ¥\ Jacksonville
aton

R
et il AtlanticWave 10Gb

AMPATH #
Miami

Ocean Observatories Initiative

Challenges

» The need to specify, catalogue, program, implement and
manage multiparty message passing protocols.
» Communication assurance
> Correct message ordering and synchronisation
> Deadlock-freedom, progress and liveness
> Dynamic message monitoring and recovery

> Logical constraints on message values

» Shared and used over a long-term period (e.g. 30 years in
OO0l).

Why Multiparty Session Types?

» Robin Milner (2002): Types are the leaven of computer
programming; they make it digestible.

—> Can describe communication protocols as types
—> Can be materialised as new communications

programming languages and tool chains.

» Scalable automatic verifications (deadlock-freedom, safety
and liveness) without state-space explosion problems

(polynomial time complexity).

» Extendable to logical verifications and flexible dynamic

monitoring.

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

CDL Equivalent

* Basic example:

package HelloWorld {

roleType YouRole, WorldRole;

participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole

relationship=YouWorldRel channel=worldChannel {
request messageType=Hello;

Dr Gary Brown (Pi4 Tech) in 2007

Scribble Protocol

» "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling” - Kohei Honda 2007

e Basic example:

protocol HelloWorld {

role You, World;
Hello from You to World;

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

4

@> SCIlbble redlt}at

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP’07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

Cognizant |

Binary Session T)'PQS i Buyey-- Seller Protoce |

Seller

.Buyer

! S-rr.-nj ;2 Int) @{OKt!&tﬂnﬁ;?Dme. end, quTt :ehd_}

bran ch

-'51“""3 ;2Int; Dok "stringi PDate jend, qUTt :end }
dal ?String s TInt 5 §{ok: ?String! Datejend, quit:end}

Mul‘ﬁpqr't)/ Session T)/pes
Buyefi, Seller

Mul‘ﬁpqr't)/ Session T)/pes
Buyefi, Seller

Session Types Overview :TD

By 08l G = alice—bob(nat);
: type bob—carol(nat);end
Projection
........... Local Thob = ?(alice, nat).
| types I (carol, nat).end

Type
checking

Poob = ?(alice)(x).

I {carol,x +1).0

Paiice - Poob |- Pearol | Processes

» Properties
Communication safety (no communication mismatch)
Communication fidelity (the communication follow the protocol)

Progress (no deadlock/stuck in a session)

Evolution Of MPST

» Binary Session Types [THK98, HVK98]

» Multiparty Session Types [POPL08]

{_,

» ATheory of Design-by-Contract for Distributed Multiparty Interactions [Concur’l |]

{_,

» Multiparty Session Types Meet Communicating Automata [ESOP’12, ICALP’13]

\I,

» Network Monitoring through Multiparty Session Types [FMOODS’ | 3]

{_

» SPY: Local Verification of Global Protocols [RV’ | 3]
» Distributed Runtime Verification with Session Types and Python [RV’ 3]

Ocean Observatory Initiative (OOI)

OOl aims: to deploy an infrastructure (global network) to
expand the scientists’ ability to remotely study the ocean

National
LambdaRall
n*10Gb

Usage: Integrate real-time data acquisition, processing
and data storage for ocean research,...

OOI: verification challenges

applications written in different languages, running on
heterogeneous hardware in an asynchronous network.

different authentication domains, external untrusted
applications

various distributed protocols

requires correct, safe interactions

Education

General Public

| \‘~

Session Types for Runtime Verification

» Methodology
Developers design

protocols in a dedicated
language - Scribble

Well-fomedness is checked
by Scribble tools

Protocols are projected
into local types

Local types generate
monitors

Specification
(Scribble)

<

Implementation
(Java, Scala, C, 3
Ocami, Python)

Verifying
Communication]
(Static & Dynamic)

4

Local
= Specifications

Global Protocol

Projection

Local Local
| Specifications Specifications j

Source Code

Source Code

Source Code

Conversation
Runtime

Conversation
Runtime

Conversation

Runtime

Static

Type
Checker

Safe Network

Content

|. Writing correct global protocols with Scribble Compiler
2. Verify programs via local monitors

3. Build additional verification modules via annotations

& scribble b5 Rabbit OAOL
A pg’[hOﬂ

Content

|. Writing correct global protocols with Scribble Compiler

Meet Scribble

Scribble

Protocol Lanﬂuazje

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural
construction come from that unconscious moment, when you do not realise what it is, when there is no concrete
shape, only & whisper which is not & whisper, an image which is not an image, somehow it staris to urge you in your

mind, in 30 small a voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

What is Scribble?

Scribble is a language to describe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do a meaningful interaction: participants simply
cannot communicate effectively, since they do not know when to expect the other parties to
send their data, or whether the other party is ready to receive a datum it is sending. In fact
it is not clear what kinds of data is to be used for each interaction. It is too costly to carry
out communications based on guess works and with inevitable communication mismatch
(synchronisation bugs). Simply, it is not feasible as an engineering practice.

Documents

Protocol Language Guide

Downloads

Java Tools

ConmunH'y
Discussion Forum
Java Tools

Issues
Wik
Pyﬂnon Tools

lssues

Wik

A Global Protocol @

Import type type <python> "StringType" from "Lib/types.py" as str;
00rt o —

| P ©

@@r ——> global protocol Negotiation(role P, role R, role A) {
send-receive ——> offer(string) from P to R;
offer(string) from R to A;
(string) from A to R;
recursion rec START {
@h@ﬁ@@ choice at R {
accept() from R to P;
confirm() from P to R;
}oor A{
offer(string) from R to P;
(conditions:string) from P to R;
continue START;
} or {
reject() from R to P;
confirm() from R to P;}}}

P N ATrS ALy~ P Y=
[PIroteco

Two Buyer Protocol in Scribble

module Bookstore;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

global protocol TwoBuyers(role A, role B, role S) {
title(String) from A to S;
quote(Integer) from S to A, B;
rec LOOP { 8 0
share(Integer) from A to B; Buyeri, Seller]
choice at B {

accept (address:String) from B to A, S;
date(String) from S to B; .___-mle—+

} or { Bl
retry() from B to A, S; L—'QW*C JUscE
continue LOOP;

} or {
quit() from B to A, S; s
oo k—-mﬂwss——-

e qu(ﬂe 20 N

Buyer: A local projection

module Bookstore_TwoBuyers_A;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

local protocol TwoBuyers_A at A(role A, role B, role S) {
title(String) to S;
quote (Integer) from S;
rec LOOP {
share(Integer) to B;
choice at B {
accept(address:String) from B;
} or {
retry() from B;
continue LOOP;
} or {
quit() from B;
P}

'

c

Global protocol well-formedness 1/2

global protocol ChoiceAmbiguous(role A, role B, role C) {
choice at A {
ml() from A to B; // X

m2() from B to C;
m3() from C to A;
} or {
mli() from A to B; // X
m5() from B to C;
m6() from C to A;
3

global protocol ChoiceNotCommunicated(role A, role B, role C) {
choice at A {
mli() from A to B;
m2() from B to C; // X
+ or {
m4() from A to B;
+ o}

17 / 42

Global protocol well-formedness 2/2

global protocol ParallelNotLinear(role A, role B, role C) {
par {
m1() from A to B; // X
m2() from B to C;
} and A
m1() from A to B; // X
m4() from B to C;
o}

global protocol RecursionNoExit(role A, role B, role C, role D) {
rec X {
mi() from A to B;
continue X;
+
m2() from A to B; // Unreachable for A, B
m3() from C to D;

}

18/ 42

Application-level service call composition { @

// Direct specification

global protocol P3(role C, role S1, role S2, role S3, role S4)

{
() from C to S1;
() from S1 to S2;
() from S2 to S1;
() from S1 to S3;
() from S3 to
() from S4 to
() from S3 to
() from S4 to
() from S3 to S1;
() from S1 to C;

Se
-~
-

-
-
-
-

RPC

Pro
Refir

Scoping

global protocol ServiceCall(role Client, role Service) {
() from Client to Server;
() from Server to Client;

¥

// By composing basic ServiceCalls
global protocol P2(role C, role S1, role S2, role S3, role S4)
{
() from C to Si1;
do ServiceCall(S1 as Client, S2 as Server);
() from S1 to S3;
do ServiceCall(S3 as Client, S4 as Server);
do ServiceCall(S3 as Client, S4 as Serve _C St
O from 83 to S1;
() from S1 to C; - we

RPC

RPC

RPC

Scoping

// "Middleman" pattern
global protocol Middleman(
role L, role M, role R, role S)

{

() from L to M;

do ServiceCall(M as Client, S as Server);

do ServiceCall(M as Client, S as Server);

() from M to R;
}
// By composing ServiceCall and Middleman patterns
global protocol P3(role C, role S1, role S2, role S3, role S4)

{

() from C to Si1; < S

do ServiceCall(S1 as Client, S2 as Server); | |

do Middleman(S1 as L, S3 as M, S4 as R); —;7@2;- N
() from S1 to C; /’ —_ |

RPC

RPC

RPC

OOl agent negotiati

on1/5

Consumer Provider
Agent Agent
negotiale: requast(SAF_1) Tonhmm 15 The
Megotiation starting by & complementary accep
Co ki a ;
confimed by Canrsumar ; must accept for an
negotiate: confim(SAP 1) _.f""___-"'.__—l i i,
With a mutual accept, at
————————————————————————:S; least one commitment
AT g 2 on each side of the
- : negotiate: invitel SAP 1) araation resus
habon s2ari 1 -
il riiting i il negotiate: accept{SAP_1, details) (may be multiple). The
with a propasal, accepted by contract is as stated in
Consumer and canfrmed by negotiate; confirmiSAP_1)
Provider
ALT

negotiate: requast{SAP_1)

Megotiation staring by a
Consumes making a proposal.

negotiate: counter-propose{SAP_2)

] a counter-propose s a

e SAP, but it typically

The racipient {Previder) meakes
@ eounler-propossl. supplanling

negotiate: accept(SAP_2, details)

refines or partially
modifies the prior SAP,

SAP 1, which i then accepled
by Carsurmer aed canfirmad by
I Pravider.

neqotiate: confirmi(SAP_Z)

ALT

negotiate: request{SAP_1)

Any party can raject

MNegotalion stading by a
Consumer making & proposal,
rejeciad by the Provider erding

negotiate: reject(SAF_1)

———

instead of counter-
T propose (or accept)

the Megoliatian

» https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+0V+Negotiate+Protocol

11/ 42

OOl agent negotiation 2/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

Negatiatian starting by a
Carsumar making a propasal
then accepted by Frovider and

wcanfimnad by Cansumar

Wegatiabion staring by the
Prewidar inviling & Cansumar
with a propasal. accepled by
Cansumer and candrmed by

Provider

Megolistion stariing by &
Consuries msking & proposal.
The racipienl (Provider) makes.

@ counler-propasal. supplanting
EAP 1, which i then accepled
Ly Carsumer snd eanfirmed by

Ihe Provides.

Consumer Provider
Agent Agent
negotiate: requast{SAP_1) i
complementary accept
negoliate: accept{SAP_1, details) by thF: other p;yrty {both
negotiate: confirm(SAP 1) ‘ﬁ:_——l st accept fa; LU

-a-\..:__‘ With a2 mutual accept, at

least one commitment

negotiate: invite(SAP_1)

on sach side of the
conversation results

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

negotiate: confirm({SAP_1)

negotiate: request{SAP_1)

negotiate: counter-propose{SAP_2)

,.-J—J A counter-propose is a

new SAP, but it typically

negotiate: accept|SAP_2, details)

refines or partially
modifies the prior SAP.

negotiate: confirm(SAP_2)

MNegodation staring by &
Consumer makirg & propoesl,
rejecied by Be Provider ending
the Negoliafon.

negotiate: request{SAF_1)

Any party can reject
instead of counter-

negotiate: reject(SAP_1) —-#___‘ propose (or accept)
|

12/ 42

OOI agent negotiation 3/5 (choice)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {
propose(SAP) from C to P;

choice at P {
accept() from P to C;

Consumer Provider
confirm() from C to P; e | e
negotiate: requast{SAP_1) mis
} or { R ot accolSAP_1 detal) oo ey o
. C I A A negotiate: confim(SAP_1) .::i:_-—l mum;r -
reject() from P to C;
} or S . Y
R s ALT n.cgo.tiate_ invite(SAP_1) : tr%ﬁ;ﬁlfié?ﬁze
propose(SAP) from P to C; st reaRtale AP 1, el '

contract is as stated in
Cansumer and candrmed by negotiate: confirm{SAP_1)

Pravider
ALT negotiate: requast{SAP_1 =
got quash) _.J A counter-propose is a
o) it SAP, but it typlcally
Mesgotiati negotiate: counter-propose(SAP_2) fo
m..g.m::.'m"a"f.ﬂ:ﬂu. ot i refines or partially
Thes recipient (Provider) meakes iate. 7 madifies the prior SAP.
A sl St negotiate: accept(SAP_2, details) P
SAP_1, which i then accepied :
by C\;mml:r a:n:u“mu by negotiate: confirm({SAP_2)
b Provider.
ALT negotiate: request{SAP_1) Any party can reject
Megotalion starfing by a instead of counter-
Consumer making & propesal, negotiate: reject(SAP_1) —-=:__'.1___| coept
rejected by e Provider ending RRpOSR IO)
the Negoliafon. |

3

13/ 42

OOl agent negotiation 4/5

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;

choice at P {

accept() from P to C;

confirm() from C to P;
} oor {

reject() from P to C;
} or {

propose(SAP) from P to C;

choice at C {

accept() from C to P;

confirm() from P to C;
} or {

reject() from C to P;
} or {

propose(SAP) from C to P;

P r}

Consumer
Agent

negotiate: requast{SAP_1)

Provider
Agent

m s

negoliate: accept{SAP_1, details)

complementary accept
by the other party (bath

negotiate: confirm{SAP 1)

must accept for an
— agreement}

-a-\..:__‘ With a2 mutual accept, at

negotiate: invite(SAP_1)

least one commitment
on each side of the
conversation results

5ol B by
Previitdar inviling a Cansumar

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepled by
Cansumer and candrmed by
Provider

negotiate: confirm{SAP_1)

negotiate: request{SAP_1)

_.--—J A counter-propose is a

Megatiation starting by 3
Comsueines rnshing 4 proposal.

negotiate: counter-propose{SAP_2)

new SAP, but it typically

The recipienl (Provider) makes
@ counler-propasal. supplanting

negotiate: accept|SAP_2, details)

refines or partially
madifies the prior SAP.

SAP 1, which i then aceepied
by Carssumar snt eanfrmed by

negotiate: confirm({SAP_2)

Ihe Provides.

ALT

negotiate: request{SAF_1)

Any party can reject
instead of counter-

MNegodation staring by &
Consumer makirg & propoesl,
rejected by te Provider ending

the Negoliakon.

negofiate: reject(SAP_1) ——==———_ propose (or acoept)
|

14 / 42

OOl agent negotiation 5/5 (recursion)

type <yml> "SAPDocl" from "SAPDocl.yml" as SAP;

global protocol Negotiate(role Consumer as C, role Producer as P) {

propose(SAP) from C to P;
rec X {
choice at P {
accept() from P to C;
confirm() from C to P;
+ or {
reject() from P to C;
} or {

propose(SAP) from P to C;

choice at C {
accept() from C to P;
confirm() from P to C;
} or {
reject() from C to P;

} or {

propose(SAP) from C to P

continue X;

}
+

negotiate: requast{SAP_1)

Provider

Agent

m s

negoliate: accept{SAP_1, details)

complementary accept
by the other party (bath

Consumer
Agent
Megatiatian starting by a
Cansumar making # proposal
then accegited by Provider and
canfimmad by Carsumar

negotiate: confirm{SAP 1)

must accept for an
— agreement}

-a-\..:__‘ With a2 mutual accept, at

negotiate: invite(SAP_1)

least one commitment
on each side of the
conversation results

5ol B by
Previitdar inviling a Cansumar

negotiate: accept{SAP_1, details)

(may be multiple). The
contract is as stated in

with a propasal. accepled by
Cansumer and candrmed by
Provider

negotiate: confirm{SAP_1)

ALT

negotiate: request{SAP_1)

_.--—J A counter-propose is a

Megatiation starting by 3

negotiate: counter-propose{SAP_2)

new SAP, but it typically

refines or partially

Comsueines rnshing 4 proposal.
The recipient (Provider) rakes

negotiate: accept|SAP_2, details)

madifies the prior SAP.

@ counler-propasal. supplanting
SAP_1, which i ihen accepied
Ly Carsumer snd eanfirmed by

negotiate: confirm({SAP_2)

Ihe Provides.

ALT

negotiate: request{SAF_1)

Any party can reject
instead of counter-

MNegodation staring by &
Consumer makirg & propoesl,

negofiate: reject(SAP_1) ——==———_ propose (or acoept)
|

rejecied by Be Provider ending
the Negoliakon.

15/ 42

|. Writing correct global protocols with Scribble Compiler

2. Verify programs via local monitors

3. Build additional verification modules via annotations

Local Protocol Conformance

PROJECTION Global Protocol
(At design time) ‘*—___d_____-—-——"“’_‘_‘d_‘_‘_‘_‘_‘_“__—l___h______‘—5_‘—"—‘-““*-—~——‘_‘_‘_‘_ﬂh
LOCAL PROTOCOL FOR P LOCAL PROTOCOL FOR R LOCAL PROTOCOL FOR A
local protocol Negotiation at R(role P, role A) {
offer(string) from P;
offer(string) to A;
(string) from A;
rec START {
choice at R
FSM GENERATION ’ { .
(At runtime) accept() to R;
(conditions:string) from R;
}or{
offer(string) to P;
continue START;
} or {
reject() to P;
(reason:string) from R;}}}
| !
FSM FOR P Ps FSM FOR A
P?offer Aloffer “(String,
Verification

PROGRAM FOR P

PROGRAM FOR R

PROGRAM FOR A

The Scribble Framework

Specification

Global Protocol

(Scribble) Projection
N
B Local Local
Protocol Protocol
| |
Implementation (Python, Java, ..
! !
Endpoint Endpoint
Dynamic Code Code
Verification| | Conversation Conversation
Runtime Runtime
— Monitor Monitor

J

i

Safe Network

)

» Scribble global protocols

» Well-formedness validation

» Scribble local protocols

» FSM generation (for endpoint
monitoring)

» (Heterogeneous) endpoint
programs

» Scribble Conversation API
> (Interoperable) Distributed
Conversation Runtime

16 / 42

Local protocol projection (Negotiation Consumer)

// Global
propose (SAP) from C to P;
rec START A
choice at P {
accept() from P to C;
confirm() from C to P;
} or {
reject() from P to C;
} or {
propose(SAP) from P to C;
choice at C {
accept() from C to P;
confirm() from P to C;
+ oor {
reject() from C to P;
} or {

propose(SAP) from C to P;

continue START;
3

// Projection for Consumer
propose(SAP) to P;
rec START A
choice at P {
accept() from P;
confirm() to P;
} or {
reject() from P;
} or {

propose(SAP) from P;

choice at C {
accept() to P;
confirm() from P;

+ or {
reject() to P;

} or {
propose(SAP) to P;
continue START;

}r}

19 / 42

20 / 42

(oo, g 1T s
SO CORN L
(ndasoeidl (haakrd ’ °

(asodoxd; 2N\ (hdasae g/ (Woabr g

(Jazodoad; g

(Jasodoxd; g

FSM generation (Negotiation Consumer)

FSM Generator

Scribble: Order(x:int) to Seller @{x==1}

AST:
' 0] D ¥
| vaLUE | | order | | seiler | |assenT|
FSM:

C (SEND, Order,SeIIer}>®
1 I

FSM transition_table:

(1, (send, order, seller) ->
(2, assertion_object, {"x":"int'})

Spec Store

]

Parser
(ANTLR)

|

Tree Traversal
(ANTLR)

]

FSM

]

FSM Store

Governance

Governance
Intercepto

e —-

Process

Business Logic

__

annotate i

Monitor

7 Specs
| read (Scribble) | |

Messaging Client

o

Message Broker

3. Build additional verification modules via annotations

s

Validation via Annotations w

Annotations = @{Logic} Scribble Construct

@{assert: payment + overdraft>=1000} |» The monitor passes
offer(payment:int) from C to |; {‘type’:param N }

to the upper layers

é{deadline 5s} » Upper layers recognize and
process the annotation

type or discard it

offer(conditions string) from C to |;

» Statefull assertion

rec Loop {
@{guard: repeat<10}
propose(string) from C to [;

Scribble Community ZTD

» Webpage:
» www.scribble.org

» GitHub:
» https://github.com/scribble

» Tutorial:

» www.doc.ic.ac.uk/~rhu/scribble/tutorial.html
» Specification (0.3)

» www.doc.ic.ac.uk/~rhu/scribble/langref.html

A theory for network monitoring

» Formalise MPST-monitoring and asynchronous networks.
» Introduce monitors as first-class objects in the theory

» Justify monitoring by soundness theorems.
Safety
monitors enforces specification conformance.
Transparency
monitors does not affect correct behaviours.
Fidelity

correspondence to global types is maintained.

Multiparty Sessions for Runtime Monitors \J

A = tt|ffla=e|a<ea|-A| Ak |Ava
e = v | e + e | e — & | e1 * & | e mod & S::=bool | int | string
n= r1—ro: {Li(xi:Si){Ai}.Gi}iel | G | G | Gy; G | ut.G | t | € | end

T u= o{li(q:S){A}.Tivier | ©2{hi(i:S){A}.Tivie | | T2 | Ty T2 |
p,t.T|t|E|end
P = a(sl]:T) | alylr]: T).P | klrs,ra]li(e) | klry,x2)?{ki(x).Pi}ics |

ifethenPese @ | P1Q | 0| uxP | X | PiQ | (va)P | (vs)P
N w= [Pla | MN, | 0| wa)N | ws)N | (r; B

rou= arra | sltg]—wa hu=m-h | 0 mu==a(s[r]: T) | s(ri, o, I{v))

Formal Semantics

a(s[r]: T)]a | (r: h)

a(y[r]: T).Pla | (r; a(s[x] : T) - h)

s[r1, r]{v)]a [(r; h)

s[r1, o] {li(xi)-Pi}ila | (r i s(r1,12,0i(v)) - h)

0o | (r; h-3(s[]: T))
Pls/ylla| (rslt]—a;)T
0)a | (r; h-s(ry,ro, fi{v)) 1T
Pilv/xlla | (r; h) T

L

f:rr(a)=a ftor(sfra]) #a 11 r(s[ro]) =

processes P located at principals o
Abstracts local applications
router 1

abstracts network routing information updated on-the-fly

Formalism: Monitor @

» Specifications
Y o= 0 | Z,a:(l;A),
Fo=0 | Ma:2(T[x])|Fa:(T[x]) A=z=0 | A,s[x]:T,

> : spec., A: session env, [: shared env.

» Monitors
M=a:(l;A)
Monitors are introduced as component of monitored
networks

VRt SN VY r(s[r2]) # «
[s[r1, r2] [(V)]a | M[(r; h) — [O]a | M[(r i h-s(r1,r2,/(v)))
M 5[‘—}1#‘2]”(")&

‘If i,

[slr1, r2]H(v)]o [M| (r 5 h) — [0l [M| (r 5 h)

Satisfaction

The satisfaction relation = N : ¥ relates networks and specification:
if © expects an input, N should be able to process it.
if N performs an output, ¥ should be expecting it.
still holds after reduction (coinductive definition).

Satisfaction equivalence
If Ny = N, and # N, : X then)= No @ 2.

Results (Safety)

Local Safety
= [Ploe |[M o a: (I A) withM = a: (I A).

A monitored process satisfies its specification.

Global Safety
If N is fully monitored w.rt. ¥, then =N : ¥

monitored networks behave as expected.

Results (Transparency)

Local Transparency
If = [Pla : a: ([A), then [P], = ([Pla | M) with M =« : (I"; A).
unmonitored correct processes are undistinguishable from their

monitored counterparts.
allows one to mix monitored and typechecked processes.

Global Transparency
Assume N and N have the same global transport (r; h).
Assume:
1. Nis fully monitored w.r.t. ¥ and
2. N= M| (r; h)is unmonitored but = M : L.
We have N = N.

monitors does not alterate behaviors of correct networks.
monitor actions are not observable on correct components.

Results (Fidelity)

a configuration is consistent: when it corresponds to a
well-formed array of global types (Gy, .. ., G,) through projection.

conformance is satisfaction + receivability (queue can be
emptied).

Session Fidelity
Assume:
1. configuration ¥; (r ; h) is consistent,
2. network N = M|(r; h) conforms to configuration ; (r ; h).
For any ¢, whenever we have N i;»g N st X;(r; h) ig Y (r;),
it holds that X’; (r’ ; A’") is consistent and N’ conforms to X'; (r" ; h').
consistence is preserved by reduction,

at any time, the network correspond to a well-formed
specification.

Service Resource

W

Physical Resource

Distribute Application Facility

FSM in_evertiguard

u u_ n

©

Protocol

Control

Protocol

Control Protocol
Control
Protocol

Physial Resource

Control Protocol
Control

Protocol
Application View

Service Resource

Service Resource
Adapter

Proxy Resource Control

Capability
Protocol
Contract
Protocol

Contract
Protocol

Monitor
Protocol
Protocol
Monitor
Protocol
Capability

Protocol
Contract
Protocol

Service Application

Managed Resource
Agent

Finite State Machine
Protocol Adapter

Finite State Machine
Protocol Adapter

Protocol Factory

Protocol Factory

Twisted Reactor

Twisted Reactor

[

[

Managed Resource
Agent

Proxy Resource

Agent

FSM in_eventguard)/

%Oulc‘ﬂ:ﬁ

Finite State Machine
Protocol Adapter

Protocol Factory

Finite State Machine
Protocol Adapter

Protocol Factory

Twisted Reactor

I

Messaging Service

(AMQP Broker)

Ocean Observatories Initiative

Distnbuted
Message-Based

System View

Figure 5: A coordinated set of autonomous underwater vehicles

Figure 3: Observatory comprised of ships, aircraft and autonomous vehicles linked to assimilation
modeling capabilities on shore

%L OCEAN OBSERVATORY INITIATIVE

SEARCH

RESOURCES

@ All Resources

= Data Products v
BE Obszervatories

#8 Platforms

e Instruments

Welcome to Release 2 of the Ocean
Observatories |nitiative Observatory
{201). Yeu already have access to
many 00| features and real-time
data. lust elick on something that
looks interesting on this page to start
using the 00| as our Guest,

For persocnalized services, such as
setting up notifications and presery-
ing settings for your next visit, create
a free account by clicking an "Create
Account” at the top of the page.

National Science Foundation work
with Consartium for Ocean Leadership

CURRENT LOCATION

DATA LEGEND

O Temperature

<

Salimity
0O Oxygen
Diensity

<

Currents
Sea Surface Height (55H)

Chlorophyll
0 Turbidity v
pH
0 Seismology v
0 Other vf

RECENCY

1 Hour
2 houwrs
3 hours
5 hours
2 hours
13 hours
18 haurs
24 hours
48 Hours
72 Hours

RECENT UPDATES

HARE TYFE
O 01 m Oregon Coast Morth Salinity Type
01 m Calitornia South 100m pH Type
0O 01m California South salinity Type
O 03m Type
0 05m Oregon SouthTemparature Type
20 m Chregon Co Currents Type
@1 h California South Seismclogy Type

(9]
(o) . Oregon Coast South 1000m Ox-

Tyne

02 h California Coast Seismology

0 04 h California North Seismology Type

FACEPAGE

EVENT
Ewant
Ewvent
Event

Event

Ewvent
Event

Bvent

DESCRIPTION

Description goes here
Description goes here
Description goes here
Description goes here
Description goes here
Description goes here
Description goes here

Evept Description goes here
Ewvent Description goes here
RELATED COMPOSITE

FILTER)

MOTE
Note goes here
MNote goes here
Note goes here
Note goes here
MNote goes here
Nate goes here

Note goes here

Note goes here

MNote goes here

STATUS

CREATE ACCOUNT SIGM IT

=
Dashboard

RECENT IMAGES

. Glider
Last Modified: 2001-06-15
== LlastViewsd: 2011-12-15
Last Updated: 2011-12-30, 13.24

Gorgonian Coral

Last Modified: 2011-06-15

Last Wiewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

Acoustic Release

Last Modified: 2011-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

POPULAR RESOURCES

SeaBird COT

Last Modified: 2011-06-15

Last Viewsd: 2011-12-15

Last Updated: 2011-12-30, 13.24

Marine caption

Last Modified: 2011-06-15

Last Viewed; 2011-12-15

Last Updated: 2011-12-30, 13.24

Surface Buoy

Last Modified: 2001-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

UNUSUAL EVENTS

Oregon Coast Wave Heigh
Last Modified: 2011-06-15

Last Viewed: 2011-12-15

last Updated: 2011-12-30, 13.24

Water Surface Elevation
Last Modified: 2011-06-15

Last Viewed; 2011-12-15

Last Updated: 2011-12-30, 13.24

Multiparty Session Type Theory

) o Multiparty Asynchronous Session Types [POPL 08]

» Pro gress

>> Global Progress in Dynamically Interleaved Multiparty Sessions
[CONCUR’08], [Math. Struct. Comp. Sci.]

>> Inference of Progress Typing [Coordination’13]

) o Asynchronous Optimisations and Resource Analysis

>> Global Principal Typing in Partially Commutative
Asynchronous Sessions [ESOP’09]

>> Higher-Order Pi-Calculus [TLCA’07,TLCA’09]

>> Buffered Communication Analysis in Distributed Multiparty
Sessions [CONCUR’10]

> Logics

> Design-by-Contract for Distributed Multiparty Interactions
[CONCUR’10]

> Specifying Stateful Asynchronous Properties for Distributed
Programs [CONCUR’12]

> Multiparty, Multi-session Logic [TGC’12]

»> Extensions of Multiparty Session Types
Multiparty Symmetric Sum Types [Express’10]
Parameterised Multiparty Session Types [FoSSaCs’10, LMCS]

Global Escape in Multiparty Sessions [FSTTCS’10]
[Math. Struct. Comp. Sci.]

Dynamic Multirole Session Types [POPL 11]

Nested Multiparty Sessions [CONCUR’12]

) o Dynamic Monitoring

> Asynchronous Distributed Monitoring for Multiparty Session
Enforcement [TGC’11]

>> Monitoring Networks through Multiparty Sessions [FORTE’13]

» Automata Theories
> Multiparty Session Automata [ESOP’12]

> Synthesis in Communicating Automata [ICALP’13]

) o Typed Behavioural Theories

> On Asynchronous Eventful Session Semantics [FORTE’11]
[Math. Struct. Comp. Sci.]

> Governed Session Semantics [CONCUR’13]

) o Choreography Languages

> Compositional Choreographies [CONCUR’13]

Language and Implementations

> Carrying out large-scale experiences with OOI, Pivotal, Red Hat,
Congnizant, UNIFI, TrustCare

>> JBoss SCRIBBLE [ICDCIT’10, COB’12] and SAVARA projects
) o High-performance computing

Session Java [ECOOP’08,ECOOP’10,Coordination’11]
—> Multiparty Session C [TOOLS’12][Hearts’12][EuroMPI’ 12][PDP’ 14]

) 4 Multiparty session languages Ocaml, Java, C, Python, Scala, Jolie

Trustworthy Pervasive Healthcare Services via Multiparty
Session Types [FHIES 12]

SPY: Local Verification of Global Protocols [RV’13]

Practical interruptible conversations: Distributed dynamic
verification with session types and Python [RV’13]

Session Type Projects

»> COST Action Behavioural Types for Reliable Large-Scale
Software Systems, over 60 academic members in 17 countries

» SADEA EPSRC Exploiting Parallelism through Type
Transformations for Hybrid Manycore Systems, with
Vanderbauwhede, Scholz, Gay and Luk

) o Programme Grant From Data Types to Session Types: A Basis for
Concurrency and Distribution, with Wadler and Gay

»> EPSRC Conversation-Based Governance for Distributed Systems by
Multiparty Session Types

»> NSF Ocean Observatories Initiative
» Pivotal Dynamic Assurance based on Multiparty Session Types

) o Cognizant/Qualit-e EPSRC Knowledge Transfer Secondments

>
>
>
>
>
>
>
>

Session Type Reading List

[ESOP’98] Honda, Vasconcelos and Kubo, Language Primitives and Type Disciplines
for Structured Communication-based Programming,

[SecRet’06] Yoshida and Vasconcelos, Language Primitives and Type Disciplines for
Structured Communication-based Programming Revisited, ENTCS.

[ECOOP’08] Hu, Yoshida and Honda, Session-Based Distributed Programming in
Java

[POPL’08] Carbone, Yoshida and Honda, Multiparty Asynchronous Session Types
[WS-FM’09] Dezani-Ciancaglini and de’Liguoro, Sessions and Session Types

[TOOLS’12] Ng, Yoshida and Honda, Multiparty Session C

[CONCUR’10] Caires and Pfenning, Session Types as Intuitionistic Linear
Propositions; [ICFP’12] Walker, as Classical Linear Propositions.

[OOI] Video by John Orcutt, Professor of Geophysics, UCSD, Ocean Observing:
Oceanography in the 21st Century

A rare cluster of qualities

From the team of OOI CI:

Kohei has lead us deep into the nature of communication and
processing. His esthetics, precision and enthusiasm for our
mutual pursuit of formal Session (Conversation) Types and
specifically for our OOI collaboration to realize this vision in
very concrete terms were, as penned by Henry James, lessons

in seeing the nuances of both beauty and craft, through a rare

cluster of qualities - curiosity, patience and perception, all at

the perfect pitch of passion and expression.

