Distributed Governance with Scribble
A
W W

Beat 2
24th September, 2013

Nicholas Ng and Nobuko Yoshida
Imperial College London

In collaboration with:

Matthew Arrott (OOI)
Gary Brown (Red Hat)
Stephen Henrie (OOI)

Bippin Makoond (Cognizant)
Michael Meisinger (OOI)
Matthew Rawlings (ISO TC68 WG4/5)
Alexis Richardson (RabbitMQ/VMware)
Steve Ross-Talbot (Cognizant)

and all our academic colleagues

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Pierre-Malo

Denielou, Luca Fossati, Dimitrios Kouzapas, Rumyana Neykova,
Nicholas Ng, Weizhen Yang

Ocean Observatories Initiative

» A NSF project (400M$, 5 Years) to build a cyberinfrastructure for
observing oceans around US and beyond.

»> Real-time sensor data constantly coming from both off-shore and

on-shore (e.g. buoys, submarines, under-water cameras, satellites),
transmitted via high-speed networks.

Visible & UV
Radiation

sensible
heat
transfer

, Infrared
R w Radiation

o /%@ﬁmion
= —

——

Internal
Wave
Radiation

{) Jayne Doucette
\ WHOI Graphics

Ocean Observatories Initiative

—

Science

Cyberinfrastructure

Coastal
SENSOR

Regional
SENTOR
| NETWOAKS

CONTRCL
g NOCES

CANARIE-
GLORIAD 2.5Gb | ‘ ‘ %
. CANARIE n*10Gb -k . \ CANARIE n*1

- N Ao Montreal .
TransLight 10Gb W, Chicagg/ 27 T°’°\\ ‘ Ha

NLR n*10Gb- N\ 1M|U tﬁd\h

Pacific Wave 2*10Gb GLORIAD 1OGb

Iftérnet2-

DCN n* 1068 2e"ve"

National LambdaRail n'1OGb\“\‘ e JGN2piis
Internet2-DCN n*10Gb \\\ 10Gb % : Tulsa
. o J
e Lnaets & National DS Cis
= LambdaRail § = "NEnLSkTened 10Gb
n*10Gb

WHREN LILA®GD L —_ 4) National L'ambaa::wif 2*10Gb
Jacksonville

Kansas Clty /

Internet2-DCIT™J10Gb

Baton

R
et il AtlanticWave 10Gb

AMPATH

Ocean Observatories Initiative

Challenges

»> The need to specify, catalogue, program, implement and
manage multiparty message passing protocols.
» Communication assurance
> Correct message ordering and synchronisation
> Deadlock-freedom, progress and liveness
>> Dynamic message monitoring and recovery

> Logical constraints on message values

» Shared and used over a long-term period (e.g. 30 years in
O0D).

Why Multiparty Session Types?

» Robin Milner (2002): Types are the leaven of computer
programming,; they make it digestible.

—> Can describe communication protocols as rypes
— Can be materialised as new communications

programming languages and tool chains.

» Scalable automatic verifications (deadlock-freedom, safety
and liveness) without state-space explosion problems

(polynomial time complexity).

» Extendable to logical verifications and flexible dynamic

monitoring.

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

Y
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

U
Formalisation of W3C WS-CDL [ESOP07]

Y
Scribble at T# Technology

CDL Equivalent

* Basic example:

package HelloWorld {
roleType YouRole, WorldRole;
participantType You{YouRole}, World{WorldRole};
relationshipType YouWorldRel between YouRole and WorldRole;
channelType WorldChannelType with roleType WorldRole;

choreography Main {
WorldChannelType worldChannel;

interaction operation=hello from=YouRole to=WorldRole

relationship=YouWorldRel channel=worldChannel {
request messageType=Hello;

Dr Gary Brown (Pi4 Tech) in 2007

Scribble Protocol

» "Scribbling is necessary for architects, either physical or computing, since all
great ideas of architectural construction come from that unconscious
moment, when you do not realise what it is, when there is no concrete
shape, only a whisper which is not a whisper, an image which is not an
image, somehow it starts to urge you in your mind, in so small a voice but
how persistent it is, at that point you start scribbling" - Kohei Honda 2007

e Basic example:

protocol HelloWorld {

role You, World;
Hello from You to World;

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

4
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

4

@ SCl’lbble redhat

Dialogue between Industry and Academia

Binary Session Types [PARL 94, ESOP’98]

4
Milner, Honda and Yoshida joined W3C WS-CDL (2002)

4
Formalisation of W3C WS-CDL [ESOP07]

4
Scribble at T4 Technology

4

Multiparty Session Types [POPL 08]

U
R
QQL (S Scribble @ =

Cognizant

I Ca
aEw LN

Session Types Overview TCD

o Global G = alice—bob(nat);
: type bob—-carol(nat);end
Projection
______ Local Thob = ?(alice, nat).
types I (carol, nat).end

Type
checking

Poob = 7(alice)(x).

I{carol,x+1).0

Palloe PbOb Pcarol Processes

» Properties
Communication safety (no communication mismatch)
Communication fidelity (the communication follow the protocol)

Progress (no deadlock/stuck in a session)

Evolution Of MPST
» Binary Session Types [THK98, HVK98]

» Multiparty Session Types [POPL08]

{_,

» ATheory of Design-by-Contract for Distributed Multiparty Interactions [Concur’| |]

» Multiparty Session Types Meet Communicating Automata [ESOP’12, ICALP’13]

» Network Monitoring through Multiparty Session Types [FMOODS’| 3]

{_

» SPY: Local Verification of Global Protocols [RV’ | 3]
» Distributed Runtime Verification with Session Types and Python [RV’|3]

Ocean Observatory Initiative (OOI) E

OOl aims: to deploy an infrastructure (global network) to
expand the scientists’ ability to remotely study the ocean

National
LambdaRall
n*10Gb

Usage: Integrate real-time data acquisition, processing
and data storage for ocean research,...

session Lype

OOI: verification challenges J

applications written in different languages, running on
heterogeneous hardware in an asynchronous network.

different authentication domains, external untrusted
applications

various distributed protocols

requires correct, safe interactions

Education

Session Types for Runtime Verification

» Methodology

. Global Protocol
Developers design

Specification Projection

protocols in a dedicated (Scribble))
. Local
language - Scribble ‘Spe;?gm—l

Well-fomedness is checked

)

b)’ Scribble tools Implementation | | |Source Code| ||Source Code| |Source Code|| Static
(Java, Scala, C, 3 Type

Ocami, Python) Checker

Conversation Conversation Conversation

Runtime Runtime Runtime

Protocols are projected

into local types Verifying

Communlcatlorl,
LOC&I t)’PeS generate (Static & Dynamic)
monitors

Safe Network

Content

|. Writing correct global protocols with Scribble Compiler
2. Verify programs via local monitors

3. Build additional verification modules via annotations

@Scri_bble ERabbrt %L
A ol thon

Content

|. Writing correct global protocols with Scribble Compiler

Meet Scribble

Scribble

Protocol Lanﬂuaﬂe

session Lype

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural
construction come from that unconscious moment, when you do not realise what it is, when there is no concrete
shape, only & whisper which is not & whisper, an image which is not an image, somehow it staris to urge you in your

mind, in 30 small a voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

What is Scribble?

Scribble is a language to describe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do a meaningful interaction: participants simply
cannot communicate effectively, since they do not know when to expect the other parties to
send their data, or whether the other party is ready to receive a datum it is sending. In fact
it is not clear what kinds of data is to be used for each interaction. It is too costly to carry
out communications based on guess works and with inevitable communication mismatch
(synchronisation bugs). Simply, it is not feasible as an engineering practice.

Documents

Protocol Lanﬂuaﬂe Guide

Downloads

Java Tools

Cormruni’ry
Discussion Forum
Java Tools

lssues
Wik
Pyﬂnon Tools

issues
Wik

A Global Protocol

Import type

‘w o

send-receive

. type <python> "StringType

from "Lib/types.py" as str;

—> global protocol Negotiation(role P, role R, role A) {

— offer(string) from P to R;
offer(string) from R to A;
(string) from A to R;

recursion

rec START {
choice at R {

choice

accept() from R to P;
confirm() from P to R;
} or {
offer(string) from R to P;
(conditions:string) from P to R;
continue START;
} or A{
reject() from R to P;
confirm() from R to P;}}}

Two Buyer Protocol in Scribble

module Bookstore;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

global protocol TwoBuyers(role A, role B, role S) {
title(String) from A to S;
quote(Integer) from S to A, B;
rec LOOP {

share (Integer) from A to B; Buyeri, Seller BuyerQ.
choice at B {
accept (address:String) from B to A, S;
date(String) from S to B; .__-tnle—%
} or { =
l— quote —(— quote
retry() from B to A, S; kg
continue LOOP; | quote L9 =M
} or {
quit() from B to A, S; s
o} *—-muwss——-
— date—

Buyer: A local projection

module Bookstore_TwoBuyers_A;

type <java> "java.lang.Integer" from "rt.jar" as Integer;
type <java> "java.lang.String" from "rt.jar" as String;

local protocol TwoBuyers_A at A(role A, role B, role S) {
title(String) to S;
quote (Integer) from S;
rec LOOP {
share(Integer) to B;
choice at B {
accept(address:String) from B;
} or {
retry() from B;
continue LOOP;
} or {
quit() from B;
}r}

Let’s catch some errors: Well-formedness @

global protocol Protocoll(role A, role B) {
choice at A {
ml() from A to B;
} or {
m2() from A to B; } }

global protocol Protocol2(role A, role B, role C) {
choice at A {
ml() from A to B;
mi() from B to C; // Additional step
} or {
m2() from A to B; } }

global protocol Protocol3(role A, role B, role C) {
choice at A {
mi() from A to B;
mi() from B to C;
} or {
mi() from A to B; // Copy-paste error
m2() from B to C; } }

Application-level service call composition

// Direct specification
global protocol P3(role C, role S1, role S2, role S3, role S4)
{
() from C to S1;
() from S1 to S2;
() from S2 to S1;
() from S1 to S3;

c S1 p
() from S3 to S4;=71— T _S2 {} Refri(:
() from S4 to S3; | L.
() from S3 to S4; _ReC-- RPé.“‘\‘
() from S4 to S3; |.-7 -
() from S3 to S1; o)
() from S1 to C; s
} ’
RPC

Scoping

global protocol ServiceCall(role Client, role Service) {
() from Client to Server;
() from Server to Client;

}

// By composing basic ServiceCalls
global protocol P2(role C, role S1, role S2, role S3, role S4)
{
() from C to Si;
do ServiceCall(S1 as Client, S2 as Server);
() from S1 to S3;
do ServiceCall(S3 as Client, S4 as Server);
do ServiceCall(S3 as Client, S4 as Serve _C St
O from 83 to S1;
() from S1 to C; - e

RPC !
! RPC

RPC

Scoping

// "Middleman" pattern
global protocol Middleman(
role L, role M, role R, role S)

{

() from L to M;

do ServiceCall(M as Client, S as Server);

do ServiceCall(M as Client, S as Server);

() from M to R;
}
// By composing ServiceCall and Middleman patterns
global protocol P3(role C, role S1, role S2, role S3, role S4)

{

() from C to S1; < st
do ServiceCall(S1 as Client, S2 as Server); | |
do Middleman(S1 as L, S3 as M, S4 as R); f;r@g¥~ Rﬁ"\\\
() from S1 to C;)a — | ™

RPC 3
I RPC

RPC

P
/ session ype \\

Negotiation protocol in Scribble

global protocol Negotiationl(role I, role C) {

propose(SAP) from I to C;
Q@{guard:repeat<10}
rec START {
choice at C {
accept() from C to I;
confirm() from I to C;

} or {
. Consumer Provider
@{deadline: 5s} Agent Agent
. negotiate: request(SAP_1) Confirm s the
propose (SAP) from C to I; . S compermanay st
then accepted by Provider and by the other pa;lglr(both
Cho 1Cce at I { D negotiate: confirm(SAP_1) 4-—] muglgmt). =
accept() from I to C; ~ L
e least one commitment
confirm() from C to I; ay negotiat: inte(SAP_1) AL
e trut negoiate: accept(SAP_1, details) {may be muliple). The
} or { %%Wa negotiate: confirm(SAP_1) the most recent SAP
reject() from I to C; S N R
} or { ALT negotiate: request(SAP_1) A counlorpropose fs 2
Negotiaton stariing by @ negotiate: counter-propose(SAP_2) new reﬁs::s glrnp.;gslll‘;a“y
propose (SAP) from I to C; T e negotel: acoop(SAP_2, dtae modies e prior SAP
SAP._1, which is then accepled
. by Cansumar and confirmed by negotiate: confirm(SAP_2)
continue START; o Prov
} AT negolicte: requesiSAP 1) | []
i instead of counter-
} or{ T | [ey —— ST
the Negatiation.

reject() from C to I;
+)

Negotiation protocol in Scribble

global protocol Negotiation2(role I, role C)
propose(SAP) from I to C;
do NegotiationAux(I as I, C as C);

}

{

global protocol NegotiationAux(role I, role C) {

choice at C {
accept() from C to I;
confirm() from I to C;
} or {
propose (SAP) from C to
do NegotiationAux(C as

} or{

reject() from C to I;

}

Consumer Provider
Agent Agent
negotiate: request{SAP_1) Confirm is the
Negotiation starting by & o , complementary accept
mm mg):;\g a m:a negotiate: accept(SAP_1, details) by the lomef pa?g; (both
Cor . must accept for an
e negotiate: confirm(SAP_1) 4——] agreement).
?. With a mutual accept, at
———— e e least one commitment
ALT negotiate: invite(SAP_1) CXCE s-kf: ;lehes
tiation starting by the - . 7
P%?;, niing a &zm:; negotiate: accept(SAP_1, details) g:;);ab; I’: :I: ps‘t?tx
with a proposal, accepted
Consumer and confirmed by negotiate: confirm(SAP_1) the most recent SAP
Provder
ALT negotiate: request(SAP_1)

A counter-propose is a

Negotiation starting by a

negotiate: counter-propose(SAP_2)

new SAP, but it typically
refines or partially

Consumer making a proposal,
The racipient (Provider) makes

negotiate: accept(SAP_2, details)

modifies the prior SAP.

A cour
SAP_1, which & then accepled
by Cansumer and confrmed by

negotiate: confirm(SAP_2)

the Pravider.

negotiate: request(SAP_1)

Any party can reject
instead of counter-

negotiate: reject(SAP_1) <,‘| propose (or accept)
[

|. Writing correct global protocols with Scribble Compiler

2. Verify programs via local monitors

3. Build additional verification modules via annotations

Local Protocol Conformance

PROJECTION

Global Protocol

(At design time) / l\

LOCAL PROTOCOL FOR P

LOCAL PROTOCOL FORR

LOCAL PROTOCOL FOR A

FSM GENERATION

(At runtime)

local protocol Negotiation at R(role P, role A) {

offer(string) from P;
offer(string) to A;
(string) from A;
rec START {
choice at R {
accept() to R;
(conditions:string) from R;
}or {
offer(string) to P;
continue START;
}or {
reject() to P;
(reason:string) from R;}}}

FSMFORP

Verification

PROGRAM FOR P

P?offer Aloffer P2 Strfhg)

P? t.s'i.r'mg\)

PROGRAM FOR R

FSM FOR A

PROGRAM FOR A

FSM Generator

Scribble: Order(x:int) to Seller @{x==1}

]

AST: m
| senD |

|wﬂuus| | order | | seler | |assent]

|

O (SEND, Order,SeIIer}>®
1 1

FSM transition_table:

(1, (send, order, seller) ->
(2, assertion_object, {"x":"int'})

FSM:

Spec Store

@

Parser
(ANTLR)

|

Tree Traversal
(ANTLR)

]

FSM

]

FSM Store

i Process
Governance | | Businesslogic | & _)

Gacrmn """""""""""""""" N
. Governance Y control [
. Interceptor Dispatcher — -| Knowledge =
i . J Base L
| I — : :
| : — i :
: I e P
: e [Specs L
i Policy Interceptor]W (ACL) |
’ i I |
E annotate |
i Commitment
i Interceprot | read Rules =

annotate E o

| \l Specs
Monitor cS
W | read (Scribble)

Messaging Client

Message Broker

3. Build additional verification modules via annotations

session type

Validation via Annotations E

Annotations = @{Logic} Scribble Construct

{assertion: payment + overdraft>=1000} » The monitor passes
offer(payment: int) from C to |; {‘type’:param, ...}

to the upper layers

é{deadline: 5s}

offer(payment: int) from C to |; » Upper layers recognize and

process the annotation
type or discard it

» Stateful assertion
rec Loop {

@{guard: repeat<I| 0}
offer(payment: int) from C to |;

Scribble Community

» Webpage:
» www.scribble.org

» GitHub:
» https://github.com/scribble

» Tutorial:

» www.doc.ic.ac.uk/~rhu/scribble/tutorial.html
» Specification (0.3)

» www.doc.ic.ac.uk/~rhu/scribble/langref.html

A theory for network monitoring

» Formalise MPST-monitoring and asynchronous networks.
» Introduce monitors as first-class objects in the theory

» Justify monitoring by soundness theorems.
Safety

monitors enforces specification conformance.
Transparency

monitors does not affect correct behaviours.
Fidelity

correspondence to global types is maintained.

Multiparty Sessions for Runtime Monitors \)

A = tt|ffla=e|a<e|-A| ArA|Ava
e = v | e+ e | e — & | e1 * & | e; mod & S::=bool | int | string
G = 1110 {hi(6:S){A}.Glier | GG | GG | pt.G |t | ¢ | end

{1 S){A}. Titier | c?{h(a:S){A}Tivier | I T2 | T T2 |
ut. T | t | C | end

P = a(sle]: T) | ay[t]: T).P | klrr.r2)li(e) | K[ri,xa]?{hi(x).Pi}ics |

if e then P else Q | P|Q | 0 | puX.P | X | P; Q | (va) P | (vs)P

-
I

N o= [Pla | NN | 0 | wa)N | ws)N | (r; h)

roo= amra | slg]—a hi=m-h | 0 mu==a(s[r]: T) | s(ri1, 12, l{v))

Formal Semantics

a(s[r]: T)la | (r; h)

a(y[r]: T).Pla | (r; a(s[t] : T) - h)

s[r1,]! (v)]a | (r 5 h)

s[re, o] ?140i(Xi).Pitila | (15 s(r1,12,0(v)) - h)

0)o | (r; h-a(s[z]: T))
Pls/ylla | (reslt] = a; h) 1
0l | (r; h-s(ry,ro,li(v)) T
Pilv/xlla | (r; h) T

[

fir(a) =a ttor(s[ro]) #Fa T r(s[r]) =a

processes P located at principals o
Abstracts local applications
router T

abstracts network routing information updated on-the-fly

Formalism: Monitor Z-C/

» Specifications
Y o= 0 | ,a:(l;A),

Fo=0 | Fa:2(T[x])|Fa:(T[x]) A=z=0 | A,s[x]:T,
> : spec., A: session env, [: shared env.
» Monitors
M=«a:(l;A)
Monitors are introduced as component of monitored

networks

_ m B W (s)) £ o
Sfrz, 22l 1 (vl [IG5 By — Ol | W(r: szt 2, 1)
VECESION
slez, w2l 10T M (7) — [0 M (7 o

Satisfaction

The satisfaction relation = N : ¥ relates networks and specification:
if © expects an input, N should be able to process it.
if N performs an output, ¥ should be expecting it.
still holds after reduction (coinductive definition).

Satisfaction equivalence
If Ny = N, and }= Ny : ¥ then)= Ny : %

Results (Safety)

Local Safety
= [Pla [M o a: ([A) with M = a: (I A).

A monitored process satisfies its specification.

Global Safety
If N is fully monitored w.rt. ¥, then =N : ¥.

monitored networks behave as expected.

Results (Transparency)

Local Transparency
If = [Pla : a: ([A), then [P], = ([Plo | M) withM = a : (I"; A).
unmonitored correct processes are undistinguishable from their

monitored counterparts.
allows one to mix monitored and typechecked processes.

Global Transparency

Assume N and N have the same global transport (r; h).
Assume:

1. N is fully monitored w.r.t. ¥ and
2. N= M| (r; h)is unmonitored but = M : ¥.
We have N = N.

monitors does not alterate behaviors of correct networks.
monitor actions are not observable on correct components.

Results (Fidelity)

a configuration is consistent: when it corresponds to a
well-formed array of global types (G;, .. ., G,) through projection.

conformance is satisfaction + receivability (queue can be
emptied).

Session Fidelity
Assume:
1. configuration ¥; (r ; h) is consistent,
2. network N = M|(r; h) conforms to configuration X; (r ; h).
For any ¢, whenever we have N i}g N st X;(r; h) i}g Y (r: B,
it holds that ¥’; (r’ ; h’) is consistent and N’ conforms to ¥/; (r’ ; h’).
consistence is preserved by reduction,

at any time, the network correspond to a well-formed
specification.

Summary

» Having a context allows to control the communication

» Having granularity allows to specify constraints on the
Interactions

» Early error detection is much cheaper
» High-level policies on top of protocol verification

» Good abstraction means easy programming — you
program with send and receive (no threads, sockets,
channels)

-
-
’
-
.
’
:

Figure 3: Observatory comprised of ships, aircraft and autonomous vehicles linked to assimilation
modeling capabilities on shore

%L OCEAN OBSERVATORY INITIATIVE

e f NG
SEARCH

RESOURCES

@' All Resources

& Data Products v
%% Observatories

4 Platforms

%= Instruments

Welcome to Release 2 of the Ocean
Observatories |nitiative Observatory
(CO0I). You already have access to
many OOl features and real-time
data. Just click on something that
looks interesting on this page to start
using the OOI as our Guest

For personalized services, such as
setting up notifications and presery
ing settings for your next visit, create
a free account by clicking on "“Create
Account” at the top of the page.

o g
National Science Foundation working
with Consortium for Ocean Leadership

-

DATA LEGEND

QO Temperature
Salinity
O Oxygen
Density
Currents
Sea Surface Height (SSH)
Chlorophyli
QO Turbidity
pH
QO Seismology

O Other

L«

RECENCY

1 Hour
2 hours
3 hours
S hours
8 hours
12 hours
18 hours
24 hours
48 Hours
72 Hours

[FiLTER)

RECENT UPDATES

NAME

TYFE EVENT DESCRIPTION NOTE

O 0lm Oregon Coast North Salinity Type Event Description goes here

th 100m pH

Note goes here

01l m California Type Event Description g are Note goes

O 01m California South salinity Type Event Descripfion g Note goes
O 0m on North Turbidity Type Event Description Note e
QO 05m Type Event Descripbiong

20m Type Event Description goes here

QO olh Event

Descriptio

02 h Event

O 04h

Note goes

Calitornia North Seismology 2012-01-10 23 Type Event

Note goes here

FACEPAGE RELATED COMPOSITE STATUS

CREATE ACCOUNT

SIGN I

*

Dashboard

RECENT IMAGES

POPULAR

UNUSUAL

Glider

Last Modified: 2011-06-15

Last Vlewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

Gorgonian Coral

Last Modified: 2011-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

Acoustic Release

Last Modified: 2011-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

RESOURCES

SeaBird COT

Last Modified: 2011-06-15

Last Vlewed; 2011-12-15

Last Updated: 2011-12-30, 13.24

Marine caption

Last Modified: 2011-06-15

Last Viewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

Surface Buoy

Last Modified: 2011-06-15

Last Vlewed: 2011-12-15

Last Updated: 2011-12-30, 13.24

EVENTS

Oregon Coast Wave Heigl
Last Modified: 2011-06-15

Last Viewed; 2011-12-15

Last Updated: 2011-12-30, 13.24

Water Surface Elevation
Last Modified: 2011-06-15

Last Viewed; 2011-12-15

Last Updated: 2011-12-30, 13.24

Multiparty Session Type Theory

> Multiparty Asynchronous Session Types [POPL 08]

» Pro gress

>> Global Progress in Dynamically Interleaved Multiparty Sessions
[CONCUR’08], [Math. Struct. Comp. Sci.]

>> Inference of Progress Typing [Coordination’13]

) o Asynchronous Optimisations and Resource Analysis

> Global Principal Typing in Partially Commutative
Asynchronous Sessions [ESOP’09]

>> Higher-Order Pi-Calculus [TLCA’07,TLCA’09]

> Buffered Communication Analysis in Distributed Multiparty
Sessions [CONCUR’10]

) o Logics

>> Design-by-Contract for Distributed Multiparty Interactions
[CONCUR’10]

> Specifying Stateful Asynchronous Properties for Distributed
Programs [CONCUR’12]

> Multiparty, Multi-session Logic [TGC’12]

»> Extensions of Multiparty Session Types
Multiparty Symmetric Sum Types [Express’10]
Parameterised Multiparty Session Types [FoSSaCs’10, LMCS]

Global Escape in Multiparty Sessions [FSTTCS’10]
[Math. Struct. Comp. Sci.]

Dynamic Multirole Session Types [POPL 11]

Nested Multiparty Sessions [CONCUR’12]

) o Dynamic Monitoring

> Asynchronous Distributed Monitoring for Multiparty Session
Enforcement [TGC’11]

>> Monitoring Networks through Multiparty Sessions [FORTE’13]

» Automata Theories
> Multiparty Session Automata [ESOP’12]

> Synthesis in Communicating Automata [ICALP’13]

) o Typed Behavioural Theories

>> On Asynchronous Eventful Session Semantics [FORTE’11]
[Math. Struct. Comp. Sci.]

> Governed Session Semantics [CONCUR’13]

) o Choreography Languages

> Compositional Choreographies [CONCUR’13]

Language and Implementations

) o Carrying out large-scale experiences with OOI, VMWare, Red Hat,
Congnizant, UNIFI, TrustCare

>> JBoss SCRIBBLE [ICDCIT’10, COB’12] and SAVARA projects

) o High-performance computing

Session Java [ECOOP’08,ECOOP’ 10,Coordination’ 11]
—> Multiparty Session C and MPI [TOOLS’12][Hearts’ 12][EuroMPI’12]

) o Multiparty session languages Ocaml, Java, C, Python, Scala, Jolie

Trustworthy Pervasive Healthcare Services via Multiparty
Session Types [FHIES 12]

SPY: Local Verification of Global Protocols [RV’13]

Practical interruptible conversations: Distributed dynamic
verification with session types and Python [RV’13]

Session Type Projects

» SADEA EPSRC Exploiting Parallelism through Type
Transformations for Hybrid Manycore Systems, with
Vanderbauwhede, Scholz, Gay and Luk

> Programme Grant EPSRC From Data Types to Session Types: A
Basis for Concurrency and Distribution, with Wadler and Gay

»> EPSRC Conversation-Based Governance for Distributed Systems by
Multiparty Session Types

> FETOpen UpScale with de Boer, Clark, Drossopoulou, Johnsen
and Wrigstad

» VMware Dynamic Assurance based on Multiparty Session Types

> Cognizant EPSRC Knowledge Transfer Secondments

>
>
>
>
>
>
>
>

Session Type Reading List

[ESOP’98] Honda, Vasconcelos and Kubo, Language Primitives and Type Disciplines
for Structured Communication-based Programming,

[SecRet’06] Yoshida and Vasconcelos, Language Primitives and Type Disciplines for
Structured Communication-based Programming Revisited, ENTCS.

[ECOOP’08] Hu, Yoshida and Honda, Session-Based Distributed Programming in
Java

[POPL’08] Carbone, Yoshida and Honda, Multiparty Asynchronous Session Types
[WS-FM’09] Dezani-Ciancaglini and de’Liguoro, Sessions and Session Types
[TOOLS’12] Ng, Yoshida and Honda, Multiparty Session C

[CONCUR’10] Caires and Pfenning, Session Types as Intuitionistic Linear
Propositions; [ICFP’12] Walker, as Classical Linear Propositions.

[OOI] Video by John Orcutt, Professor of Geophysics, UCSD, Ocean Observing:
Oceanography in the 21st Century

A rare cluster of qualities

From the team of OOI CI:

Kohei has lead us deep into the nature of communication and
processing. His esthetics, precision and enthusiasm for our
mutual pursuit of formal Session (Conversation) Types and
specifically for our OOI collaboration to realize this vision in
very concrete terms were, as penned by Henry James, lessons

in seeing the nuances of both beauty and craft, through a rare

cluster of qualities - curiosity, patience and perception, all at

the perfect pitch of passion and expression.

