
Scalable session programming for heterogeneous
high-performance systems

Nicholas Ng Nobuko Yoshida Wayne Luk
Imperial College London

September 23, 2013

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Outline

Introduction

Session C: Type checking approach

Pabble: MPI Code generation approach

Conclusion and future work

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Motivation

I Parallel architectures
I Efficient use of hardware resources
I eg. Multicore processors, computer clusters
I Difficult to program (correctly)

I Most common MPI error [Intel survey, SE-HPCS’05]
I Communication mismatch (send-receive)
I Communication deadlocks

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Contributions

Session C Type checking for session primitives

Pabble Session-directed MPI code generation

I Two approaches to session-based parallel programming
I Communication safety
I Deadlock freedom

I Expressing scalable communication topologies as sessions
I i.e. in our session-based protocol language

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Approach 1 - Session C programming

I Top-down approach
I Multiparty session types

(MPST)
I Communication: duality
I Communication safety,

deadlock freedom by typing

Protocol (G )

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol
Session C
Program

Refined
Endpoint
Protocol

Endpoint
Scribble
Protocol

Global
Scribble
Protocol

< < <

Projection

Refinement

Conformance

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Session C programming: Key reasoning

1. Design protocol in global view

2. Automatic projection to
endpoint protocol, algorithm
preserves safety

3. Write program according to
endpoint protocol

4. Check program conforms to
protocol

5. ⇒ Safe program by design

Protocol (G )

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol
Session C
Program

Refined
Endpoint
Protocol

Endpoint
Scribble
Protocol

Global
Scribble
Protocol

< < <

Projection

Refinement

Conformance

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Scribble protocol specification language

I Communication protocols

I Interaction by message passing

I Captures protocol control-flow
I Developed with industry

I Red Hat
I Cognizant
I Ocean Observatories Initiative

I More details in tomorrow’s
demo session

Protocol (G )

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol
Session C
Program

Refined
Endpoint
Protocol

Endpoint
Scribble
Protocol

Global
Scribble
Protocol

< < <

Projection

Refinement

Conformance

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Scribble protocol specification language: Example

1 /* Global protocol */

2 protocol Simple

3 (role P1, role P2, role P3) {

4 int from P1 to P2;

5 char from P3 to P1;

6 float from P2 to P3

7 }

P1 P2 P3

int

char

float

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Scribble protocol specification language: Example

1 /* Endpoint protocol for P2 */

2 protocol Simple at P2

3 (role P1, role P3) {

4 int from P1;

5
6 float to P3;

7 }

P1 P2 P3

int

char

float

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Session C runtime

I Message passing API
I Built on 0MQ

I Fast P2P communication
I Lightweight

I Designed to be simple
I Resembles Scribble
I Some collective ops support

Protocol (G )

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol
Session C
Program

Refined
Endpoint
Protocol

Endpoint
Scribble
Protocol

Global
Scribble
Protocol

< < <

Projection

Refinement

Conformance

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Session C runtime: Examples

Iteration and message passing
Scribble

1 rec X {

2 (int) to A;

3 continue X;

4 }

1 rec Y {

2 (int) from B;

3 continue Y;

4 }

API (simple conditional)

1 while (i<3) {

2 int val = 42;

3 send_int(&val, 1, A);

4 }

1 while (i<3) {

2 int val; recv_int(&val, 1, B);

3 }

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Session C runtime: Examples

Directed choice
Scribble

1 choice to B {

2 LABEL0(int) to B;

3 } or {

4 LABEL1(int) to B; }

1 choice from A {

2 LABEL0(int) from A;

3 } or {

4 LABEL1(int) from A; }

API

1 if (i<3) { // Choice from

2 outbranch(B, LABEL0);

3 send_int(B, 12);

4 } else {

5 outbranch(B, LABEL1);

6 send_char(B, ’A’); }

1 // Choice to

2 switch (inbranch(A, &label)) {

3 case LABEL0:

4 recv_int(A, &ival); break;

5 case LABEL1:

6 recv_char(A, &cval); break; }

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Session Type checking

I Static analyser

I Does source code conform to
specification?

I Extract session type from code
I Based on usage of API
I Based on program flow

control

I Compare w/ endpoint protocol

Protocol (G )

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol
Session C
Program

Refined
Endpoint
Protocol

Endpoint
Scribble
Protocol

Global
Scribble
Protocol

< < <

Projection

Refinement

Conformance

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Session Type checking: Asynchronous optimisation

I Protocols designed safe

I Naive impl. inefficient
I Asynchronous impl.

I Non-blocking send
I Blocking receive

I Overlap send/recv operations

I Safety by async. subtyping
[Mostrous et al., ESOP’09]

Protocol (G )

TAlice

T ′
Alice

PAlice

TBob

T ′
Bob

PBob

TCarol

T ′
Carol

PCarol
Session C
Program

Refined
Endpoint
Protocol

Endpoint
Scribble
Protocol

Global
Scribble
Protocol

< < <

Projection

Refinement

Conformance

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Summary (1/2): Session C programming framework

I Approach: Safety by type checking

I Protocol-based parallel programming framework

I Developer friendly Session Types as protocols

I Implemenation with custom API

I Guarantees communication safety, deadlock free by design

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Approach 2: MPI Pabble Code generation approach

I Scaling: More practical parallel programming

I Message Passing Interface (MPI) is standard API
I Associate Parameterised MPST with MPI

I Type representation (protocol)
I Pabble: Parameterised Scribble
I Scribble roles with indices

I Type check/extraction from source code
I Parameterised (dependent) type checking non-trivial
I MPI deductive verification

Related: next talk this session

I Our solution: Code generation from Pabble protocols

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Writing a parallel pipeline in Scribble

1 global protocol Ring(role Worker1, role Worker2,

2 role Worker3, role Worker4) {

3 rec LOOP {

4 Data(int) from Worker1 to Worker2 ;

5 Data(int) from Worker2 to Worker3 ;

6 Data(int) from Worker3 to Worker4 ;

7 Data(int) from Worker4 to Worker1 ;

8 continue LOOP;

9 }

10 }

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Pabble: Parameterised Scribble

I Parameterised Scribble extension

I Role parameterisation by indices

I Grouping: Single endpoint protocol for parameterised roles
I Parametric extension of Scribble

I foreach, recursion with loop index binding
I if, conditional execution (multiple roles in single endpoint)
I Role index calculation, design based on [Concurrency: state

models and Java programs, Magee and Kramer, 2006]

I Scalable: Supports unbounded number of roles (for some
cases)

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Indexed interaction statement

Global protocol

1 Data(int) from Worker[i:1..9] to Worker[i+1];

Endpoint protocol

I All Workers share an endpoint protocol

I statements are executed conditionally (by index)

1 if Worker[i:2..10] Data(int) from Worker[i-1];

2 if Worker[i:1..9] Data(int) to Worker[i+1] ;

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Example: Ring topology in Pabble

1 global protocol Ring(role Worker[1..N]) {

2 rec LOOP {

3 Data(int) from Worker[i:1..N-1] to Worker[i+1] ;

4 Data(int) from Worker[N] to Worker[1] ;

5 continue LOOP;

6 }

7 }

Worker[i:1] Worker[i:N-1] Worker[N]

A:send

A:recv

B:recv

B:send C:recv

C:send

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Ring protocol: Worker endpoint

1 local protocol Ring at Worker[1..N](role Worker[1..N]) {

2 rec LOOP {

3 if Worker[i:2..N] Data(int) from Worker[i-1];

4 if Worker[i:1..N-1] Data(int) to Worker[i+1];

5 if Worker[1] Data(int) from Worker[N];

6 if Worker[N] Data(int) to Worker[1];

7 continue LOOP;

8 }

9 }

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



MPI code generation

I Sessions and MPI: Similar program structure
I Pabble also single-source multiple-endpoints
I Parameterised role index = MPI ranks

I Pabble vs. core MPI primitives, e.g.
I P2P: Send, Receive
I Collective ops: Scatter, Gather, All to All

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Ring protocol: Simplified MPI code

1 MPI_Init(&argc, &argv);

2 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

3 MPI_Comm_size(MPI_COMM_WORLD, &N);

4 while (1) { // rec LOOP

5 // if Worker[i:2..N] Data(int) from Worker[i-1];

6 if (2<=rank && rank<=N} MPI_Recv(.., MPI_INT, rank-1, Data, .. );

7 // if Worker[i:1..N-1] Data(int) to Worker[i+1];

8 if (1<=rank && rank<=N-1} MPI_Send(.., MPI_INT, rank+1, Data, .. );

9 // if Worker[1] Data(int) from Worker[N];

10 if (rank==1} MPI_Recv(.., MPI_INT, N, Data, .. );

11 // if Worker[N] Data(int) to Worker[1];

12 if (rank==N} MPI_Recv(.., MPI_INT, 1, Data, .. );

13 }

14 MPI_Finalize();

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Summary (2/2): MPI code generation from Pabble

I Approach: Safety by code
generation

I Generate MPI backbone
I Communication-correct

I Pabble indexed roles to rank

I Supports MPI collective ops

Protocol (G )

TAlice

PAlice

TBob

PBob

TCarol

PCarol MPI application

Endpoint Proto-
col

Global Protocol

Projection

Generation

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Conclusion: Session-based safe parallel programming

Define global protocol
in Scribble
protocol P

nt from A to Bint from A to B

Project into
endpoint protocol
protocol P at A

nt to Bint to B

Implement program
int main() {

calc(buf(buf, cnt);

send_int(B, 42); }

Static type checking
Check implementation
conforms with endpoint
protocol at compile time

Generate MPI code
int main() { /*insert code*/

MPI_Send(buf, cnt,

RANK_B, MPI_INT, ...); }

Implement program
int main() { calc(buf, cnt);

MPI_Send(buf, cnt,

RANK_B, MPI_INT, ...); }

Code generation approach

Type checking approach

I Communication safety

I Deadlock free

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Ongoing and future work

I Extract/verify Session Types from MPI
I Huge engineering challenge
I Can we infer global types from the endpoint MPI programs?
I Ongoing collaboration with FCUL [EuroMPI’12, PLACES’13,

BEAT2’13]

I Applying methodology in different environments
I Software-Hardware communication (eg. FPGA, Maxeler)
I Heterogeneous hardware (FPGA) code generation via AOP

I ...

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems



Define global protocol
in Scribble
protocol P

nt from A to Bint from A to B

Project into
endpoint protocol
protocol P at A

nt to Bint to B

Implement program
int main() {

calc(buf(buf, cnt);

send_int(B, 42); }

Static type checking
Check implementation
conforms with endpoint
protocol at compile time

Generate MPI code
int main() { /*insert code*/

MPI_Send(buf, cnt,

RANK_B, MPI_INT, ...); }

Implement program
int main() { calc(buf, cnt);

MPI_Send(buf, cnt,

RANK_B, MPI_INT, ...); }

Code generation approach

Type checking approach

Nicholas Ng (nickng@doc.ic.ac.uk)
Scalable session programming for heterogeneous high-performance systems


	Introduction
	Session C: Type checking approach
	Pabble: MPI Code generation approach
	Conclusion and future work
	Appendix

