
Multiparty Session Types: Concepts

 Separate the communication into conversations (sessions)

 Each process plays a role in a conversation => its type is 
defined by the conversation and its role



Evolution Of MPST
 Binary Session Types [THK98, HVK98]  

 Multiparty Session Types [POPL’08]

 A Theory of Design-by-Contract for Distributed Multiparty Interactions [Concur’11] 

 Monitoring Networks through Multiparty Session Types [TGC’12]

 Multiparty Session Types Meet Communicating Automata [ESOP’12, ICALP’13]

 Network Monitoring through Multiparty Session Types [FMOODS’13]

 Local Verification of Global Protocols, Practical Interruptible conversations [RV’13]   



Case Study: OOI

 OOI requirements

 applications written in different languages, running on 

heterogeneous hardware in an asynchronous network.

 different authentication domains,  external untrusted

applications

 requires correct, safe interactions



Session Types for Monitoring

 Distributed monitoring 

 attach a monitor to each application 

 the monitor checks messages w.r.t specification 

 ensures interoperablity



Session types for monitoring

 Adapting MPST theory to 

monitoring

 Principals

 Developers design 

protocols in a dedicated 

language - Scribble

 Well-fomedness is checked 

by Scribble tools

 Protocols are projected 

into local types

 Local types generate 

monitors



OOI Requirements - revisited

 Communication based on various protocols

 General protocol verification monitor   

 Heterogeneous systems 

 protocol description language - Scribble

 Different authentication domains

 distributed monitoring

 Can we guarantee safety properties 

 a theory for network monitoring with soundness theorems





www.scribble.org



Scribble Community

 Webpage:

 www.scribble.org

 GitHub:

 https://github.com/scribble

 Tutorial:

 www.doc.ic.ac.uk/~rhu/scribble/tutorial.html

 Specification (0.3)

 www.doc.ic.ac.uk/~rhu/scribble/langref.html

http://www.scribble.org/
https://github.com/scribble
http://www.doc.ic.ac.uk/~rhu/scribble/tutorial.html
http://www.doc.ic.ac.uk/~rhu/scribble/langref.html


Two Buyer Protocol in Scribble



Protocol Well-fomedness (choice)



Buyer: A local projection



The whole picture



It’s Demo time

 Internal" CC Runtime component monitoring

 [DEMO]



More advanced protocols

 https://confluence.oceanobservatories.org/display/syseng/

CIAD+COI+OV+Governance+Framework

 Higher-level" application protocols 

 Composition of RPC calls

 Negotiation protocol

https://confluence.oceanobservatories.org/display/syseng/CIAD+COI+OV+Governance+Framework


Application-level service call composition



Scoping



Scoping 



Agent Negotiation

 Provider and Consumer agents negotiate a Service 

Agreement Proposal

 https://confluence.oceanobservatories.org/display/syseng/CIAD+COI

+OV+Negotiate+Protocol



Negotiation protocol in Scribble



Negotiation protocol in Scribble



Governance Framework



Scribble annotations

…

{assertion: payment>=1000}

offer(payment: int) from C to I; 

…

…

@{commitment: create(C, I, payment)}

offer(payment: int) from C to I; 

…

 The monitor passes 

{‘type’:param, …}  

to the upper layers
…

@{deadline: 5s}

offer(payment:  int) from C to I; 

…

 Upper layers recognize 
and process the 
annotation type or 
discard it



A theory for network monitoring

 Formalise MPST-monitoring and asynchronous networks.

 Introduce monitors as first-class objects in the theory

 Justify monitoring by soundness theorems.

 Safety

 monitors enforces specification conformance.

 Transparency

 monitors does not affect correct behaviours.

 Fidelity 

 correspondence to global types is maintained.



Multiparty Sessions for Runtime Monitors



Formal Semantics

 processes 𝑃 located at principals α

 Abstracts local applications

 router  𝑟

 abstracts network routing information updated on-the-fly



Formalism: Monitor

 Monitors

 Monitors are introduced as component of monitored 
networks

 Specifications



Satisfaction



Results (Safety)



Results (Transparency)



Results (Fidelity)



Summary

 Having a context allows to control the communication

 Having granularity allows to specify constraints on the 

interactions

 Early error detection is much cheaper

 High-level policies on top of protocol verification

 Good abstraction means easy programming – you 

program with send and receive (no threads, sockets, 

channels)



References

 http://www.youtube.com/watch?feature=endscreen&v=mr

Eiwd9Buxk&NR=1

 https://confluence.oceanobservatories.org/download/attac

hments/18351011/OOI+CyberInfrastructure+-

+Next+Generation+Oceanographic+Research-

lowres.pdf?version=1&modificationDate=1246912767000

 http://icmrg.herokuapp.com/

http://www.youtube.com/watch?feature=endscreen&v=mrEiwd9Buxk&NR=1
https://confluence.oceanobservatories.org/download/attachments/18351011/OOI+CyberInfrastructure+-+Next+Generation+Oceanographic+Research-lowres.pdf?version=1&modificationDate=1246912767000
http://icmrg.herokuapp.com/

