Verification of MPI programs using session types

Kohei Honda, Eduardo R. B. MarquésFrancisco Marting
Nicholas N¢g, Vasco T. Vasconcel8sand Nobuko Yoshida

1 Queen Mary & West Field College, University of London, UK
2 LaSIGE, Faculty of Sciences, University of Lisbon, PT
3 Imperial College London, UK

Developing safe, concurrent (and parallel) software systis a hard task in mul-
tiple aspects, particularly the sharing of information d@he synchronization among
multiple participants of the system. In the message pagsnadigm, this is achieved
by sending and receiving messages among different patitspraising a number of
verification problems. For instance, exchanging messagesiong order may prevent
the system from progressing, causing a deadlock. MPI is thet commonly used pro-
tocol for high-performance, message-based parallel progrand the need for formal
verification approaches is well acknowledged by much rewenk (e.g., seel]1]).

Our proposal for verification of MPI programs is based onisestypes [3]. The
methodology considers the specification of a global int@agrotocol among mul-
tiple participants, from which we can derive an endpointqcol for each individual
participant, e.g., as in Scribblel [2]. A well-formed prodbcan be verified in polyno-
mial time and ensures type safety, communication safety,deadlock freedoni{4].
The idea is that we can ensure these properties for an MPFgaroby verifying con-
formance of the program against a given session type spafic This contrasts with
other state-of-the-art methodologies considered for Migt,model checking or sym-
bolic execution([B], that require program-level analysisdll properties of interest, and
inherently lead to a state-explosion problem as the numity@articipants grows.

Session type MPI fragment

process r float err, local Err, sbuf[N, rbuf[N;
r in {0, ..., P-1}, int r, P;

N>0 MPI _Conm rank(MPI _COVM WORLD, &r);

= loop { MPI _Comm si ze(MPI _COVM WORLD, &P);

float[N] to (r+1) %P
float[N] from (P+r-1) %P for (i=0; i < MAX_ITER && err > MAX_ ERROR i++) {
fl oat al | reduce MPI _Sendr ecv(sbuf, N, MPI _FLOAT, (r+1) %P, O,
} rbuf, N, MPl_FLOAT, (P+r-1) %P, 0,
MPI _COWMM WORLD, &status);
/| conputation

NPI _Allreduce(& ocal Err, &err, 1, MPI_FLOAT,
MPI _MAX, MPI _COWM WORLD) ;
}

To illustrate our proposal we sketch a ring pattern that eafoland in many MPI
programs, e.g., n-body pipeline computations, shown aivealepict a pseudo-session
type specification (left) and a corresponding MPI prograaginent (right). The session
type specifies that in every turn each participarghould send a float array of sihé
to its right neighbor and receive another array of the samefsom its left neighbor.
Then, after some local computation involving the receivaihdall participants perform
a collective reduction (usingPl _Al | r educe).

We have identified two key challenges. The first is to refinsisestype abstrac-
tions to capture the general traits of MPI programs, e.gqk+zased communication,
collective operations, typical communication patterng.(ging, mesh), and other MPI
operations that may correspond to multiple steps in theopod{like MPI _Sendr ecv
in the example). Other features impose additional complextich as nondeterministic
operations (e.g., wildcard receives) or the possible @dio@existence between block-
ing and nonblocking operations (e.g., BRl _Send operation can be matched by a
MPI _I recv/MPl Wi t operation pair). Important work such as dependent-types or
parameterized multiparty session tygés [7] can providigls on these topics.

Session types have already been used to describe and vadfjgbprograms, e.g.,
Session C[I5]. The proposals so far, however, require theagrams are specified using
a session type-specific programming abstraction and peavidsupport for common
traits of message-based parallel programs such as cedlexgerations. In contrast, we
propose checking the conformance of standard MPI prograyamst session types.
This second challenge is far from trivial. In essence, wedrnteedetermine a sound
correspondence between a session type specification aruntm®l flow graph of a
programfor any process. The communication flow is dependent on the nunheaicka
of each process, i.e., for anyin the example the endpoint type must be matched against
the concrete control flow of the MPI program when executeddokr . Moreover, a
control flow synchrony needs to be established between ggeseln the example we
would need to infer that the same number of loop iteratiorexecuted for all ranks,
based on the assertion thaatr andi always have the same value in all processes
per each iteration (note that r results fromMPI _Al | r educe). Beyond this simple
example, other MPI programs easily make this type of assertnore complex to infer,
e.g., manager-worker programs which combine such a paesizegtion with distinct
branches and communication operations for different p®geoups.

References

1. Gopalakrishnan, G., Kirby, R.M., Siegel, S., Thakur, ®opp, W., Lusk, E., De Supinski,
B.R., Schulz, M., Bronevetsky, G.: Formal analysis of MRkéd parallel programs. Com-
mun. ACM 54(12), 82-91 (2011)

2. Honda, K., Mukhamedov, A., Brown, G., Chen, T., Yoshida, $¢ribbling interactions with
a formal foundation. Distributed Computing and Internettirelogy pp. 55-75 (2011)

3. Honda, K., Vasconcelos, V.T., Kubo, M.: Language priveisi and type disciplines for struc-
tured communication-based programming. In: Proc. ESORZ&Nvol. 1381, pp. 122-138.
Springer (1998)

4. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynefouos session types. In: Proc. POPL.
pp. 273-284. ACM (2008)

5. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Spé&egallel programming with mes-
sage optimisation. In: Proc. TOOLS Europe (to appear) (2012

6. Siegel, S., Mironova, A., Avrunin, G., Clarke, L.: Cominig symbolic execution with model
checking to verify parallel numerical programs. ACM TOSER3), 1-34 (2008)

7. Yoshida, N., Deniélou, P., Bejleri, A., Hu, R.: Paramisted multiparty session types. In: Proc.
FoSSaCs. LNCS, vol. 6014, pp. 128-145. Springer (2010)

Acknowledgements.This work is partially supported by EPRSC funds EP/G0158B%nd
EP/G015481/01, Fundacao para a Ciéncia e TecnologidgsfeTDC/EIA-CCO/122547/2010,
and the Ocean Observatories Initiative.

	Verification of MPI programs using session types

