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ABSTRACT. We present the first session typing system guaranteeing request-response live-
ness properties for possibly non-terminating communicating processes. The types augment
the branch and select types of the standard binary session types with a set of required
responses, indicating that whenever a particular label is selected, a set of other labels,
its responses, must eventually also be selected. We prove that these extended types are
strictly more expressive than standard session types. We provide a type system for a
process calculus similar to a subset of collaborative BPMN processes with internal (data-
based) and external (event-based) branching, message passing, bounded and unbounded
looping. We prove that this type system is sound, i.e., it guarantees request-response live-
ness for dead-lock free processes. We exemplify the use of the calculus and type system
on a concrete example of an infinite state system.

1. INTRODUCTION

Session types were originally introduced as typing systems for particular m-calculi, modelling
the interleaved execution of two-party protocols. A well-typed process is guaranteed freedom
from race-conditions as well as communication compatibility, usually referred to as session
fidelity [21, 34, 32]. Session types have subsequently been studied intensely, with much work
on applications, typically to programming languages, e.g., [15, 23, 20, 26]. A number of
generalisations of the theory have been proposed, notably to multi-party session types [22].
Multi-party session types have a close resemblance to choreographies as found in standards
for business process modelling languages such as BPMN [27] and WS-CDL, and have been
argued in theory to be able to provide typed BPMN processes [12].
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Behavioral types usually furnish safety guarantees, notably progress and lock-freedom
[5, 1, 7, 14, 33]. In contrast, in this paper we extend binary session types to allow specifi-
cation of liveness—the property of a process eventually “doing something good”. Liveness
properties are usually verified by model-checking techniques [9, 2, 6], requiring a state-space
exploration. In the present paper we show that a fundamental class of liveness properties,
so-called request-response properties, can be dealt with by type rules, that is, without resort-
ing to state-space exploration. As a consequence, we can deal statically with infinite state
systems as exemplified below. Also, liveness properties specified in types can be understood
and used as interface specifications and for compositional reasoning.
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Figure A: A Potentially Non-live Shopping Cart BPMN Process

As an example, the above diagram contains two pools: The Buyer and the Shopping-
Cart. Only the latter specifies a process, which has two parts: Ordering and Delivery.
Ordering is a loop starting with an event-based gateway, branching on the message received
by the customer. If it is AddItem or Removeltem, the appropriate item is added or removed
from the order, whereafter the loop repeats. If it is Checkout, the loop is exited, and the
Delivery phase commences. This phase is again a loop, delivering the ordered items and
then sending the invoice to the buyer.

A buyer who wants to communicate safely with the Shopping Cart, must follow the
protocol described above, and in particular must be able to receive an unbounded number
of items before receiving the invoice. Writing Al, RI, CO, DI, and Sl for the actions “Add
Item”, ”Remove Item”, “Checkout”, “Deliver Items” and “Send Invoice”; we can describe
this protocol from the point of view of the Shopping Cart with a session type:

pt &{AL?.t,RI.2.t,CO.7.ut’. @ {DI.I.t',Sl.l.end} } .

This session type can be regarded as a behavioral interface, specifying that the process
first expects to receive either an Al (AddItem), Rl (Removeltem) or a CO (CheckOut)
event. The two first events must be followed by a message (indicated by “?”), which in
the implementation provides the item to be added or removed, after which the protocol
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Figure B: Live delivery with MI Sub-Process

returns to the initial state. The checkout event is followed by a message (again indicated by
a “?”) after which the protocol enters a new loop, either sending a DI (Deliverltem) event
followed by a message (indicated by a “!”) and repeating, or sending an S| (SendInvoice)
event followed by a message (the invoice) and ending,.

However, standard session types can not specify the very relevant liveness property,
that a CO (checkout) event is eventually followed by a Sl (send invoice) event. This is an
example of a so-called request-response property: an action (the request) must be followed
by a particular response. In this paper we conservatively extend binary session types to
specify such request-response properties, and we show that this extension is strictly more
expressive than standard session types. We do so by annotating the checkout selection in
the type with the required response:

ut &{AL?.t,RI.2.t, CO[{SI}].7.ut’. ® {DI..t',Sl.!l.end} } .

Intuitively: “if CO is selected, then subsequently also SI must be selected.”

Determining from the flow graph alone if this request-response property is guaranteed is
in general not possible: Data values dictate whether the second loop terminates. However,
we can remove this data-dependency by replacing the loop with a bounded iteration. In
BPMN this can be realised by a Sequential Multiple Instance Sub-process, which sequen-
tially executes a (run-time determined) number of instances of a sub-process. With this,
we may re-define Delivery as in Fig. B, yielding a re-defined Shopping Cart process which
has the request-response property.

In general, we need also be able to check processes where responses are requested within
(potentially) infinite loops. The type system we present gives such guarantees, essentially by
collecting all requested responses in a forward analysis, exploiting that potentially infinite
loops can guarantee a particular response only if every path through the loop can; and that
order (request-response vs response-request) is in this case irrelevant. We prove that, if the
system is lock free, then the typing system indeed guarantees that all requested responses
are eventually fulfilled. Lock-freedom is needed because, as is well known, collaborative
processes with interleaved sessions may introduce dependency locks. Lock-freedom is well-
studied for both m-calculus, e.g., [24], and binary session types [5, 1, 7, 14, 33], or may
alternatively be achieved by resorting to global types [22].

In summary, our contributions are as follows.

e We extend binary session types with a notion of required response.
e We prove that this extension induces a strictly more expressive language class than
standard session types.



e We give a typing system conservatively extending standard binary session types
which gives the further guarantee that a lock-free well-typed process will, in any
execution, provide all its required responses.

o We exemplify the use of these extended types to guarantee both safety and liveness
properties for a non-trivial, infinite state collaborative process, which exhibits both
possibly infinite looping and bounded iteration.

Related work. There is a vast amount of work on verification of collaborative processes.
Most of the works take a model-checking approach, where the system under verification is
represented as a kind of automaton or Petri Nets. An example that explicitly addresses
collaborative business processes is [31], which however does not cover liveness properties.
Live Sequence Charts (LSCs) [9] is a conservative extension of Message Sequence Charts
allowing to distinguish possible (may) from required (must) behaviour, and thus the spec-
ification of liveness properties. LSCs can be mapped to symbolic timed automata [2] but
relies as all model-checking approaches on abstraction techniques for reducing a large or
even infinite state space to a tractable size. Here the work in [6] is interesting for the fact
that the model-checking can be split on components. The work in [25] allows for model-
checking of ML programs by a translation to higher-order recursion schemes. Interestingly,
the model-checking problem is reduced to a type-checking problem, but rely on a tech-
nique for generation of a specific type system for the property of interest. In contrast,
our approach is based on a single type system directly applicable for the process language
at hand, where the (less general) liveness and safety properties of interest are specified as
the type to be checked and can also be used as interface descriptions of processes. The
fair subtyping of [28], the only work on session types addressing liveness we are aware of,
details a liveness-preserving subtyping-relation for a session types-like CCS calculus. Here
liveness is taken to mean the ability to always eventually output a special name, whereas
in the present work, we consider the specification of fine-grained request-response liveness
properties—“if something happens, something else must happen”.

Overview of this paper. This article presents a full version of an extended abstract that
appeared at FORTE ’14 [11]. The present paper includes the detailed definitions and expla-
nations, many more examples, and complete proofs. In particular, the formal development
for both basic correctness of the typing system in Section 4 as well as for the liveness results
in Section 6 was mostly absent from the extended abstract; we believe these, in particular
the latter, to be of independent interest.

We proceed as follows. In Section 2 we define our calculus and its LTS-semantics.
In Section 3 we extend binary session types with specification of request-response liveness
properties, give transition semantics for types, and sketch a proof that the extended types
induce a strictly larger class of languages than does standard types. In Section 4 we define
exactly how types induce a notion of liveness on processes. In Section 5 we give our extended
typing rules for sessions with responses and state its subject reduction result. In Section 6
we prove that the extended typing rules guarantees liveness for lock-free processes. Finally,
in Section 7 we conclude.

We assume basic familiarity with m-calculus and binary session types, in particular the
formulation of the latter in terms of polarised channels. A good introductory reference is
[18]; an extended discussion of the motivations for and ramifications of polarised channels
is [34].



2. PROCESS TERMS AND SEMANTICS

Processes communicate only via named communication (session) channels by synchronizing
send and receive actions or synchronizing select and branch events (as in standard session
typed m-calculus). The session typing rules presented in the next section guarantees that
there is always at most one active send and receive action for a given channel. To distinguish
dual ends of communication channels, we employ polarised names [19, 34]: If ¢ is a channel
name, ¢t and ¢~ are the dual ends of the channel c. We call these polarised channel names,
with “4” and “” polarities. If k is a polarised channel name, we write k for the dual

polarised channel name, e.g., ¢t = ¢~. The syntax of processes is given below.
Meta-variables:

channel names

polarities +, —

polarised channel names (cP)

data variables

data values, including natural numbers and true, false
data expressions, including data variables and values
selection labels

process variables

NNQCRET"BQ
>

~

Process syntax:
P :=kNe).P | k?(x).P | KNP | kX{;.P;};,c; | 0 | P|Q

| rec X.P | (rec® X (i).P;Q) | X[k] | if e then P else Q

The first four process constructors are for taking part in a communication. These are
standard for session typed m-calculi, except that for simplicity of presentation, we only allow
data to be sent (see Section 7). The process k!(e).P sends data v over channel k when e |} v,
and proceeds as P. Dually, k7(x).P receives a data value over channel k£ and substitutes
it for the 2 binding in P. A branch process k?{l;.P;},.; offers a choice between labels [;,
proceeding to P; if the ¢’th label is chosen. The process 0 is the standard inactive process
(termination), and P | Q) is the parallel composition of processes P and Q.

Recursion comes in two forms: a general, potentially non-terminating recursion rec X.P,
where X binds in P; and a primitive recursion, guaranteed to terminate, with syntax
(rec® X (7).P; Q). The latter process, when e evaluates to 0, evolves to @; when e evalutes
to n + 1, it evolves to P{n/i}{(rec®! X(i).P;Q)}, i.e., the process becomes P with n
substituted for 7, and the same process except for a decreased e substituted for the process
variable X. We assume the following conventions:

In (rec® X (i).P; @), 0 does not occur in P.

In (rec® X (i).P; @), no process variable but X occurs free in P.

In (rec® X (i).P;Q), there is no sub-term rec Y.R or (rec® Y (¢).R;S) in P.

In (rec® X (i).P;Q), there is no sub-term R | S of P.
These conventions ensure that the process (rec® X (7).P; Q) will eventually terminate the
loop and execute Q. Process variables X[k] mention the channel names k active at unfolding
time for technical reasons.

We define the free polarised names fn(P) of a process P as usual, with fn(X [k]) = k; sub-

stitution of process variables from X[k]{P/X} = P; and finally value substitution P{v/x}

(2.1)



in the obvious way, e.g., k!{e).P{v/x} = kl{e{v/x}).(P{v/x}). Variable substitution can
never affect channels.

Example 2.1. We now show how to model the example BPMN process given in the in-
troduction. To illustrate the possibility of type checking infinite state systems, we use a
persistent data object represented by a process DATA (o) communicating on a session chan-
nel o.

read. o™ !(z). Y[o™]

DATA(0) =rec X. 07 ?(x). recY. 01?7 ¢ write. X[o™]

quit. 0
After having received its initial value, this process repeatedly accepts commands read and
write on the session channel o for respectively reading and writing its value, or the command
quit for discarding the data object.

To make examples more readable, we employ the following shorthands. We write
init(o,v).P for o~(v).P, which initializes the data object; we write free 0. P for o~ quit. P, the
process which terminates the data object session; we write read o(z).P for o~ !read. 0~ ?(x).P,
the process which loads the value of the data object o into the process-local variable x; and
finally, we write o := e.P for o~ lwrite.o”!(e).P, the process which sets the value of the
data-object o.

The shopping cart process can then be modelled as

Al. k?(x). read o(y). 0 := add(y, z). X [ko™]
P(Q) = DATA(o) | init(o,€). rec X.k S RI. k?(x). read o(y). 0 := rem(y,x). X[ko™]
CO. k?(x). read o(y). 0 := add(y, ). Q

Here k is the session channel shared with the customer and o is the session channel for com-
municating with the data object modelling order data. We assume our expression language
has suitable operators “add” and “rem” for adding and removing items from the order.
Finally, the process Q is a stand-in for either the (non live) delivery part of the BPMN
process in Fig. A or the live delivery part shown in Fig. B. The non-live delivery loop can
be represented by the process

then kIDI. kl(next(y)). o := update(y). Y[ko™]
else k!SI k!(inv(y)). free 0.0

where n(y) is the integer expression computing from the order y the number of items to
send, next(y), update(y) and inv(y) are, respectively, the next item(s) to be sent; an update
of the order to mark that these items have indeed been sent; and the invoice for the order.
Whether this process terminates depends on the data operations. Using instead bounded
iteration, live delivery becomes:

Dy =recY. reado(y). if n(y) > 0

D = read o(y). (rec"¥) Y (i).
k!Dl.read o(y). kl{pickitem(y,)).Y[ko™];
E!SI. read o(y). k!(inv(y)). free 0.0)

(The second line is the body of the loop; the third line is the continuation.) Here pickitem(y,1)
18 the expression extracting the ith item from the order y. L]
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Figure C: Transition semantics for terms

Transition Semantics. We give a labelled transition semantics in Fig C. We assume a total
evaluation relation e |} v; note the absence of a structural congruence. Transition labels for
processes are on one of the following forms.

A=kl | kv | kol | k&l | 7 | T:1

We assume 7 is neither a channel nor a polarised channel. Define subj(klv) = subj(k?v) =
subj(k&l) = subj(k @ 1) = k and subj(r) = subj(r : I) = 7, and define as a technical
convenience 7 = 7.  We use these rules along with symmetric rules for [C-PARL| and
[C-Com1/2].

Compared to standard CCS or 7 semantics, there are two significant changes: (1) In
the [C-PARL], a transition X of P is not preserved by parallel composition if the co-channel
of the subject of A is in P’; and (2) in prefix rules, the co-name of the subject cannot appear
in the continuation. We impose (1) because if the co-channel of the subject of X is in P’,
then intuitively the process P | P’ already contains both sides of that session, and so does
not offer synchronisation on that session to the environment, only to P’. For instance, the
process

M Ww).Q | ¢ ?(x).R



+
does not have a transition ¢*!(v).Q | ¢~ ?(z).R LIEN Q | ¢ ?(z).R. Such a transition would
be useless: no environment U able to receive on ¢~ could be put in parallel with P and form
a well-typed process, because both U and ¢~ 7(d).R would contain the name ¢~ free. The

reason for (2) is similar: If a process k!(e).P LN P, and P contains k, again no well-typed
environment for that process can contain k. For (2), the side-condition could have been
expressed as a well-formedness on syntax in the present setting; however, anticipating a
future extension of the formalism to encompass also delegation, we have chosen the present
condition on semantics instead.

In recent papers [32, 10, 33|, session types have been presented not with polarised
names, but rather with seemingly disparate names, connected by a new-name operator,
e.g., one writes (vzy)(zll. | y?{l.0}) to form a session with endpoints z,y. This latter
formulation—while elegant for reduction semantics—is not viable for the present transition
semantics. Without the ability to recognise the two ends ¢, ¢~ of a polarised channels as
either end of a session, we cannot express the rules [C-PAR| nor [C-CoMm].

Lemma 2.2. If P 2 Q then subj(\) ¢ fn(Q).

Proof. Straightforward induction on the derivation of the transition. []

3. SESSION TYPES WITH RESPONSES

In this section, we generalise binary session types to session types with responses. In addition
to providing the standard communication safety properties, these also allow us to specify
request-response liveness properties.

Compared to standard session types, we do not consider delegation (name passing).
Firstly, as illustrated by our example calculus, the types are already expressive enough to
cover a non-trivial subset of collaborative processes. Secondly, as we show in the end of
the section, session types with responses are already strictly more expressive than standard
session types with respect to the languages they can express. Thus, as we also address
in Section 7, admitting delegation and answering the open question about how response
obligations can be safely exchanged with the environment, is an interesting direction for
future work which is beyond the scope of the present paper.

We first define request-response liveness in the abstract. In general, we shall take it
to be the property that “a request is eventually followed by a response”. For now, we will
not concern ourselves exactly what “requests” and “responses” are or what it means for a
response to fulfil a request.

Definition 3.1. A request-response structure is a tuple (A, R, req,res) where A is a set of
actions, R is a set of responses, and req : A — R and res : A — R are maps defining the set
of responses that an action requests and performs, respectively.

Notation. In this setting, response liveness is naturally a property of sequences. We write
€ for the empty sequence, we let ¢, 1) range over finite sequences, and we let «, 3,y range
over finite or infinite sequences. We write sequence concatenation by juxtaposition, i.e., ¢a.

Definition 3.2. Suppose (A, R, req,res) is a request-response structure and « a sequence
over A. Then the responses res(a) of «a is defined by res(a) = U{res(a) | o, 8. o = paf}.
Moreover, a is live iff o« = ¢paff = req(a) C res(f).

8



Notation. We shall be specially interested in liveness of sequences of transitions. A finite

transition sequence of length n is a pair of sequences (8;)i<n and (¢;)i<n—1 S.t. $; LN s;41 for
i < mn. An infinite transition sequence is a pair of sequences (s;);eny and (¢;);en S.t. s; t—z>
Si+1- A finite or infinite transition sequence of a state s is a finite or infinite transition
sequence with s; = s. We write (s;,t;);en for infinite sequences and ((s;,t;)i<n, Sn) for
finite sequences, giving the final state explicitly. Slightly abusing notation, we sometimes
write (s;,%;)ier or even just (s;,t;) for a finite or infinite transition sequence, saying that it
is a transition sequence of s; over I.

Definition 3.3 (LTS with responses). Let (S, L, —) be an LTS. When the set of labels L is
the set of actions of a request-response structure p, we say that (S, L, —, p) is an LTS with
responses, and that a transition sequence of this LTS is live when its underlying sequence
of labels is.

Next, we present the syntax of types.

L a countably infinite set of labels
l ranges over L
L ranges over P(L)

By convention, the l; in each &{l;[L;].T;}icr resp. @{l;[Li].T; }ier are distinct.

A session type is a (possibly infinite) tree of actions permitted for one partner of a
two-party communication. The type &{l;[L;].T;}icr, called branch, is the type of offering
a choice between different continuations. If the partner chooses the label I;, the session
proceeds as T;. Compared to standard session types, making the choice [; also requests a
subsequent response on every label mentioned in the set of labels L;; we formalise this in
the notion of responsive trace below. Dual to branch is select ®{l;[L;].T;}ier: the type of
making a choice between different continuations. Like branch, making a choice [; requests
every label in L; as future responses. The type I.T" and 7.7 are the types of sending and
receiving data values. As mentioned above, channels cannot be communicated. Also, we
have deliberately omitted types of values (e.g. integers, strings, booleans) being sent, since
this can be trivially added and we want to focus on the behavioural aspects of the types.
Finally, session types with responses include recursive types. We take the equi-recursive
view, identifying a type T and its unfolding into a potentially infinite tree. We define the
central notion of duality between types as the symmetric relation induced coinductively by
the following rules.

TT Ti=<T JCI
end < end ! T ?72.77 &{ll [Lz]ﬂ}zel > @{ZJ [L;]TY],}JEJ
The first rule says that dual processes agree on when communication ends; the second that
if a process sends a message, its dual must receive; and the third says that if one process
offers a branch, its dual must choose among the offered choices. However, required responses

do not need to match: the two participants in a session need not agree on the notion of
liveness for the collaborative session.

Example 3.4. Recall from Ezx. 2.1 the processes DATA(0) encoding data-object and P(D)
encoding the (live) shopping-cart process. The former treats the channel o as

(3.1)

Tp = pt.?.us.&{read.l.s, write.t, quit.end } .
9
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Figure D: Transitions of types (1)

The latter treats its channel k to the buyer as
Tp = ut.&{AL2.t, RI.7.t, CO[{SI}].?.ut’. ® {DL.L¥', Sl.!.end}} .

To illustrate both responses in unbounded recursion and duality of disparate responses, note
that the P(D) actually treats its data object channel o~ according to the type Ty = pt.!.us.®
{read.?.s, write[{read}].t, quit.end }, i.e., every write is eventually followed by a read.
However, Tp <t Tg: the types Ty and Tp are nonetheless dual. ]

Having defined the syntax of session types with responses, we proceed to give their
semantics. The meaning of a session type is the possible sequences of communication
actions it allows, requiring that pending responses eventually be done. Formally, we equip
session types with a labeled transition semantics in Fig. D.

We emphasise that under the equi-recursive view of session types, the transition system
of a recursive type T may in general be infinite.

Taking actions A to be the set of labels ranged over by p, and recalling that £ is our
universe of labels for branch/select, we obtain a request-response structure (A, P(L), req, res)
with the latter two operators defined as follows.

res(!) = res(?) =0 res(&I[L]) = res(PI[L]) = {I}

req(!) =req(?) =0  req(&I[L]) = req(®l[L]) = L
In the right-hand column, selecting a label I performs the response [; pending responses L
associated with that label are conversely requested. The LTS of Fig. D is thus one with
responses, and we may speak of its transition sequences being live or not.

Definition 3.5. Let T be a type. We define:

(1) The traces tr(T) = {(pi)icr | (Ti, pi)ier transition sequence of T' }
(2) The responsive traces trr(T) = {a € tr(T) | o live }.

That is, in the responsive traces any request is followed by a response.

Definition 3.6. A type 1 is a standard session type if it requests no responses, that is,
every occurrence of L in it is has L = (). Define an operator sel(—) as follows, lifting it
pointwise to sequences.

sel(!) =sel(?) = ¢ sel(&I[L]) = sel(®l[L]) =1
We then define:
(1) The selection traces str(T) = {sel(a) | « € tr(T")}

10



(2) The responsive selection traces strr(T) = {sel(a) | o € trr(T')}.
(3) The languages of standard session types

T = {str(T) | T is a standard session type}.
(4) The languages of responsive session types

R = {strr(T") | T is a session type with responses}.

That is, we compare standard session types and session types of responses by considering
the sequences of branch/select labels they admit. This follows recent work on multi-party
session types and automata [12, 13].

A fine point: because the sel(—) map is lifted pointwise and maps “no selection” to
the empty sequence ¢, this definition of languages is oblivious to send and receive. E.g, if
o5, are the unique traces of the two types S = . ® 1. ®!'.end and T = ®I.7. @ I'.end,
then sel(¢g) = sel(¢r) = 1I'. We formalise this insight in the following lemma.

Lemma 3.7. Let T be a standard session type. There exists a session type T with no
occurrences of send |.T or receive 7.T s.t. str(T) = str(T”).

Example 3.8. The type Tp of Example 3.4 has (amongst others) the two selection traces:

t = AICODIDISI and uw = AICODIDIDI ---. Of these, only t is responsive; u is not, since
it never selects S| as required by its CO action. That is, t,u € str(Tp) and t € strg(Tp), but
u & strp(Tp). [

Lemma 3.9 (Session types with responses are deterministic). (1). If T % and T % and
sel(p) = sel(p’) # €, then p = p'. (2). Consider equally long finite transition sequences
(T3, pi)icns T) and ((Si, p})i<n, Sn). If Ty = Si and for each i < n p; = pj, then also
T, = S; for each i < n.

Proof. (1). Immediate from the convention that each label in a branch or selected is distinct.
(2). By induction on n. The base case is trivial. For n = k 4+ 1 we have by the induction
hypothesis T, = Si. By convention, each label in a branch or select is distinct, so there is

at most one S with T, 2 S. But then S = Ty = Spi1. O

Theorem 3.10. The language of session types with responses R is strictly more expressive
than that of standard session types T ; that is, T C R.

Proof. The non-strict inclusion is immediate by definition; it remains to prove it strict.
Consider the following session type with responses, 7.

a[bl.t
= “t'@{ bla].t

We shall prove that strr(7') & 7. Suppose not; then there exists a session type S with
str(S) = strr(T"). Clearly the responsive selection traces strr(T") is the set of infinite strings
over the alphabet {a,b} where both a,b occur infinitely often. It follows that for all k£ > 0,
the string a* is a prefix of an infinite string in strp(T). We have assumed str(S) = strg(T),
so each a® must also be a prefix of an infinite string in tr(S). By Lemma 3.7, we may
assume S has no occurrences of send or receive, and so for each k there is a transition
sequence ((S¥, p¥);ick, SF) with Sf = S and sel(p¥) = a. By induction on k using Lemma
3.9, we find that pf = pf*! and S¥ = SF™ when i < k. It follows that S! = Si*! 25 Sit]
when i + 1 < k, and so (S¢, p;)ien is an infinite transition sequence with S] = S. But then
(sel(pi))ien = a¥ € str(S) while clearly not in strgp(T"), contradicting strp(7") = str(S). [
11



4. SESSION TYPING

Recall the standard type system for session types, presented in Fig. E with the obvious
extension for primitive recursion. In this judgement, © takes process variables to session

Obgg P>AE:T Obgd P>rAE:T

E-
E-OUT] G O Po AR T Olag k@) PoAk 7T

[E-IN]

Viel: ObgyP>Ak:T;
(C] |_std k?{lzf)z}le] > A, k: &{lz[Lz]Tz}'LEI

[E-BRaA]

O Fgg PoAK:T)
© l_std k!lj.Pl> A,]{J : @{li[Li]‘Ti}ieI

[E-SEL] (J€T)

© l_std P1 > Al C) l_std P2 > AQ A completed
@l—std Pl‘PQDAl,AQ @l_std o> A

[E-PAR] [E-INACT]

0.X: Abgg Po A Olgg Qv A
O Fgd (rect X (i).P; Q) > A

[E-RECP]

B-Rid] 0, X: Abgq P> A dom(A) =k
d

O bgq rec X.P> A 0,X: Abgy X[k]>A

@FsthDA @l_stdQDA
O Fgiq if € then P else Q> A

[E-COND]

Figure E: Standard Session Typing System

type environments; in turn, a session typing environment A is a finite partial map from
channel names and polarised channel names to types.

© = ¢|6,X:A

A = €e|k:T
We write A, A" for the union of A and A’, defined when their domains are disjoint. We say
A is completed if A(k) = end when defined; it is balanced if k : T,k : U € A implies T'x U.

We generalise transitions of types (Fig. D) to session typing environments in Fig. F,
with transitions ranged over by d as follows; recall that p is a type transition label.

Su=71|7:LL|k:p

We define subj(k : p) = k and subj(7 : [, L) = subj(t) = 7. We lift sel(—),req(—), and
res(—) to actions 0 as follows.

sel(7) =€ sel(k : p) = sel(p) sel(r:1,L) =1
req(t) =0 req(7 : p) = req(p) req(t:1,L) =1L
res(7) =0 res(k : p) = res(p) res(k : [, L) = {l}

12



T 2 A S A

[F-LIFT] [F-PAR]|
kT E kT A A7 S A AT
k:! k:? k:®l[L] k:&I[L']
A1—>A/ A2—>A/ A1—>A/ A2—>A/
[F_COMl] ' T / / : [F_COM2] -1r:l LUL’ :
A1, Ag = A, Ay Ay, Ay T AL A

Figure F: Transitions of types (2)

The type environment transition is thus an LTS with responses, and we may speak of its
transition sequences being live.

Definition 4.1. We define a binary relation on type transition labels  and transition labels
A, written § ~ A, as follows.
TT k: &I[L] ~ k&l k:l~klv
Tl L~T1:1 E:olL]~kdl k:?~k?

Theorem 4.2 (Subject reduction). If ' bgg P> A and P A Q, then there exists 6 ~ \
st A S A and T Faq Qb A

The proof is in Appendix A.

Definition 4.3. The typed transition system is the transition system which has states
.. A0 . -

I' Fog P> A and transitions I' Fgg P>A == T Fog P> A’ whenever there exist transitions

P2 P and A% A with § ~ A,

Example 4.4. Wrt. the standard session typing system, both of the processes P(Dy) and
P(D) of Example 2.1 are typable wrt. the types we postulated for them in Example 3.4.
Specifically, we have - Fgq P(Do) >k : Tp,o" : Tp,0~ : Tp and similarly for P(D). The
Judgement means that the process P(D) treats k according to Tp and the (two ends of) the
data object according to Tp and its syntactic dual Tp. The standard session typing system
of course does not act on our liveness annotations, and so does not care that P(Dg) is not
live.

For the subsequent development, we will need the following lemmas.
Lemma 4.5. If A 2 A then dom(A) = dom(A).
Proof. Straightforward induction on the derivation of the transition. []

Lemma 4.6. If A O A then either:
(W) é6=k:pand A=A"k:T and N =A"k:T and T 5 T’; or
2)d=1ord=71:1,Land A =A"k:T,k:S and A" = A",k : T',k : S where

TET and S 25 8" and pra pl.

Proof. Straightforward induction on the derivation of the transition. []

13



Lemma 4.7. If A 9 A with A balanced and subj(d) & dom(A), then also A" balanced.

Proof. By induction on the derivation of the transition.
Case [F-Lirt]. Trivial.

Case [F-PAR]. Suppose A, A” balanced with subj(§) ¢ dom(A, A”), and consider k,k €
dom(A’; A”). If both are in dom(A”), we are done. If both are in dom(A’) then by the
Lemma 4.5 they are also in dom(A). Then, because A, A” balanced implies A balanced,
we find by the induction hypothesis that also A’ balanced, whence (A’, A”)(k) = A’(k) >
A'(k) = (A, A")(k). Finally, suppose wlog k € dom(A’) and k € dom(A”); we shall see
that this is not possible. By Lemma 4.6 either

A=ALk:TEAALE:T =N  withT 5T, (4.1)
or
A=Aok:Tk:8 5 Ag kT E: S =A  withT 5T and S 2 8. (4.2)

We consider these two possibilities in turn. It cannot be true that (4.1) holds, because by

the assumption subj(d) ¢ dom(A, A”) we must have k = subj(d) ¢ dom(A”), contradicting
k € dom(A”). If instead (4.2) holds, then because k € dom(A”) then A, A” is not defined,

contradicting the existence of the transition A, A” LAYN; A,
Case [F-CoMm1]. Suppose A1, Ay = Af, AL with Ay, Ay balanced. Using Lemma 4.6, and

[F-CoM1]| we have transitions A; = Ag, k: S LN Az k: S =A) and Ay = Ay, k: T k2,
Ay kT = Ay, with S L 8" and T 5 T'. 1t follows that our original transition is on the
form B B

AL, Ay =A3.k: S ALK:TS A k:S Ay k:T = T, AL
Because A, A balanced then also Az, Ay is, and so A}, AL = Az, k : S Ay k = T is

balanced if S’ =1 T". But S - S implies S = 1.S" and T Lo implies T' = 7.7". But we
have .S8" = ST = 7.T" by A1, Ay balanced, and so by definition S" > T".

Case [F-Com2]. We have Aj, Ag LUL/) A, Al with Ay, Ay balanced. By Lemma 4.6,

and [F-CoMm2] we have transitions A; = Ag, k: S k:@—lm> Ag k: S = A} and Ay = Ay, k

7 B, Ay k:T' = Al and S % S’ and T M T’. Then our original transition is

on the form
Al,AQZAg,k:S,AZL,E:T Ag,k:S/,Agl,E:T/:A,l,A/Q.

Because A1, As balanced then also Az, Ay is, and so A}, AL = Az, k = S Ay k - T is

balanced if §' 1 7. But § 2218, o implies S = ®{l;[L}].S}}jes with I =[; and L = L;

for some i € J, and §" = .. Similarly T U 7/ implies T = {L;[L}].T! bier with j € I,

l=1;, L' =Lj, and T' = T}. Because S 1T we may assume J C I and ¢ = j, whence by
definition 7} b S O

T,:LUL’
EE—

14



5. TYPING SYSTEM FOR LIVENESS

In this section, we introduce a variant of the standard session-typing system, give intuition
for it, and establish its basic properties, notably subject reduction. In the next section, we
shall prove that this typing system does indeed guarantee liveness of well-typed processes.

The central judgement will be I'; L F P> A, with the intended meaning that “with
process variables I' and pending responses L, the process P conforms to A.” We shall see
in the next section that a well-typed lock-free P is live and will eventually perform every
response in L.

In detail, here are the environments used in the typing system, along with auxiliary
operations on them.

(1) Session typing environments A defined at the start of Section 4.

(2) Response environments L are simply sets of branch/select labels.

(3) Process variable environments I' are finite partial maps from process variables X
to tuples (L, L, A) or (L, A). We write these (4, I, A) for (A)ccumulated selections
and request (I)nvariant. We write I' + L for the environment satisfying that

e = f” Y e

We sometimes write I' + [ instead of I + {l}.

Intuitively, the response environment L is the set of obligations the process being typed
will fulfill; every label in L will eventually be selected by the process. The process variable
environment assignes to each process variable two or three pieces of information. For a
general recursion variable X, it assigns three: First an Accumulator A, which intuitively
records the set of labels selected on a particular path through the “body” the recursion on
X. Second, an Invariant I, which intuitively is the set of labels that will be selected on
any path through the “body” of the recursion. Finally, A is the usual session environment,
associating polarised channels with session types. For a primitive recursion variable Y, we
associate simply the maximal set of responses that is allowed to be pending at the point of
recursion, that is, when the process evolves to simply Y.

Our typing system is given in Fig. G; we proceed to explain the rules. First note that
for finite processes, liveness is ensured if the process terminates with no pending responses.
Hence in the rule 0, the request environment is required to be empty. For infinite processes
there is no point at which we can insist on having no pending responses. Indeed, a process
can be live, meeting its requirements, even though it always has some pending responses.
Take for instance this process, typeable with the type used in the proof of Theorem 3.10.
afb] : t

rec X. kla. k!b. X[k]  © k:ut@{b[a].t

This process has the single transition sequence

p k& . p KO p Koo,

At each state but the initial one either b or a is pending. Yet the process is live: any
response requested in the body of the recursion is also discharged in the body, although not
in order. Since infinite behaviour arises as of unfolding of recursion, responses are ensured
if the body of every recursion discharges the requests of that body, even if out of order.
For general recursion, [G-REC| and [G-VAR], we thus find for each recursion a set of
responses, such that at most that set is requested in its body and that it responds with at
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ILEPoAK:T ILEPoAK:T

GO LR R Pe AR T I TRy Pe AR 2T
G v;;ELIF: k?iljlif}(;\gg,u kL&E{ﬂLD]ATﬁ;

R s werai CCE
e T
GRecp] X HUILA); rL;ILiP(;CAe - )FP LQ : SZ A LCL
(G-Rid] 0,X: (0, I,A;I-Pe-A LCI

ILErecX.PrA

ILEPA 'LEQ> A
I'; L+ if e then P else Q> A

[G-CoOND]

Figure G: Typing System

least that set. In the process variable environment I" we record this response invariant for
each variable, along with a tally of the responses performed since the start of the recursion.

This tally is updated by the rules [G-SEL]/[G-BRa] for select and branch; that is, for
select, to type kll.P wrt. k : @l[L'].T, the process P must do every response in L'. In the
hypothesis, when typing P, we add to this the new pending responses L’. But selecting [
performs the response [, so altogether, to support pending responses L in the conclusion,
we must have pending responses L \ {I/} U L’ in the hypothesis. Branching is similar.

The rule for process variable [G-VAR] typing then checks that the tally includes the
invariant, and that the invariant includes every currently pending response.

For primitive recursion, [G-RECP] and [G-VARP], we cannot know that the body P will
run at all—e might evaluate to 0. Thus, it is not helpful to tally performed responses; the
type system simply checks that at the point of recursion [G-VARP], the pending responses
L is contained in the set of responses L’ that the continuation guarantees to discharge
[G-RECP]. Notice that this set of L’ is allowed to be weakened by the rule [G-RECP]; this
is a technical necessity for weakening of L to hold in general (Lemma 5.4).

Note that the syntactic restriction on the form of the body P in primitive recursion
(2.1) ensures that there is no issues with branching: because P can contain only the process
variable X, no branching, internal or external, can prevent the execution of the body the
specified number of times.

16



Finally, note the use of the response environments L in the rules [PAR] and [G-PAR].
For the former, because of our eventual assumption of lock-freedom, a process P | @ will
discharge the set L if P discharges part of L and @ the rest. For the latter, a conditional
promising to discharge a set L must obviously do so whether it takes the “true” or “false”
branch.

We conclude our walk-through of the rules by showing the typing derivation of the
above example process.

Example 5.1. Take A =k : pt.{a[b].t;bla].t}. Read the derivation below bottom-up; easy
to miss changes—but not all changes!—are called out with a grey box .

{a} C{a} C{a,b} dom(A) =k

[G-VAR]
X:({ab} {a},A) ; {{fa} F X[k > Fk:put{alb].t; bla].t} G-SpL)
X:{a},{a},A) ;{b} + k. X[k] © k:ut{alb].t; bla].t} G-SE1)
X :(0,{a},A) ; {a} F EKla. kb. X[k] > k:ut{a[b].t; bla].t}
[G-REC]
;0 F  recX. Kla. kb, X[k] > k:ut{ald].t; bla].t}

Definition 5.2. We define the standard process variable environment std(T") associated
with a process variable environment I as follows.

A whenever T’ A 1A
Std(r)(X):{ A whenever FE )z EL A) )

Theorem 5.3. IfT'; LF P> A then also std(T') Fgq P> A.

SEL]

Proof. Straightforward induction on the typing derivation, using for [G Bra] and [G-
X A

that std(I' + L) = std(I"); for [G-VAR|/[G-REC] that std(F X : (A I,A)) =std(T)
and for [G-VARP]/[G-RECP] that std(I', X : (I,A)) =std(I"), X : A

We proceed to establish basic properties of our typing system, eventually arriving at
subject reduction. First, the typing system allows weakening of the pending responses L.

Lemma 5.4. IfT;L+ P> A and L' C L, then also T'; L' = P> A.

Proof. By induction on the derivation of the typing of P.

Case [G-INACT|. We have I'; L F 0> A. By typing L = () and our desired property is
vacously true.
Case [G-OuT]. Immediate from the induction hypothesis.
Case [G-IN]. Immediate from the induction hypothesis.
Case [G-Bra|. We have I'; L & k?{l;.Pi}k > Ak : &{l;[L;].T;}icr. By typing we must
have for all ¢ € I that I' 4+ [;; (L \ ;) UL; F P> Ak : T;. By the induction hypothesis
C+1; (I\;)UL; - P> ALk : Ty, and we conclude T'; L' = k?7{l;. P} Ak = &{1;[L;].T; e -
Case [G-SEL|. Similar to [G-BRra].
Case [G-PARr|. We have I';L = P, | P, > A. By typing we have I'; L; = P; > A; with
L=LiULy and A = Ay, As. Consider a subset L' C L1 U L. By the induction hypothesis
L, N L' F P> A; and, noting that (Ly N L) U (LeNL') = (L1 ULy) NL = L', we find
F;L/l—Pl | PQDA
Case [G-VARP]. Immediate from the premise L C L.
Case [G-RECP]. Immediate from the premise L C L'.
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Case [G-VAR]. Immediate from the premise L C I.
Case [G-REc]. Immediate from the premise L C I.
Case [G-CoND]. Immediate from the induction hypothesis. [

For the subsequent development, we will need to understand how typing changes when
the environment I' does; in particular what happens when I'(X') = (A4, I, A) and the accumu-
lator A changes. To this end, we define an ordering “<” which captures such environments
being the same except for the accumulator growing.

Definition 5.5. We define I' < I" iff I'(X) = (A, I,A) implies I'(X) = (A, I, A) with
ACA and I'(X) = (I, A) implies IV(X) = (I, A).

The key insight about this ordering is then that moving from smaller to greater preserves

typing, i.e., accumulators admit weakening.

Lemma 5.6. IfI; L+ P> A and T’ <T' then alsoI"; L+ P> A.
Proof. Straightforward induction. We report the two essential cases.
Case [G-SEL]. We have
L+ (L\)UL; F P>Ak:T;
Iy LERPo> Ak S{L[L). T bier
Noting that I' < I" implies I' 4+ [; < T +; we find by IH and [G-SEL]
I"+1;(L\;)ULj - P> Ak : T}
I'";LE KNP Ak ®{L[Li].TiYier

Case [G-REc]. We have
0,X: (0,1,A);I+P>A LCI
ILEreceX.PrA
Noting that T', X : (0, 1,A) <T”, X : (0,1, A) we have by IH and [G-REC]
I, X: (0,1,A);I-P>A LCI
I';LFrecX.P>A '

U

With this insight into the ordering “<”, we can now establish that extending the envi-
ronment I' does not change typing.

Lemma 5.7. IfT';L+ P> A then alsoT + L'; L+ P> A.
Proof. Immediate from Lemma 5.6. L]

Lemma 5.8 (Process variable substitution). Suppose that T'; X : t; L = P> A where either
t=(AI,A") ort=(I,A"). Suppose moreover that T; I F Q> A" where X is not free in Q.
Then also T'; L+ P{Q/X} > A

Proof. By induction on the typing derivation.

Case [G-INACT]. We have I', X : ¢; L - O>A. By typing L = (). Observe that 0{Q/X} = 0.
Thus, by [G-INACT], we have I'; L - 0{Q/X } > A.

Case [G-OuT]. Immediate from the induction hypothesis.
Case [G-IN]. Immediate from the induction hypothesis.
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Case [G-Bra]. By typing, we have

Viel: (F,Xt)—Fll,(L\lZ)ULl'_PZDA,kE

F,X 1 L LHE k?{llpl}zel > A, k: &{lz[Lz]T‘z}zel
Suppose first t = (A, I, A’). Then (I', X : (A, [,AN))+1;=(T+1),X : (AUl;,I,A"). But
then we may apply the induction hypothesis and [G-BRA] to obtain
U+ 0 (L\ ;) UL = P{Q/ X} o Ak T;

Ds L= k2. PA{Q/ X e > Ak &{6[Li] Tidier
Suppose instead ¢t = (I, A’). Then (I, X : (I,A"))+1; = (T +1;), X : (I, A7), and again we
may apply the induction hypothesis and [G-BRA] to obtain (5.1).
Case [G-SEL|. Similar to [G-Bra].
Case [G-PAR]. We have I', X : t;L - P; | P> A. By typing we find some L; U Ly = L
and A1,Ay = A such that I') X : ¢;L; = P> A;. By the induction hypothesis we find
I' L - P{Q/X} > A;, which in turn yields I'; L1 U Ly - (P1 | P2){Q/X} > Ay, As.
Case [G-VARP]. Suppose first X # Y; then by typing we have

LCL  dom(A) =k

g )

LYy :(/A),X :t;LEY[k]> A

(5.1)

so by [G-VARP] also )
LY : (L',A; LFY[K{Q/X}> A .

If on the other hand X =Y we have by typing

LCL  dom(A)=k

O, X :(L',A);LFX[k]oA’

and it must be the case that I = L' and A = A’. We have by assumption I'; I = Q > A,
that is T; L' - Q> A. By Lemma 5.7 also T'; L Q> A, that is, I'; L - X [k[{Q/X } > A.
Case [G-RECP]. We have I', X : (A,I,A’); L b (rec®Y (i).P; R) > A. By typing we have
X :(ALA)Y: (L'A);LFPrAandT; L' + R>A for some L' O L. Using T'; T = Q>A/,
by the induction hypothesis ', Y': (L', A); L' + P{Q/X}>A and T'; L' -+ R{Q/X }>A , which
in turn yields I'; L F (rec® Y (7).P; R){Q/X } > A.
Case [G-VAR]. Suppose first X # Y; then by typing we have

LCL  dom(A)=k

g I

I,Y: (A, I',A),X L+ Y[k]>A

so by [G-VAR] also )
Y : (A, I'A); LEY[K{Q/X}> A .
If on the other hand X =Y we have by typing
LCICA  dom(A)=Fk
D, X :(I,AA); L X[k]> A
where necessarily A’ = A. We have by assumption I';7 F Q> A’. By Lemma 5.7 also
LEQe A that is, Ty L - X[E{Q/X > AL
Case [G-REc]. We have I X : (A,I,A);L  recY.P>A. We find by typing I', X :
(A, I,A),)Y : (A, I')A); L+ PrA with L C I, hence by the induction hypothesis ', Y :
(A, I')A); L+ P{Q/X} > A, and so by [G-REC| I'; L - (recY.P){Q/X } > A.
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Case [G-ConND]. Immediate from the induction hypothesis. O
Lemma 5.9 (Term variable substitution). If I'; L = P> A then also T'; L = P{v/x} > A.
Proof. Straightforward induction. O

For technical reasons, we need the following two Lemmas on the presence or absence of
session names in a typable process.

Lemma 5.10. IfI; L+ P> A, k € dom(A), and A(k) # end then k € fn(P).
Proof. Straightforward induction. O

Lemma 5.11. Suppose I'; Lt P> Ak : T with A,k : T balanced, T # end, and k & fn(P).
Then k & dom(A).

Proof. Supposed for a contradiction k € dom(A). Because A,k : I.T balanced, A(k) # end.
By Lemma 5.10 we thus have k£ € fn(P); contradiction. [

We can now formulate the core lemma which will subsequently be used to prove subject
reduction. For the formulation of the lemma, we will slightly abuse notation and consider
the range of the sel(—) operator as an empty or singleton set rather than the empty or
singleton sequence as which it was originally defined.

Lemma 5.12. Suppose that I'; L - P> A with P LN Q. Then there exists a type transition
AL A with § ~ A, such that T + sel(§); (L \ res(d)) Ureq(d) F Q> A’. Moreover, if A
balanced, then also A" balanced.

Proof. By induction on the derivation of the transition.
Case [C-OUT]. We have kl(e).P =% P with k ¢ P and I;L + kle).P > Ak : L.T.
By typing I''L + P> Ak : T. By [F-LirT| we have k : I.T LNy By [F-PAR]

Ak T LN A,k : T; Observing that k : ! ~ klv and res(k : ) =sel(k:!) =req(k : 1) =0
we have found the requisite type transition.

Now suppose A, k : I.T balanced; we must show A,k : T balanced. It is sufficient to
show k ¢ dom(A). But this follows from Lemma 5.11.

Case [C-IN]. We have k?(z).P 2% P{v/z} with k & fn(P) and T; L I k?(2).Pe A, k : 2.T.
By typing I'; L - PeAk : T. By [F-LiFT] and [F-PAR], A,k : ?.T K, A,k :T. By Lemma
5.9 we have I'; L - P{v/x} > A,k : T. Observing that req(k : ?7T[L']) = sel(k : ?7T[L']) =
res(k : ?7T[L']) = 0 and that k : ? ~ k?v we have found the requisite transition and typing.

Preservation of balance follows from Lemma 5.11.

Case [C-Bra]. We have k7{/;.P;} LLIN Py and Iy L = k2. Pi}icp > Ak 2 &{L[L) T fier

By typing we have I' + l;; (L \ {l;}) UL, & P> Ak : T;. By [F-LirT| and [F-PAR]
we have Ak : &{L;[Li].T; }ier ideli[ L] A,k : T;. Observing that req(k : &I;[L;]) = Lj,
sel(k : &li[Li]) = res(k : &l;[L;]) = {li} and that k : ®;[L;] ~ k&l;, we have found the
requisite type transition. Preservation of balance follows from Lemma 5.11.
Case [C-SEL]. We have kIl.P 22% P and T; L+ kl;.P > A, k : &{l;[Li|.T; }ic;. By typing
L'+10;(L\{L})UL; - P>A k:T;. By [F-LiFT] and [F-PAR| we have

A, 0{h[L]. Ti}ier ~h AT .
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Observing that req(k : @®l;[L;]) = Ly, sel(k : ®L[Li]) = res(k : ®l;[L;]) = {l;} and that
k : ®lL[L;] ~ k @ l;, we have found the requisite type transition. Preservation of balance
follows from Lemma 5.11.
Case [C-PARL]. We have P | P’ EN Q | P’ with subj(\) € fn(P’) and T'; L+ P | P'>A. By
typing we have for some L1 ULy = L and A UAg that I'; L1 F P>Ay and I'; Ly F P> As.
By the induction hypothesis, we have a transition A; LN A with T’ + sel(d); Ly \ res(d) U
req(d) - Q> A} and 6 ~ A. By Lemma 5.7 we find also I + sel(d); Ly = P' > Ay. By
Lemma 4.5 dom(A;) = dom(A]) so A}, Ay is defined, and hence by [G-PAR] we have
I +sel(d); Ly \ res(0) Ureq(0) U Ly = Q | P'> A, Ag. This is not exactly the form we need,
but observing that

(L1 U Lg) \ res(d) Ureq(d) € (Ly \ res(d)) Ureq(d) U Lo,
we find again by Lemma 5.4 that I" +sel(d); (L1 U L2) \ res(d) Ureq(d) - Q | P'>Al, Ay. By
[F-PAR] A1, Ag NN , Ao, and we have found the requisite type transition.

Now suppose A, Ag balanced. By Lemma 4.7 it is sufficient to prove that subj(d) &
dom(Aq, Ag). If subj(d) = 7 this is trivial, so say subj(d) = k and suppose for a contradiction
k € dom(A1,As). We must have § = k : p and because § ~ A\ we must have subj()\) =
subj(6) = k. By Lemma 2.2 k ¢ fn(Q | P’). By Lemma 4.6 we have Ay = AY k : S with
S # end. Because A1, A balanced, (A1, Ag)(k) .S and so (A1, As)(k) # end.

Suppose first k € dom(A1). Then k € dom(AY), so also A”(k) # end, and it follows
that A} (k) = AY(k) # end. By Lemma 5.10 k € fn(Q), contradicting k ¢ fn(Q | P').

Suppose instead k € dom(Ag). Then immediately by Lemma 5.10 k € fn(P’), contra-
dicting k € fn(Q | P').

Case [C-CoM1]. We have

kv k?v

P1—>P1, P2—>P2/
PP, 5 PPy

and
F;L1|—P1I>A1 F;LQI—PQDAQ

ULy Py ’PQDA]_,AQ

By the induction hypothesis we find A; LR Al s.t. T+sel(6;); Li\res(;)Ureq(d;) = P>Al with
81 ~ klv and 6o ~ k?v. Tt follows that d; = k : ! and dy = k : ? whence res(d;) = req(dy) =
res(d2) = req(d1) = 0 and sel(d;) = sel(d2) = €. By Lemma 4.5 A, AL defined, and so by
[F-Com1] we have Ay, Ay =+ A}, Al,. Noting that 7 ~ 7 and that T +sel(d1) +sel(d2) =T,
we have the required type transition. Since subj(7) = 7 and so subj(7) € dom(A1, Ay), it
follows from Lemma 4.7 that A}, Al is balanced when Aj, Ay is.

Case [C-CoM2]. We have

kol k&l
PP P p

P | P PP

and
F;L1FP1I>A1 F;LQFPQDAQ

LUy - Py ’PQDAl,AQ

By induction we find A; LIN Al s.t. T +sel(6;); L; \ res(6;) Ureq(8;) F P> Al with 61 ~ k&
and Jy ~ k&I. Tt follows that for some L}, L, we have §; = k : ®I[L}] and 8 = k : &I[L}),
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and so req(d1) = L} and req(d2) = L5, res(d1) = res(d2) = {l}, and sel(d;) = sel(da) = 1.

By Lemma 4.5 A/, A} defined, and so we find a transition Aj, Ag il e A, Al by
F-Cowm2]. By [G-PAR] we find T'+1; Ly \ {I}U L, UL\ {{}Y UL, - P| | P, A", Al,. Noting
1 2 T [ 2P A, A9
that 7:1,L] UL, ~7:1 and
Li\{I}ULY UL\ {I} ULy, = (L1ULy)\{l}ULjUL
— . / !/ . / /
- 1 ) )
(Ly U Lg) \res(7 : I, L7 U L) Ureq(7 : I, L] U L)

we have the required type transition. Since subj(7 : I, L{UL}) = 7 and so subj(7 : I, L} U L)) ¢
dom(A1, Ag), it follows from Lemma 4.7 that A, Al is balanced when Aj, Ay is.

Case [C-REc|. We have
Pl{rec X.P/X} 2 Q
rec X.P 2 Q

and
LLX:(0,I,A); I+ P>A LCI

I"LFrecX.PrA
It follows by [G-REC] that also I'; I + rec X.P>A and by Lemma 5.7 that T', X : (0,1, A); L +
Pr A. It then follows by Lemma 5.8 that

'L P{recX.P/X} > A.

By the induction hypothesis we find a balance-preserving type transition A 9 A’ with
d~Xand I'+sel(d); L \ res(d) Ureq(d) - Q> A'.
Case [C-PrEC0]. We have

el 0 Q AR

(rect X(i).P;Q) > R

and
X :(L,A);L'-P>A ;L EFQeA Lcr

I L (rec® X (1).P;Q)> A
By Lemma 5.7 we have also I'; L - @ > A, and so by the induction hypothesis we find the
required balance-preserving type transition.

Case [C-PrRECN]. We have
eln+1 P{n/i}{(rec” X (:).P;Q)/X} AR
(rec® X (i).P; Q) AR

and again
X :(L,A;L'-P>A Q> A Lcr

I L (rec® X (1).P;Q)> A
By [G-RECP] it follows that I'; L' - (rec™ X (i).P; Q) > A. By Lemmas 5.9 and 5.4 we have
X :(L,A);LE P{n/i}>A. Finally, by Lemma 5.8 we have
I LE P{n/i}{(rec" X (i).P;Q)/ X} > A,

and the requisite balance-preserving type transition follows by the induction hypothesis.
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Case [C-CoNDT] and [C-CoNDF]|. We have,
el true PAP
if ¢ then P else Q 25 P/

and
I"LFPrA I'LEQrA

;L1 if ethen Pelse QA
and the requisite balance-preserving type transition follows from the induction hypothesis.
The other case is the same. ]

Theorem 5.13 (Subject reduction). Suppose that ;L - P> A and P LN Q. Then there

exists a type transition A O A with § ~ A, such that - (L \ res(d)) Ureq(d) F Q> A
Moreover, if A balanced then also A" balanced.

Proof. Immediate from the Lemma 5.12. []

Example 5.14. With the system of Figure G, the process P(D) is typable wrt. the types
given in Example 3.4. The process P(Dy) on the other hand is not: We have -;( = P(D)>k :
Tp,ot : Tp,0™ : Tp, but the same does not hold for P(Dy). We also exemplify a typing
judgment with non-trivial guaranteed responses. The process D, the order-fulfillment part
of P(D), can in fact be typed

ASI} = Dok :pt' . @{DI.\Y,Sl.l.end}, 0o : Tp

Note the left-most {Sl}, indicating intuitively that this process will eventually select Sl in
any execution. The process D has this property essentially because it is implemented by
bounded recursion. []

6. LIVENESS

We now prove that if a lock-free process is well-typed under our liveness typing system,
then that process is indeed live.

However, we will need a bit of a detour to define lock-free processes: Lock-freedom is
defined in terms of maximal transition sequences, which are in turn defined using (weak)
fairness. For both lock-freedom and fairness, we will in turn need to speak about occurrences
of the communication actions kl{e), k7(x), kll., and k?{—}.

The roadmap for this Section thus becomes:

(1) In Sub-section 6.1, we identify key properties of occurrences; then use these proper-
ties to define fairness, maximal transition sequences, and lock-freedom; and finally,
what it means for a process to be live.

(2) In Sub-section 6.2 We establish decomposition properties of maximal transition
sequences for parallel compositions, especially wrt. the responses performed by such
processes.

(3) We build on these properties and the syntactic restrictions on primtive recursion
when in Sub-section 6.3, we establish technical properties of primitive recursion.

(4) Finally, can prove in Sub-section 6.4 first that well-typed open lock-free processes
are constrained in what responses they might require by the response invariant of its
process variables on the one hand, and the responses it will always do in the other.
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This is enough to prove that well-typed closed lock-free processes are necessarily
live.

6.1. Occurrences and liveness. Since we do not employ a structural congruence, defining
occurrences and liveness is straightforward, and we simply assume we can identify occur-
rences across transitions through residuals—a rigorous treatment is in [3]; see also [17].
Given an occurrence of an action a in P, we may thus speak of that occurrence being pre-

served by a transition P LN Q if it remains after the transition, or being ezxecuted if it is

consumed by the transition. Similarly, we will say that an occurrence of an action is enabled

if it is executed by some transition, and top-level if it is not nested inside another action.
We will rely on the following properties of occurrences and transitions.

Lemma 6.1. Occurrences have the following properties.
(1) If an occurrence is enabled, it is also top-level.
(2) If P LN Q preserves a top-level occurrence of an action a in P, then that occurrence
1s also top-level in Q.

(3) If P L Q then there exists an occurrence of an action a in P which is executed by
that transition.

Using occurrences, we define fairness following [17].

Definition 6.2. An infinite transition sequence s = (Pj, \;)ien is fair iff whenever an

. . A
occurrence of an action a occurs enabled in P, then some m > n has P, = Py
executing that occurrence.

Example 6.3. Consider the process P = (rec X. kla. X[k]) | (recY. hla. Y[h]). This process

has an infinite execution

k! k!
p 2% p A

however, this execution is not fair, since the occurrence of hla is enabled in the initial process
P, but never executed. Conversely, the infinite execution

p Mo, p Mo p Ka (6.1)

(note the second label hla) is fair, since, indexing the (identical) processes P by P = Py, ...,
for any i, the enabled occurrences of actions in P; are kla and hla, and these are executed
at either Py or Piyo.

Definition 6.4. A transition sequence s is terminated iff it has finite length n and P, /.
It is maximal iff it is finite and terminated or infinite and fair.

The transition sequence (6.1) above is maximal.
We define lock-freedom in the spirit of [24]; notice that the present definition strictly
generalises fairness.

Definition 6.5. A maximal transition sequence (FP;, )\;) is lock-free iff whenever there is

. . . ) . Aj
a top-level occurrence of an action a in P;, then there exists some j > i s.t. Pj =5 Pjiq
executes that occurrence. A process is lock-free iff all its transition sequences are.
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This definition adapts the one of [24] to the setting of binary session types. However, the
present definition is given in terms of the transition semantics as opposed to the reduction
semantics. Because of our amended [S-PARL] rule, this makes sense: a process has a non-7
transition A precisely if it holds only one half of a session, and thus needs and expects
an environment to perform a co-action in order to proceed. However, since our definition
of lock-freedom imposes its condition on every maximal transition sequence, there is no
presumption of a cooperative environment.

Example 6.6. The infinite execution sequence (6.1) above is lock-free. Conversely, consider
this process.

Q = (rec X. kla. X[k]) | h?(z).7Wz) | 7 (y).hy)
Because [SPAR-L] does not permit transitions on neither h nor j, Q has only one infinite
transition sequence:

Q Kla, Q LN
This sequence is mazximal but not lock-free. Again indexing the processing in the sequence
Q = Q1,Qq, ... we see that at each Q; we have only one enabled occurrence of an action,

namely kla, which is immediately consumed by a transition. Hence this sequence is mazximal.
On the other hand, at each Q; we have top-level occurrences of both h?x and j7y, but neither
s ever executed. Hence this sequence is not lock-free.

Using the notion of maximal transition sequence, we can now say what it means for a
process to be live.

Definition 6.7 (Live process). A well-typed process O Fgq P> A is live wrt. O, A iff for
any maximal transition sequence (FP;, \;); of P there exists a live typed transition sequence
(As,6;); of A s.t. ((Pi, As), (Niy0i))i s a typed transition sequence of © Fgq P> A.

6.2. Decomposition of transition sequences. We proceed to establish properties of
transition sequences of a parallel process: Most importantly, they arise as the merge of
transition sequences of their underlying left and right processes. First, an auxiliary defini-
tion.

Definition 6.8. For a process transition label A, define sel(\) by
sel(klv) = sel(k?v) = sel(T) = 0
sel(k&l) =sel(k 1) =sel(r: 1) =1
Given a trace o we lift sel(—) pointwise, that is, sel(a) = {sel(A) | @ = ¢ a/}.
Note that 6 ~ X implies sel(\) = sel(d).
Lemma 6.9. For any transition sequence s of P | Q, there exists transition sequences

p = (B, Bi)icp and ¢ = (Qi,0:i)ic)q and monotone surjective maps u : |s| — [p| and
v |s| = [q] such that s = ((Py(i)|Qu(i))s i)ie|s) and sel(B) Usel(d) = sel(a).

Proof. We prove the existence of such functions for finite s; the result for infinite s follows.
So suppose s is finite and write it s = (5, Oéi)ie|s|- We proceed by induction on the length

of s. First, a bit of notation: when oo = o ..., we define cut(a) = a1 ... ap—1. Now, for
|s| = 1, the identity functions suffice. Suppose instead |s| = n + 1, and consider the last

transition S, = S,4+1. By the induction hypothesis we have transition sequences p, ¢ with
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labels /3,6 and maps wu, v such that S, n) | Qu(ny and sel(B) U sel(d) = sel(cut(a)) ete.
Notice that because u, v are surjective and monotone p, ¢ must have lengths u(n) and v(n),
respectively. We proceed by cases on the derivation of this last transition.

Case [C-PARL|. We must in this case have
Py = R

Py | Quiny == R | Qu(ny = Snt1
Extend p to p’ by taking P, )41 = R and B,(,) = an; and extend u, v by taking u(n+1) =
u(n) + 1 and v(n + 1) = v(n) and we have found the requisite transition sequences and
maps. It is now sufficient to note that

sel(a) = sel(ay,) Usel(cut(a))
= sel(Byn)) Usel(B) Usel(d)
= sel(8) Usel(d) .

Case [C-CoM1]. We must have in this case

klv k?v
Pu(n) — P Qv(n) — Ql

(n)‘Qv(nTan P/|Q/_ n+1.
Extend p to p/ by taking P,,)41 = P' and By, = klv; and similarly extend ¢ to ¢ by
taking Qu(n)+1 = Q" and d,(,) = k7v. Extending also u,v by u(n + 1) = u(n) + 1 and

v(n+1) = v(n) + 1 we have found the requisite transition sequences and maps. It is now
sufficient to note that

sel(a) = sel(T) Usel(cut(a))
sel(B) Usel(d)
= sel(klv) Usel(8") Usel(k?v) Usel(d)
= sel(8') Usel(&) .

Case [C-CoM2]. We must have in this case

kdl k&l
Pu(n)_—_)P/ Qvn—>Q/

Pu(n) | Qv(n M> P ’ Q' = Snt1

Extend p to p’ by taking P11 = P’ and f,(,) = k @ [; and similarly extend ¢ to ¢’ by
taking Qun)+1 = Q" and d,,) = k&l. Extending also u,v by u(n + 1) = u(n) + 1 and
v(n+1) = v(n) + 1 we have found the requisite transition sequences and maps. It is now
sufficient to note that

sel(a) = sel(7: 1) Usel(cut(a))

{l} Usel(B) Usel(9)

sel(k @ 1) Usel(B) Usel(k&l) Usel(d)
= sel(f") Usel(d) .
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Lemma 6.10. If s is a mazimal lock-free transition sequence of P | Q with trace «, then
there exist maximal lock-free transition sequences p,q of P,Q with traces 3,6, respectively,
such that sel(a)) = sel(8) U res(9).

Proof. By Lemma 6.9 we find transition sequences p = (P, fi)icp| and ¢ = (Qi, 0i)ieq
and maps u,v such that s can be written s = (s;,i)ic)s] = (Pug) | Qu), @i)ie)s| and
sel(a) = sel(B) Usel(d). It remains to prove that these p,q are maximal and lock-free.
Suppose for a contradiction that p is not; the case for ¢ is similar. Then either (A) p is
maximal but not lock-free, or (B) p is not maximal.

We consider first (A); p maximal but not lock-free. Then some top-level occurrence of
an action a sits in each P; when i > n for some n. But then for j > u~!(n) we must have
8; = (Py(n), Qu(n)) contradicting s lock-free.

Consider now (B); p not maximal. Then either (1) p is finite and can be extended by
a transition A, or (2) p is infinite but not fair.

Suppose (1) that is, p of finite length n and P, A By Lemma 6.1(3) P, must have an
occurrence of an enabled action a. By Lemma 6.1(1) this occurrence is top-level. But for
i>ul(n), s; = (Pu@iy | Qu(iy) and so there is a top-level occurrence of a in each such s;,
contradicting P | @ lock-free.

Suppose instead (2), that is, p infinite but not fair. Then there exists a P, and an
occurrence of an enabled action a in P, s.t. no §; with j > n executes that occurrence.

By definition, every P; B—J> Pj i1 then preserves that occurrence. By Lemma 6.1(1) the
occurrence in P, is top-level, and so by Lemma 6.1(2) it also is in every P;. But for
j=ut(n), s; = (Pyy) | Qu)s and so we have found a top-level occurrence of a in each
such s;, contradicting P | @ lock-free. ]

6.3. Primitive recursion. We proceed to establish our main result in steps, starting with
simple processes. These arise as the body of primitive recursion.
Definition 6.11. A process P is simple for X iff

(1) no process variable but X occurs free in P, and

(2) 0 is not a sub-term of P, and

(3) neither recY.Q) nor (rec®Y(7).Q; R) is a sub-term of P,
(4) Q| R is not a sub-term of P.

Observe that by convention, in (rec® X (z).P; @), P is simple for X.

Lemma 6.12. If P simple for X and s = (P;, \;); is a mazximal lock-free transition sequence
Aj—

of P{Q/X}, then Q == P; for some j > 1.

Proof. By induction on P.
Case “0”. Impossible: not simple for X.
Case “k!{(e).P”. Clearly (P;+1, Ait+1): is a maximal lock-free transition sequence of P{0/%}.

)\.

By the induction hypothesis Q ~% P; for some j > 2.

Case “k?(x).P”. Clearly s’ = (P41, Ai+1); is a maximal lock-free transition sequence of
P{Q/X}{v/z}. Because x bound, it is fresh for @, so P{0/z}{Q/X} = P{Q/X}{v/z}
and s’ is a maximal lock-free transition sequence of the latter. But then by the induction

)\.
hypothesis @ = P; for some j > 2.
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Case “k?{l;.P;}jc;”. Like kl(e).P.

“kEN.P”. Like kl{e).P

“P| R”. Impossible: not simple for X.

“rec X.P”. Impossible: not simple for X.

“(rec®Y (i).P; R)”. Impossible: not simple for X.

Case “Y[l%]”. By P simple for X we must have X =Y whence s is a transition sequence
of X{Q/X} = Q; clearly Q 25 P,

Case “if e then P else R”. Like k?{l;.P;}jc.. ]

Case
Case
Case
Case

Lemma 6.13. If s = (P;, \;); is a mazimal lock-free transition sequence of (rec® X (i).P; Q)
Aj—
then Q =% P; for some j > 1.
Proof. By induction on n. If n = 0 then s is a transition sequence of @ iff it is of
(rec® X (i).P; Q), so clearly @ Ay py. If instead n = m + 1 observe that
(rtec™™ X(1).P;Q) 25 R iff  P{m/i}{(rec™ X(i).P;Q)/X} 25 R

Take s’ to be the same as s except P, = P{m/i}{(rec™ X (i).P;Q)/X}. Note that s
is maximal and lock-free. By convention P and so P{m/i} is simple for X. Then by

Lemma 6.13 for some j we have @) —> P;. ]

6.4. Liveness. In this sub-section, we finally establish that well-typed, lock-free processes
are indeed live. To this end, we will prove that the following syntactic function A(P) is
in fact an under-approximation of the set of labels process P must necessarily select when
run.

Definition 6.14. When P is a process, we define A(P) inductively as follows.

A(0) 0
A(kWe).P) = A(P)
A(k?(z).P) = A(P)
AR GPYer) = ()} UAR)
i€l
AKN.P) = {I}UA(P)
AP|Q) = AP)UARQ)
(recX P) = A(P)
Alrec X(i).P;Q) = A(Q)
AX [ ) =0
A(if e then Pelse Q) = A(P)NAQ)

Proposition 6.15. If s = (P;, «;); is a mazximal lock-free transition sequence of P{Q/X}

A(P) C sel(a).

Proof. First, notation: if « is a sequence ayag - - -

by induction on P.
Case “0”. Immediate from A(0) = 0.

we define shift(a) = as---. We proceed



Case “k!(e).P”. Clearly (P11, a;11)i is a maximal lock-free transition sequence of P{Q/X}.

By the induction hypothesis A(P) C sel(shift(a)) = sel(«).

Case “k?(x).P”. Clearly (Piy1, ay1); is a maximal lock-free transition sequence of P{Q/X }{v/z}
for some v. As z is bound P{Q/X }{v/z} = P{v/x}{Q/X}. Using the induction hypothesis

A(P) = A(P{v/x}) C sel(shift(c)) = res(()a).

Case “k?{l;.P;};c1”. Like k!(e).P.

Case “kll.P”. Like k!{e).P.

Case “P | R”. By Lemma 6.10 there exists traces maximal lock-free transition sequences

p,q of P{Q/X}, R{Q/X} with traces f3, 4 s.t. sel(3) U sel(d) = sel(a). Using the induction
hypothesis we find A(P) U A(R) C sel(f) Usel(d) = sel(a).

Case “recY.P”. s is lock-free maximal transition sequence of rec Y.P{Q/X}. Then taking

s’ to be the same as s except P; = P{Q/X }{recY.(P{Q/X})/Y} we have a maximal lock-

free transition sequence of the latter, also with trace «. Using the induction hypothesis
A(rec X.P) = A(P) C sel(a).

Case “rec® Y (i).P; R”. Again, s is a lock-free maximal transition sequence of rec® Y (I).P; R{Q/X }.

Aj
By Lemma 6.13 for some j > 1 we have R =~ P;, and so

R ﬁ:; P; )‘_7> Pjyp--
is a lock-free maximal transition sequence of R. By the induction hypothesis, A(rec® Y (i).P; R) =
A(R) C sel(shift! 72(a)) C sel(a).
Case “Y[k]”. Immediate from A(Y[k]) = 0.
Case “if e then P else R”. Like k7{l;.P;}jc.
L]

Now comes the key lemma: the under-approximation A(P) is in a sense an over-
approximation of the pending-response environment of a well-typed process. The Lemma
can be read like this: what the process is committed to do (L), less what it has done so far
(M(T)), it will do before iterating (A(P)).

Lemma 6.16. Suppose that I'; L = P> A. Define mappings M((A,I,A)) = A and
M((L,A)) =L, and

Then L\ M(T") C A(P).

Proof. By induction on the derivation of I'; L = P> A.

Case [G-INACT|. By typing, L = 0.

Case [G-Ourt|. A(kl{e).P) = A(P) O L\ M(T'), the latter by typing and the induction
hypothesis.

Case [G-IN]. Ditto.

Case [G-Bra]. By the induction hypothesis for ¢ € I

(LA\A{LH VL) \ (ML + ;) € AR) -
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Observe that M(T" + ;) = M(T") U {l;}. We compute:
L\ M(T) Nier(L\ M(I'))
{li} U (LA (M(
(
(

N

T

Nier L\ (M(T
{I;} UL\ (M(T
{3y UL\ 1)
Aier({l} U (L {1:}
Nier({Li} U A(P)

A(k?{1;. P }ier)
Case [G-SEL|. Similar to [G-BRra].
Case [G-PAR]. By typing, we find Ay, Ag and Ly, Ly s.t. T'; L; = P> A;. By the induction
hypothesis we then find that L; \ M(T") C A(P;). We now compute:
LAMT) = (LiULy)\ M(T)

Li\ M(T) U Ly \ M(T)
C A(P)UA(P)
= AP | P)

Case [G-VARP|. We have I' X : (L', A); L - X[k] > A. By typing L C L’; by definition
L' C M(T'). But then L\ M(T) = 0.
Case [G-RECP]. We have I'; L - rec® X (i).P; Q> A. By typing we have I' - Q> A and by
definition A(rec® X (7).P; Q) = A(Q) 2 L\ M(T'), the latter by the induction hypothesis.
Case [G-VAR]. We have I', X : (A,I,A); L - X > A. By definition, we find A C M(I"), so
by typing L C I C AC M(T"). But then L\ M(T") = (.
Case [G-REC|. We have I'; L F rec X.P > A. By typing we must have I', X : (0, I, A); T +-
P> A. We compute.
L\ M(T) C T\ (M(T) U )
=TI\ M, X :(0,1,A))
C A(P) by TH

Case [G-CoND|. By typing and the induction hypothesis we have L \ I'(M) C A(P) and
L\T(M) C A(Q). But then also L\ T'(M) C A(P) N A(Q) = A(if e then Pelse Q). [J

And this is enough: We can now prove that well-typed lock-free processes in fact do
select every response mentioned in the “pending response” part of their type environment.

Nier Uli)))
(M(T +1:))))

U Li) \ (M(T +1:)))

= MNier

~—~~ ~ —~

)
)

N 1N

Proposition 6.17. Suppose - ; L = P>A with P lock-free, and let s = (P;, o;); be a maximal
transition sequence of P. Then L C sel(a).

Proof. Observe that necessarily s lock-free. We compute:
L C A(P) By Lemma 6.16
C sel(a) By Proposition 6.15
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Example 6.18. We saw in Fxample 5.1/ that the process D of Example 2.1 is typable
+{SI} v D> ---. By Proposition 6.17 above, noting that D is clearly lock-free, every
mazximal transition sequence of D must eventually select Sl.

Applying the definition of “live process” we now have our desired Theorem:
Theorem 6.19. Suppose - ; L = P> A with P lock-free. Then P is live for -, A.

Proof. Consider a maximal transition sequence (P;, ;) of P. By Definition 6.7 we must
find a live type transition sequence (A;,d;) of A with ((P;, A;), (ay,0;)) a typed transition
sequence of - = P> A.

By induction and Theorem 5.13 there exists a sequence (4A;, L;, §;); with - L; = P> A;

and A; LN A;41 and ; ~ «;, and moreover L; 11 = L;\res(d;)Ureq(d;). Suppose I € req(dy,).
Then | € Ly4+1. Clearly P, 1 also lock-free, so by Proposition 6.15, | € sel(shift"(«)). That
means there exists j > n with | € sel(o;). But a; ~ d; so [ € res(d;). L]

Example 6.20. We saw in Example 5.14 that P(D) is typable as ;0 = P(D)>k : Tp,ot :
Tp,o~ : Tp. Noting P(D) lock-free, by the above Theorem it is live, and so will uphold the
liveness guarantee in Tp: if CO is selected, then eventually also Sl is selected. Or in the
intuition of the example: If the buyer performs “Checkout”, he is guaranteed to subsequently
receive an invoice.

7. CONCLUSION AND FUTURE WORK

We introduced a conservative generalization of binary session types to session types with
responses, which allows to specify request-response liveness properties. We showed that
session types with responses are strictly more expressive (wrt. the classes of behaviours
they can express) than standard binary session types. We provided a typing system for
a process calculus similar to a non-trivial subset of collaborative BPMN processes with
possibly infinite loops and bounded iteration and proved that lock-free, well typed processes
are live.
We have identified several interesting directions for future work:

e The present typing system requires guessing suitable invariants I for typing check-
ing recursion, i.e., rec X.P. We believe that the syntactic approximation A(P) of
Definition 6.14 is the unique maximal I that will allow typing'. Lifting this belief
to a Theorem would be an essential foundational step necessary for operationalising
the present typing systems into a type-inference algorithm.

e The present techniques should be augmented by or combined with existing type
systems for ensuring lock-freedom of session-typed processes (e.g., [16, 4, 8, 14, 29,
30)).

e The present work could be lifted to multi-party session types, which guarantees
lock-freedom.

e The notion of request-response structure invites even more general notion of liveness,
e.g., rather than requiring a particular future response, one might require at least
one of a set of possible future responses.

1We extend our gratitude to Anonymous Referee #1 for pointing us in this direction.
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e Channel passing is presently omitted for simplicity of presentation and not needed
for our expressiveness result (Theorem 3.10). Introducing it, raises the question of
whether one can delegate the responsibility for doing responses or not? If not, then
channel passing does not affect the liveness properties of a lock-free process, and
so is not really interesting for the present paper. If one could, it must be ensured
that responses are not forever delegated without ever being fulfilled, which is an
interesting challenge for future work. We hope to leverage existing techniques for
the m-calculus, e.g., [24].

e Finally, and more speculatively, we plan to investigate relations to fair subtyping [28]
and Live Sequence Charts [9].
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APPENDIX A. SUBJECT REDUCTION PROOF FOR THE STANDARD SESSION TYPING
SYSTEM

Lemma A.1 (Process variable substitution). Suppose that ©,X : A’ Fqq P> A. Suppose
moreover that © Fgg Q> A" with X is not free in Q. Then also © Fgq P{Q/X} > A

Proof. By induction on the typing derivation.

Case [G-INACT]. We have ©, X : A’ Fgq 0> A. By typing A completed, so by [G-INACT],
we have O Fgq 0{Q/X} > A.

Case [G-OuT]. Immediate from the induction hypothesis.
Case [G-IN]. Immediate from the induction hypothesis.
Case [G-Bra]. We have
Viel: O,X:A"bgqg P>Ak:T,
@,X WA }_std k?{ll-PZ}wLe[ > A, k- &{lz[Lz]Tz}zel
By the induction hypothesis and [G-BRA] we have
O Fsad P{Q/X}> Ak T;
O bsa KMl P{Q/X}} e > Ak - &{1i[Li] Ti Yier

Case [G-SEL|. Similar to [G-BRra].
Case [G-PAR]. We have ©, X : A’ bgq P1 | P, > A. By typing we find some Ay, Ay = A
such that ©, X : A Fgq P> A;. By induction we find © Fgq P;{Q/X} > A;, which in turn
yields © Fsq (P1 | P2){Q/X} > Aq, As.
Case [G-VARP]. Suppose first X # Y; then we have

dom(A) =k

jod 9

O, : A)X : Al bgq Y[k]>A
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so by [G-VARP] also )
0,Y : Abgq Y[EH{Q/X}> A .
If on the other hand X =Y we have by typing

dom(A) =k ‘

0, X : A bgq X[EJbA’
and it must be the case that A = A’. We have by assumption © Fgqg Q> A/, that is
O Fog X[F{Q/ X} > A.
Case [G-RECP]. We have ©, X : A’ bgq (rec®Y (i).P; R) > A. By typing we have 0, X :
A Y: Abgq PoAand ©,X : A’ Fgq R>A. Using O Fgq Q>A’, by induction ©,Y : A Fgq
P{Q/X}>A and © Fgg R{Q/X}>A |, which in turn yields © Fgq (rec® Y (i).P; R){Q/X }>
A.

Case [G-VAR]. Suppose first X # Y’; then by typing we have
dom(A) =k
0,Y A X : AN by Y[k A

so by [G-VAR] also )

0,Y : Abgq Y[E{Q/X}> A .
If on the other hand X =Y we have by typing
dom(A) =k
0, X : A bgq X[E]pA’

where necessarily A = A’ s0 © Fqg X[E{Q/X} > A

Case [G-REC|. We have O, X : A’ bFgq recY.P>A. We find by typing ©, X : A')Y : A bgyq
P A, hence by the induction hypothesis 0,Y : A’ Fgg P{Q/X} > A, and so by [G-REC]
O Fed (recY.P){Q/X} > A.

Case [G-CoND]. Immediate from the induction hypothesis. O
Lemma A.2. If O bgq P> A then also © Fgq P{v/x}> A .

Proof. Straightforward induction. O
Lemma A.3. If O bqq P> A and A(k) # end then k € fn(P).

Proof. Straightforward induction. O

Lemma A.4. Suppose © Fgg P> Ak : T with A,k : T balanced, T # end, and k & fn(P).
Then k ¢ dom(A).

Proof. Supposed for a contradiction k € dom(A). Because A,k : I.T balanced, A(k) # end.
By Lemma A.3 we thus have k € fn(P); contradiction. O
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Lemma A.5. Suppose that © Fgq P> A with P LN Q. Then there exists a type transition
AL A with § ~ A, such that © Fgq Q>A'. Moreover, if A balanced, then also A’ balanced.

Proof. By induction on the derivation of the transition.

Case [C-Out]. We have kl(e).P 2% P with & ¢ P and © bgq kl(e).P > Ak : |.T.
By typing © Feq P> A,k : T. By [F-LiFt] we have k : .7 %5 k. T. By [F-Pag]
Ak LT LN A,k : T. Observing that k£ : ! ~ klv we have found the requisite type
transition.

Now suppose A,k : I.T balanced; we must show A,k : T" balanced. It is sufficient to
show k ¢ dom(A). But this follows from Lemma A 4.

Case [C-IN]. We have k?(z).P 2% P{v/z} with k ¢ fn(P) and © Fgq k?(2).PoA, k : 2.T.
By typing © Fgdq P> A,k : T. By [F-Lir1] and [F-Par], A,k : 2.7 25 Ak : T. By
Lemma A.2 we have © tgg P{v/z} > Ak : T. Observing k : 7 ~ k?v we have found the

requisite transition and typing. Preservation of balance follows from Lemma A.4.

Case [C-BRAJ. We have k?2{1;.P;} 2% P, and © Feg k2{1;-Pi}ye > Ak 2 &{L[Li] Ti}icr.

By typing we have © + [; Fgqg Pi> Ak @ T;. By [F-LIFT] and [F-PAR| we have Ak :

UL Tivier 2550 A k. Ty, Observing that k : @l[Li] ~ k&, we have found the
requisite type transition. Preservation of balance follows from Lemma A.4.

Case [C-SEL]. We have kIL.P 22% P and © byq kl1l;.P > A,k : ©{L:[Li]). T }ier. By typing

© +I; Fag P> Ak : Ty. By [F-LirT] and [F-PAR] we have

A, ®{([L]. Tihier “20 AT,

Observing that k : ®l;[L;] ~ k®I;, we have found the requisite type transition. Preservation
of balance follows from Lemma A.4.

Case [C-PARL]. We have P | P’ 2 Q | P’ with subj(\) & fn(P’) and © Fgq P | P'> A. By
typing we have for some L1 U Ly = L and A U Ay that ©1 Fgg P> Ay and © Fgq P> As.
By the induction hypothesis, we have a transition A LN A} with © Fgq Q> A} and 0 ~ .
By Lemma 4.5 dom(A;) = dom(A)) so A}, Ay is defined, and hence by [G-PAR] we have
O Fstd Q | P> Al, Ay and thus the requisite transition.

Now suppose Ay, Ag balanced. By Lemma 4.7 it is sufficient to prove that subj(d) &
dom(Aq, Ag). If subj(d) = 7 this is trivial, so say subj(d) = k and suppose for a contradiction
k € dom(A1,Ay). We must have § = k : p and because § ~ A we must have subj(\) =
subj(d) = k. By Lemma 2.2 k & fn(Q | P’). By Lemma 4.6 we have Ay = A}, k : S with
S # end. Because Aq, Ay balanced, (A1, Ag)(k) >x1 S and so (Ag, Ag)(k) # end.

Suppose first k € dom(A1). Then k € dom(AY), so also A”(k) # end, and it follows
that A} (k) = A/ (k) # end. By Lemma 5.10 k € fn(Q), contradicting k & fn(Q | P').

Suppose instead k € dom(Ag). Then immediately by Lemma 5.10 k € fn(P’), contra-
dicting k € fn(Q | P").

Case [CoM-1]. We have

kv k?v

Pl———)Pll PQ———>P2,
P | P5 PPy
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and
C] |_std P1 > Al S l_std P2 > Ag

Obgq P | P> A, Ay

By induction we find A; LN Als.t. © Fgq Pr>Al with 6 ~ klv and §2 ~ k?v. Tt follows that
61 =k:!and 6 = k : 7. By [F-CoM1] we thus have A, Ay & A, Al Noting that 7 ~ 7,

we have the required type transition. Since subj(7) = 7 and so subj(7) & dom(Aq, Ay), it
follows from Lemma 4.7 that A}, Al is balanced when Aj, Ag is.

Case [C-CoM2]. We have

kol k&l
PPl P

PP Ih PP

B

and

S '_std P1 > A1 S I_std PQ > AQ
Obgd P1 | P> A1, Ay

By induction we find A; LIN Al st. O bgg P> Al with 6; ~ k@ and &9 ~ k&l. Tt follows

— 7:l, L UL/,
that 6; = k : ®I[L}], and so we find a transition Ay, Ay T, A, Al by [F-Com2]. By

[G-PAR] we find © Fqq Py | Py>Al, Af. Noting that 7 : [, UL, ~ 7 : | we have the required
type transition. Since subj(7 : I, L} U L) = 7 and so subj(7 : I, L} U L)) & dom(A1, Ag), it
follows from Lemma 4.7 that A}, Al is balanced when Aj, Ag is.

Case [C-REC|. We have

P{rec X.P/X} 2 Q
rec X.P 2 Q

and
@,X: Al_std PDA

ObggrecX.P>A

It then follows by Lemma A.1 that
O bFeqg P{rec X.P/ X} > A,

and so by induction we find the required balance-preserving type transition.
Case [C-PrECO0]. We have

el0 QMR
(rec® X (1).P; Q) AR

and
@,X:Al_sthDA Gl_sthDA

O Fgd (rect X (i).P;Q) > A ’
and so by the induction hypothesis we find the required balance-preserving type transition.
Case [C-PrRECN]. We have
eln+1 P{n/i}{(rec” X (:).P;Q)/X} AR
(rec® X (7).P; Q) AR

and again
@,X:Al_sthDA @I_StdQDA

O Fetd (rect X (7).P; Q) > A
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By Lemma A.2 we have ©, X : (L', A) Fgq P{n/i} > A. By Lemma A.1 we have
O Feqg P{n/i}{(rec" X (i).P;Q)/X} > A,

and the requisite balance-preserving type transition follows by the induction hypothesis.
Case [C-CoNDT] and [C-CONDF]. We have

e true P p
if e then P else Q A pr

and
OFP>A OFQ>A

Ok if e then Pelse Q> A’
and the requisite balance-preserving type transition follows from the induction hypothesis.

U
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