
Trustworthy Pervasive Healthcare Services via
Multiparty Session Types

Anders S. Henriksen1, Lasse Nielsen1, Thomas T. Hildebrandt2,
Nobuko Yoshida3, and Fritz Henglein1

1 University of Copenhagen
{starcke,lnielsen,henglein}@diku.dk

2 IT University of Copenhagen
hilde@itu.dk

3 Imperial College London
yoshida@doc.ic.ac.uk

Abstract This paper proposes a new theory of multiparty session types
extended with propositional assertions and symmetric sum types for
modelling collaborative distributed workflows. Multiparty session types
statically guarantee that workflows are type-safe and deadlock-free, facil-
itate automatic generation of participant-specific (“local”) workflow pro-
tocols from global descriptions, and support flexible implementation of
local workflows guaranteed to be compliant with the workflow protocols.
The extensions with assertions and symmetric sum types support ex-
pressing state-based (pre)conditions and consensual multiparty synchro-
nisation, which are common in complex distributed workflows.

We demonstrate the theory’s applicability to clinical practice guide-
lines (CPGs) by providing a prototype implementation targeting mo-
bile healthcare applications. It compiles declarative healthcare workflows
specified in a flexible spreadsheet-formatted process matrix into type-
checked multiparty processes. The type-checked processes are interpreted
on a server communicating with generic, stateless clients running on An-
droid tablet computers, which addresses the pervasiveness requirements
common to clinical and home healthcare scenarios. A physician has, with
little prior training, successfully used the prototype to design her own
healthcare workflow as a process matrix, employing instantaneous test
and usage feedback from the prototype.

1 Introduction

Healthcare processes are characterised by being highly mobile, collaborative, se-
curity critical, and requiring a high degree of flexibility and adaptability [3,9].
Furthermore, they typically involve complex decisions based on data collected
during the process, and they are regulated, e.g. by law and clinical practice guide-
lines (CPGs) [25]. These characteristics make healthcare processes a particularly
challenging class of case management processes [11] in need of computerised sup-
port. Their design and implementation needs to support pervasive execution and
to be highly trustworthy, where formalised and verifiable process models can play

2 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

a particularly important role. In the present paper we focus on how formalised
models based on a compilation from a declarative process model to a new vari-
ant of multi-party session types can support pervasive execution and increase
the trustworthiness. Pervasive execution is supported by automatic distribution
of guideline protocols using the theory of end point projections, implemented
in a prototype demonstrator allowing pervasive access to guidelines via stateless
clients running on Android tablet computers. Trustworthiness is increased in two
ways: 1) The declarative input format allows for specifying guidelines simply as
the set of basic activities and their causal constraints instead of a procedure or
flowchart. This frees the domain experts from having to ”think as computers”,
which as stated by Parnas [20] is obviously hopeless for concurrent systems. 2)
The theory of multiparty session types allows for statically guaranteeing dead-
lock freedom.

CPGs are descriptions of medical treatment procedures, typically maintained
by professional medical associations at the national level, for specific medical dis-
orders. CPGs can express workflows and various cooperations among healthcare
processes, which are formed by the diverse collaborative patterns between mul-
tiple participants. That is, a CPG is an agreement of global protocol or guideline
between distributed organisations or participants. A pattern that plays a promi-
nent role in CPGs is what we will call symmetric, multiparty synchronisation
where the participants collectively decide on one of the possible choices of possi-
ble next step in the protocol. Such global protocols with symmetric, multiparty
synchronisations are naturally expressed in a choreography language, such as the
WS-CDL [27] or the BPMN 2.0 [18] choreography notation exemplified in Fig. 1
in Sec. 2.

Traditionally, workflow process models and choreographies, and also CPGs,
are represented as flow-graphs inspired by and based on the seminal work on
the Petri Nets model [26,13], where safety and liveness properties can be verified
using model checking techniques [14]. As pointed out in [9], most of this work
has been focusing on centralised models and executions of the global protocols.

In the present paper we leverage the work on session types and end-point
projections [8], which provides a foundation for decentralised execution and veri-
fication by type checking of protocols in general, and CPGs in particular, specified
globally as choreographies. The framework of multiparty session types provides a
formal choreography model language typed with global multiparty session types
that guarantee that well-typed processes are deadlock free and can be projected
to session typed end-point processes (i.e. corresponding to BPMN processes for
each participant).

The work on choreographies and session types has, however, so far been fo-
cusing on process models with explicit control flow (variations of the π-calculus),
which have been observed to have limitations when it comes to flexibility and
adaptability [1]. As an alternative, formal declarative process notations with im-
plicit control flow have been proposed and investigated as a means to provide
more support for adaptability in case management systems in general [1,21,5,23]
and health care processes in particular [6,9].

Multiparty Session Types for TrustCare 3

The key contributions of the present paper are to show 1) how the theory
of multiparty session types [8] extended with logical predicates [4] and symmet-
ric sum types [16] can be used to compactly represent declarative, distributed,
and collaborative workflows, that 2) can be modelled as a global guideline by
domain experts and 3) verified for deadlock-freedom statically, i.e. at compile
time, using automatic code generation and type inference, and 4) interpreted in
a decentralised way to provide a pervasive execution on generic tablet clients.

Concretely we show in Sec.2 how collaborative healthcare workflows declared
as Process Matrix spreadsheets can be automatically mapped to session typed
distributed programs which are interpreted to provide a trustworthy pervasive
workflow execution on Android tablet PCs. We then in Sec. 3 report on a demon-
stration of the prototype to a physician, who after having seen an example health-
care workflow being executed, was able to specify her own healthcare workflow
declaratively as a Process Matrix spreadsheet and immediately test it on the
Android tablet PCs. Finally we briefly outline in Sec. 4 the formal theory be-
hind the approach and the properties it ensures, and describe related and future
work in Sec. 5.

2 From Spreadsheets via Types to Pervasive Services

In this section we give an overview of the prototype implementation and the
different technologies used by means of a simple example workflow. First, in
Sec. 2.1 we describe the example workflow as a BPMN 2.0 Choreography diagram
and the corresponding Process Matrix spreadsheet. We then demonstrate in
Sec. 2.2 how the process matrix workflow processes can be described compactly
in multiparty session types with assertions and symmetric sum types. Finally we
overview the prototype implementation in Sec. 2.3.

2.1 Example Workflow as Choreography and Process Matrix

A simple CPG workflow involving three participants is described in Fig. 1 as
a Choreography diagram in the Business Process Modelling Notation (BPMN)
2.0. The described workflow is activated, when a patient is admitted (indicated
by the start event shown as a circle with a thin border at the left of the di-
agram). Then two tests, Test1 and Test2, are executed in parallel by a nurse.
Note that each activity box is a communication between the three participants
with one initiator (indicated in the white ribbon) and two receivers (indicated
in the shaded ribbons). Thus, the test results are sent by the nurse to both the
patient and the doctor. Each test may be repeated, as indicated by the repeating
subprocess (the looping arrow), e.g. if the test failed or the result was not clear.
Then, depending on the results of the tests, either the patient is discharged di-
rectly (following the bottom ”ok” branch), or the doctor prescribes a drug for
the patient (following the top ”not ok” branch), sending the prescription to both
the patient and the nurse. The workflow is ended when the patient is discharged,
indicated by the end event shown as a circle with a thick border at the right

4 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

SimpleTreatmentChoreorgraphy

Test1

Nurse

Patient
Doctor

Test2

Nurse

Patient
Doctor

Prescribe

Doctor

Nurse
Patient

Discharge

result1

result2

prescript ion

no
t o

k

ok

Associate Professor Thomas Hildebrandt 1 of 1 23.05.2012

38 Business Process Model and Notation, v2.0

Merging BPMN uses the term :merge; to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).
A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).
If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

Looping BPMN provides 2 (two) mechanisms for loop-
ing within a Process.

See Next Two Figures

Activity Looping The attributes of Tasks and Sub-Processes
will determine if they are repeated or per-
formed once (see page 197). There are two
types of loops: Standard and Multi-Instance. A
small looping indicator will be displayed at the
bottom-center of the activity.

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an :upstream; object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Table 7.2 - BPMN Extended Modeling Elements

38 Business Process Model and Notation, v2.0

Merging BPMN uses the term :merge; to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).
A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).
If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

Looping BPMN provides 2 (two) mechanisms for loop-
ing within a Process.

See Next Two Figures

Activity Looping The attributes of Tasks and Sub-Processes
will determine if they are repeated or per-
formed once (see page 197). There are two
types of loops: Standard and Multi-Instance. A
small looping indicator will be displayed at the
bottom-center of the activity.

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an :upstream; object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Table 7.2 - BPMN Extended Modeling Elements

Figure 1. Workflow as BPMN 2.0 Choreography

of the diagram. The described workflow is a standard paradigm in CPGs; that
is, first a set of tests are performed and, depending on the results, either more
tests are performed, the patient is discharged, or a treatment is executed. In this
workflow the treatment consists of simply prescribing a drug for the patient.

For our demonstrator we do not use BPMN 2.0 choreography diagrams. In-
stead we use a simplified version of the declarative Process Matrix representation
developed by our industrial partner Resultmaker (http://www.resultmaker.com/)
in the TrustCare research project. The process matrix corresponding to the
choreography in Fig. 1 is shown in Fig. 2 below, using three boolean data fields
(pre, result1, and result2) explained below.

Id Name P D N Seq Log Condition Input Action

1.1.1 Test1 R R W ¬ pre result1

1.1.2 Test2 R R W ¬ pre result2

1.2.1 Prescribe R W R 1.1.1, 1.1.2 ¬ pre ∧ ¬ (result1 ∧ result2) set(pre)

1.3.1 Discharge R W R 1.1.1, 1.1.2 (result1 ∧ result2) ∨ pre end

Figure 2. Example CPG workflow as Process Matrix.

The process matrix has a row for each activity, and columns providing name,
access control (Read or Write) for each participant (Patient, Nurse, Doctor),
Sequential predecessor relation, Logical predecessor relation (not used in our
simple example), Conditions, Input data, and an optional Action performed
when the activity is executed. The condition field must evaluate to true for an
activity to be enabled. Actions are given in a small if-then-else language:

Cmd ::= c | end,

c ::= set(x) | reset(x) | if e then c1 else c2 | {c1; . . . ; cn},
e ::= x | ¬ e | e1 ∧ e2 | e1 ∨ e2

Multiparty Session Types for TrustCare 5

where the end command ends the workflow, set(x) and reset(x) sets the value of
the variable x to true or false respectively. For instance, when the prescription
activity is executed, the pre variable is set to true, which disables the Test1 and
Test2 activities. This also allows to represent non-determinism, i.e. branching
behavior. If-then-else considers a Boolean expression and then uses either of the
commands. The bracketed commands are performed in sequence. Furthermore,
every sequential predecessor (for which the condition field presently evaluates to
true) must have been executed at least once before the activity can be executed.

A logical predecessor of an activity enforces the extra constraint that if the
logical predecessor is re-executed then the activity must also be re-executed.
Thus, by default an activity with no sequential or logical predecessors and no
conditions can be executed at any time and any number of times. In other words,
looping behavior (or jumping back to previous activities) is the ”default”. In
particular, Test1 and Test2 can be repeated as long as the prescription has not
been made. This means that flexibility (of the worker) is the default; if the work
flow is to be constrained, i.e. be less flexible, the constraints must be explicitly
given. For instance, if tests should be allowed also after a prescription, and in
that case requiring a new prescription if both tests are still not ok, one could
simply change the matrix to the one given in Fig. 3.

Id Name P D N Seq Log Condition Input Action

1.1.1 Test1 R R W result1 reset(pre)

1.1.2 Test2 R R W result2 reset(pre)

1.2.1 Prescribe R W R 1.1.1 ¬ pre ∧ ¬ (result1 ∧ result2) set(pre)
1.1.2

1.3.1 Discharge R W R 1.1.1, (result1 ∧ result2) ∨ pre end
1.1.2

Figure 3. More flexible CPG with tests being logical predecessors of prescription.

The same flexibility can of course be obtained using a choreography as the two
notations are equally expressive, but in the process matrix notation, flexibility
in execution is the default. Activities can be listed in the ”normal” order, but
repeated by default if necessary. Also, processes can be changed incrementally
e.g. by adding rows and changing conditions. Hereto comes, that spreadsheets are
familiar to many users, in particular if they have used Excel. Also, it was observed
in a field study, that the tabular process descriptions actually corresponded to
the paper based records used at the hospitals to keep track of the treatment [12].

2.2 Example Workflow as Multiparty Session Type

We now demonstrate how process matrix workflow processes as given above can
be described compactly in multiparty session types with logical propositions as
assertions and with so-called symmetric sum types.

6 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

µ workflow 〈 t e s t 1 : Bool=false , t e s t 2 : Bool=false , pre : Bool=false ,
r e s u l t 1 : Bool=false , r e s u l t 2 : Bool=false〉 .

{ Test1 [[not pre]] :
3→1 :1 〈Bool 〉 as x ; // The r e s u l t o f t e s t 1
3→2 :2 〈Bool 〉 as y [[x=y]] ; // The r e s u l t o f t e s t 1
workflow 〈 true , t e s t2 , pre , x , r e s u l t 2 〉 ,

Test2 [[not pre]] :
3→1 :1 〈Bool 〉 as x ; // The r e s u l t o f t e s t 2
3→2 :2 〈Bool 〉 as y [[x=y]] ; // The r e s u l t o f t e s t 2
workflow 〈 te s t1 , true , pre , r e su l t 1 , x 〉 ,

Prescribe [[t e s t 1 and t e s t 2 and not pre and not (r e s u l t 1 and r e s u l t 2)]] :
2→1 :3 〈 St r ing 〉 ; // The p r e s c r i p t i o n
2→3 :4 〈 St r ing 〉 ; // The p r e s c r i p t i o n
workflow 〈 te s t1 , t e s t2 , true , r e su l t 1 , r e s u l t 2 〉 ,

Discharge [[t e s t 1 and t e s t 2 and ((r e s u l t 1 and r e s u l t 2) or pre)]] :

end
}

Figure 4. Session type representation of workflow using assertions

Multiparty session types [8] define protocols for interactions in a group of
participants. They closely correspond to choreographies. In addition to defining
the protocol, the theory of session types guarantees type-safety and deadlock
freedom.4 Moreover, it facilitates verifying that a collection of π-calculus pro-
cesses, corresponding to BPMN processes in a collaboration diagram describing
each participant, follow the specified protocol. The extension of multiparty ses-
sion types with assertions [4] refines type signatures with logical predicates,
which can be used to restrict the values that are communicated and choices
that are made. We also use symmetric sum types [17], which are an extension of
multiparty session types that can type nondeterministic choice agreed upon by
multiple participants.

These three main features—multiparty, symmetric synchronisations and logi-
cal predicates—are essential for representing process matrix workflows in a direct
and compact way and verifying practical use cases, not only in the context of
CPGs, but also for workflows in general.

Fig. 4 specifies the workflow from Fig. 1 as a multiparty session type with
symmetric sum types and assertions. The workflow is described by a recursive
type (indicated by the initial µ sign), parameterised by a state: test1, and test2,
describe if the respective test action has already been executed; this is needed
because the test actions are sequential predecessors of the prescribe and dis-
charge actions. The pre condition records whether the prescription activity has
been executed. It is used to ensure prescription is executed only once and to
block subsequent test1 and test2 actions. Finally, result1 and result2 record the
results of the respective tests. The type is a symmetric sum (choice) with options
specified by the underlined labels, Test1, Test2, Prescribe, and Discharge. The in-
tuition is that all participants symmetrically agree on one of the four actions.

4 This is referred to as progress in the theory of session types. This may be confusing,
since progress is also used as synonym for liveness, i.e. that something good eventually
happens, which is not guaranteed by the present theory of session types.

Multiparty Session Types for TrustCare 7

CPG Process Matrix
Spreadsheet

Mps code
generator

Apims
interpreter

Apims
gui managerAndroid client

Compiletime

Runtime

Thrift
network
protocol

Apims
typechecker

Well typed

Type error

Figure 5. Demonstrator architecture.

After executing an action, the recursive type is reentered with an updated state,
except if the action is Discharge,, which ends the workflow. In the state where
both tests have been executed, no prescription has been made yet and at least
one of the test results was not ok (represented as the Boolean value false), the
Prescribe, action is enabled.

The specification also describes that when Test1, is executed, the result is
sent from participant 3 (the nurse) to participant 1 (the patient) and 2 (the
doctor) (represented by 3→ 1 and 3→ 2).

The logical assertions are also useful for other aspects of the CPG workflows.
Assertions can for example be used to enforce that doses of medicine be below
a particular limit. For simplicity, this has not been included in our example,
however. In the example workflow assertions are used to ensure that the same
result is sent to the patient and the doctor, and control wether the medicine
must be administered or the patient can be discharged directly.

2.3 Implementation

The demonstrator allows distributed execution of workflows specified by a pro-
cess matrix on a server accessed by Android tablet clients. The architecture is
depicted in Fig. 5. The arrow from the CPG cloud indicates that the process
designer describes a workflow (e.g. a CPG) as a process matrix specification in
a spreadsheet. The arrow to the mps (multi-party session types) code generator
indicates that it takes the process matrix as input. In the demonstrator imple-
mentation, the process matrix is given as a comma-separated value (CSV) file
produced from an off-the-shelf spreadsheet program. It enables the process ma-
trix to be specified in a normal spreadsheet program, which provides a graphical
table editor familiar to many end-users.

Code generation. The generated mps code consists of a global multiparty
session type, as exemplified in Fig. 4, representing the global workflow protocol,
and the local process for each participant.

8 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

The code for the local processes contains user-interface information which,
when interpreted, prompts users for information through a graphical user in-
terface (GUI). The local process code generation, including its GUI-actions, is
configurable; concretely, it is generated from descriptions written in a separate
spreadsheet table.

Fig. 6 shows code for the process matrix from Fig. 2 that is very close to the
actual generated code. We only show the Doctor part, as the global type is very
similar to the one shown in Fig. 4. (The number 2 appearing in the code several
places indicates that this is participant 2, the doctor).

1 l i n k (3 , wf , s , 2) ;
2 gu iva lue (3 , s , 2 , ” . uid ” , ”d ”) ;
3 gu iva lue (3 , s , 2 , ” a121 d : t i t l e ” , ” Pre s c r i b e ”) ;
4 . . .
5 de f Loop 〈 a111 : Bool , a112 : Bool , a121 : Bool , a131 : Bool ,
6 r e s1 : Bool , r e s2 : Bool , pre : Bool 〉
7 (w: wf 〈 a111 , a112 , a121 , a131 , res1 , res2 , pre 〉@(2 o f 3)) =
8 guisync(3 , w, 2) {
9 a111-n 1 [[not pre]] () :

10 w[7] ? lungs ok ;
11 gu iva lue (3 , w, 2 , ”Lungs ok ? : i n f o ” , lungs ok) ;
12 Loop 〈 true , a112 , a121 , a131 ,
13 (lungs ok or ((not lungs ok) and re s1)) , res2 , pre 〉 (w) ,
14 a112-n 1 [[not pre]] () :
15 w[7] ? throat ok ;
16 gu iva lue (3 , w, 2 , ”Throat ok ? : i n f o ” , throat ok) ;
17 Loop 〈 a111 , true , a121 , a131 , res1 ,
18 (throat ok or ((not throat ok) and re s2)) , pre 〉 (w) ,
19 a121-d [[a111 and a112 and ((not pre) and (not (r e s1 and re s2)))]]
20 (p r e s c r i p t i o n : S t r ing = ””) :
21 w[3] ! p r e s c r i p t i o n ;
22 w[5] ! p r e s c r i p t i o n ;
23 gu iva lue (3 , w, 2 , ” P r e s c r i p t i on : i n f o ” , p r e s c r i p t i o n) ;
24 gu iva lue (3 , w, 2 , ” . a121 d ” , true) ;
25 Loop 〈 a111 , a112 , true , a131 , res1 , res2 , true 〉 (w) ,
26 a131-d [[a111 and a112 and ((r e s1 and re s2) or pre)]]
27 (dis comment : S t r ing = ””) :
28 end
29 }
30 in
31 Loop 〈 false , false , false , false , false , false , false〉 (s)

Figure 6. Mps code for Doctor participant.

Corresponding to the recursion in the global session type in Fig. 4, the gen-
erated mps code consists of a single loop (line 5-31), where all actions specified
in the matrix correspond to a branch (lines 9, 14, 19, 26) in a single synchro-
nisation. Each branch is annotated with the writer of that action. In contrast
to BPMN choreographies, a process matrix allows actions with more than one
writer. This will be compiled to several branches in the synchronisation; e.g., if
the nurse could also discharge the patient, there would be a branch a131-n .

The loop maintains a state, which includes the conditions derived from the
workflow and for each action whether it has been executed. Each writer action
receives inputs from the GUI (line 20) and sends them to the reader participants
(lines 21, 22).

Multiparty Session Types for TrustCare 9

The predecessor and activity conditions are enforced using the state. Using
an assertion for each branch, we can make sure a branch is only shown when
its predecessors have been executed and the activity condition is true. When
looping in the end of each branch, the executed state is updated in two ways:

– The executed state of the completed action, is set to true (e.g. a111 in line
12).

– The executed state of any action that has the completed action as logical
predecessor is set to false.

The last part of the logic is the extra control column. The effect of the set
command for action a121 can be seen in line 25, where the variable pre is set to
true.

Apims. As part of our architecture, we have have created an ASCII syntax for
the asynchronous π-calculus with multiparty sessions and symmetric synchroni-
sation called apims, and implemented a type checker and an interpreter. This is
to our knowledge the first prototype implementation of the π-calculus with mul-
tiparty sessions and multiparty session types. The implementation along with
example programs can be found on the apims website [2].

The arrow connecting the mps code generation and the apims type checker
in Fig. 5 shows that the mps code is type checked with the apims type checker.
If the code is not well-typed it will in this case be because the workflow may
deadlock, i.e. it may reach a state that is not the final state, but no activity
can be executed. The example process matrices given above produce well-typed
code. An innocent-looking modification such as changing the logical or (∨) in
the condition for the Discharge activity to a logical and (∧) would make it
possible to deadlock, however: if both tests are fine (blocking the prescription),
the missing prescription prevents the discharge of the patient. The static type
checking thus allows the designer at compile time to catch potential deadlocks
before the workflow is initiated and return to the spreadsheet and revise the
specification as indicated by the arrow back to the Process Matrix Spreadsheet. 5

If the code is well-typed, the apims interpreter in the lower right of Fig. 5
interprets the code of each participant process. It communicates with the user
interfaces of the clients through a GUI manager, a separate, replaceable module
that communicates with the clients and maintains a view of the global process
state for each participant. In particular, each guisync term introduces a list of
choices for each participant corresponding to enabled branches in the workflow,
and each guivalue a list of values for each participant. The GUI manager main-
tains data structures for these two components, and the clients interact with the
workflow by manipulating these components. The choices can be accepted by
the clients, and if all parties accept a choice, execution can continue with the
corresponding branch.

5 However, the current implementation does not provide a very useful feedback to the
non technical user.

10 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

GUI clients. The values are used to send data to the client. Several kinds of
data are transmitted: meta data, e.g. the human readable name of the different
actions (as specified in the spreadsheet); value data, e.g. the data entered by the
other participants; and execution data, e.g. the execution state of each action.

These data are encoded in the key-value pair of each guivalue. Note that
clients are stateless: By keeping all data in the interpreter, clients can be changed/break
down without ruining the execution.

Figure 7. Screenshot from Android client logged in as Doctor.

In Fig. 6 the guivalue in line 2 assigns the Doctor role to the specific part of
the code. This lets the GUI manager know which choices are assigned to which
role. Fig. 7 shows a screenshot of the Android client running the example work-
flow in the doctor role, which can be seen at the top of the screen. The workflow
is in a state where the nurse has performed both tests. The other guivalues all
correspond to different parts of the screen. The guivalue in line 3 assigns the
human-readable name “Prescribe” to the action a121-d . The guivalues in lines
11 and 16 are used to show the information received from the nurse (the result of
the tests), which can be seen in the window to the right. Similarly the guivalue
in line 23 results in the values shown on the right-hand side once the Doctor
has entered those. The last guivalue in line 24 is used to pass the execution
state of the action to the client. This results in a small checkmark filled with
a green colour for the action, so the user knows that it has been performed. In
the screenshot the execution state is false, so the checkmark is not filled, i.e. it
is shown as white.

It is important to stress that every participant uses the same generic An-
droid client. The GUI manager uses the generated code to make sure that the
Android client used by the Doctor presents only the local process corresponding
to the workflow relevant to the doctor, and the Android client used by the Nurse
presents only the local process relevant to the Nurse. An example screenshot of

Multiparty Session Types for TrustCare 11

the Android client running the example as the nurse role is shown in Fig. 8. It
shows the workflow in a state where the nurse has performed the lung test with
a negative result and still needs to perform the throat test.

Figure 8. Screenshot from Android client logged in as Nurse.

The model-view-controller architecture of apims supports fully flexible inter-
face design without compromising the trustworthiness of correct execution of the
specified workflows. Furthermore, the communication between clients and apims
is mediated through the interface definition language framework Thrift [24],
which supports multiple language bindings. Altogether, this supports flexible
client design for usability in a pervasive context; e.g., a simple approach to se-
cure and efficient inputting on a tablet computer has been by using QR-codes
scanned though the tablet’s camera. This enables a user to scan the drug name
and the dose from physical objects, minimising the amount and attendant risks
of manual typing. We have only superficially touched upon the technical and
usability challenges of developing user interface clients for tablet computers in
comparison to conventional PC clients, however.

3 Experiment: An End-user Developed Workflow

To test the developed software, we performed a simple experiment with the help
of a physician: Dorthe Furstrand Lauritzen (DFL). The motivation behind the
experiment was to get first hand impressions from a domain expert, to evaluate
the current implementation and set goals for future development. Although DFL
is a physician and not a computer scientist, she has experience with use of IT
and in particular implementation of CPGs. However, she had never seen any
of the techniques used in the demonstrator before, in particular the declarative
process matrix notation was completely new to her.

12 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

Id Name D N S AN OPN Seq Log Condition

1.1.1 Nurse evaluation R W R R R

1.1.2 Patient History W R R R R

1.1.3 Extended history W R R R R abnorm

1.1.4 Preoperative treatment W R R R R cyto

1.1.5 Objective W R R R R

1.1.6 Extended objective W R R R R abnorm2

1.1.7 Ultrasound W R R R R

1.1.8 Formalia W R R R R

1.1.9 Extended formalia W R R R R abnorm3

1.2.0 Information for the patient R W R R R 1.1.1 - 1.1.9

1.2.1 Schedule for OP R R W R W 1.2.0

Figure 9. End-user developed workflow (Flow).

The main component of the experiment was to put DFL in the role of the
workflow designer, letting her use the spreadsheets to formalise a simple self-
chosen medical workflow, which can be run on the Android tablets. There are
several aspects of the experiment:

– Letting a medical professional come with a self-chosen workflow, tests the
expressiveness of the system.

– Letting a new user interact with the workflow creation tool tests the usability
of the tool.

– Letting a medical professional use the tool, tests the hypothesis: the do-
main expert can implement simple workflows, leading to a simpler and more
flexible development process, e.g.
• The domain experts might be able to make simple changes directly with-

out involving the development team.
• The domain experts can use simple workflows to communicate more

directly and efficiently with the development team.

3.1 The Experiment

The experiment, which took a single day, was set-up as follows: DFL had access
to a computer where the server, the code generator and example spreadsheets
were available. To simplify the interface, all spreadsheets were placed on the
desktop and batch commands performed the code generation and server start.
To learn the syntax, DFL did a small exercise under instruction by one of the
authors.

The workflow chosen by DFL model how a healthy woman gets an abortion;
according to DFL this was “a simplification of the simplest workflow I could
find”.

The developed workflow is shown in Fig. 9 and Fig. 10. The roles are: Doc-
tor (D), Nurse (N), Secretary (S), Anaesthesiologist (AN) and operation nurse
(OPN).

An example screenshot from the running Android client is shown in Fig. 11.

Multiparty Session Types for TrustCare 13

Id Input Action

1.1.1 name height weight bP

1.1.2 cave ever birth healthy if ! healthy then set(abnorm);
if cave then set(abnorm);
if ! ever birth then set(cyto)

1.1.3 cavetx healthtx

1.1.4 rp cytotec

1.1.5 gU ia stet c et p ia if ! gU ia then set(abnorm2);
uterus retroflekteret if ! stet c et p ia then set(abnorm2)

1.1.6 sttx gutx

1.1.7 fHR cRL gA

1.1.8 clamydiatested clamydia negative if ! clamydiatested then set(abnorm3);
rhesus negative signed form A if ! clamydia negative then set(abnorm3);

under 18 gA under 12 if rhesus negative then set(abnorm3);
if under 18 then set(abnorm3);
if ! signed form A then reset(1.1.8);
if ! gA under 12 then reset(1.1.8)

1.1.9 rp antibiotics rp anti D signed form B

1.2.0 pt informeret samtykke

1.2.1 op tid gA ved op

Figure 10. End-user developed workflow (Data).

3.2 Evaluation

Generally the experiment turned out very successfully: DFL was easily able to
use the spreadsheets to build her own workflow. The instructing author only
had to take over one time to fix a problem. Even though the workflow included
fairly complex logic, DFL was able to create it without any previous program-
ming experience and despite the unwieldy syntax of the action field. The system
seemed expressive enough to create the simple flow, but during the experience
DFL asked for more complex logic (e.g. comparison of values) and more presen-
tation control (e.g. grouping of values). The general usability of the tool seemed
good, as DFL was able to start developing her workflow almost from the start.
Of course there are several points that could be improved (most notably the
action field). All in all, it is promising to let a domain expert work directly with
the workflow code; maybe not for the full version, but for rapid prototyping.

4 Formal Theory

This section provides the outline of the formal theory and shows the properties
which the prototype can ensure. See [16] for detailed definitions and proofs.

Once given global types as a description of global interactions among commu-
nicating processes, we can consider the following development steps for validating
programs.

Step 1 A domain expert describes an intended interaction protocol as global
type G with logical predicates, and checks whether is well-formed or not.

14 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

Figure 11. Screenshot from Android client running the experiment workflow.

In our implementation the global type is generated from a Process Matrix
spreadsheet, by the mps code generator depicted in Fig. 5, i.e. the domain
expert writes a spreadsheet instead of a global type.

Step 2 Projections of global type G (called local types) onto each participant
are generated, either by a programmer or as in our implementation auto-
matically.

Step 3 Program code P , one for the local behaviour of each participant p, is
generated and its conformance to local type T is validated by efficient type-
checking. The mps code generator in the implementation actually creates
default implementations for each participant. A programmer can use the
default implementations as starting point and then develop more refined
implementations, possibly in other session typed end-point languages, while
adhering to the projected local type.

When programs are executed, their interactions are guaranteed to follow the
stipulated scenario without deadlocks.

Going back to the example from Sec. 2, the local type describing the be-
haviour of each participant can be obtained by projection (Step 2) and following
this type, its process is implemented by filling input and output binding of val-
ues from the local type(Step 3). In Fig. 12 is given the local type of the patient
and its behaviour described as an end-point process in the π-calculus, extended
with the sync primitive. There is a clear one-to-one correspondence between
type and process: for example, the recursive type µ corresponds to the recursive
agent (denoted by def) and the sum type corresponds to the synchronisation
(denoted by sync).

The implementation extends the π-calculus with a guisync constructor, which
is the result of extending the sync for user input. Each branch has a set of typed
arguments that must be given using the GUI before that choice is accepted, and
the given arguments can be used by the process in that branch. In Fig. 6 guisync
is seen in line 8, and the user input can be seen as “prescription” in line 20.

Multiparty Session Types for TrustCare 15

G�1 = // Local type f o r Pat ient
µ workflow 〈 t e s t 1 : Bool=false ,

t e s t 2 : Bool=false ,
pre : Bool=false ,
r e s u l t 1 : Bool=false ,
r e s u l t 2 : Bool=false〉 .

{ Test1 [[not pre]] :
1? 〈Bool 〉 as x ;
f o r a l l y [[x=y]] ;
workflow 〈 true , t e s t2 , pre , x , r e s u l t 2 〉 ,

Test2 [[not pre]] :
1? 〈Bool 〉 as x ;
f o r a l l y [[x=y]] ;
workflow 〈 te s t1 , true , pre , r e su l t 1 , x 〉 ,

Prescribe [[t e s t 1 and t e s t 2 and
not pre and
not (r e s u l t 1 and r e s u l t 2)]] :

3? 〈 St r ing 〉 as x ;
workflow 〈 te s t1 , t e s t2 , true ,

r e su l t 1 , r e s u l t 2 〉 ,
Discharge [[t e s t 1 and t e s t 2 and

((r e s u l t 1 and r e s u l t 2) or pre)]]
end

}

PP = // Pat ient
a [2 . . 3] (p , d , n) .
de f X〈 t1 : Bool , t2 : Bool , pre : Bool ,

r1 : Bool , r2 : Bool 〉
((p , d , n) : workflow �1 〈 t1 , t2 , pre ,

r1 , r2 〉)=
sync((p , d , n) , 3)
{ Test1 [[not pre]] :

p? (r e s u l t) ;
X〈 true , t2 , pre , r e su l t , r2 〉 ((p , d , n)) ,
Test2 [[not pre]] :
p? (r e s u l t) ;
X〈 t1 , true , pre , r1 , r e s u l t 〉 ((p , d , n)) ,
Prescribe [[t1 and t2 and not pre

and not (r1 and r2)]] :
p? (p r e s c r i p t i o n) ;
X〈 t1 , t2 , true , r1 , r2 〉 ((p , d , n)) ,

Discharge [[t1 and t2 and

((r1 and r2) or pre)]] }
end

}
in X〈 false , false , false , false , false〉 ((p , d , n))

Figure 12. Local type and process for the patient

We then type-check processes by following the session typing rules. The typ-
ing judgement extends the original one [4] with symmetric sum types. The judge-
ment Θ;Γ ` P B ∆ states that assuming Θ the process P in the environment
Γ performs exactly the session communication described in ∆. By the rules, we
can verify the example is type-able, i.e. Θ;Γ ` (PP | PD | PN) B ∆ where PD
and PN are the doctor and the nurse implemented similarly to PP and | denotes
parallel composition. We end this section by stating the subject reduction theo-
rem, which guarantees that once the process is compiled, then there will be no
type error at runtime.

Theorem 1 (Subject reduction). If true;Γ ` P . ∅ and P → P ′, then
true;Γ ` P ′ . ∅.

From this theorem, we can derive many safety properties as corollaries [8, Sec. 5].
The properties which this framework guarantees include: (1) type safety: the
lack of standard type errors in expressions; (2) communication safety: commu-
nication error freedom (i.e. a sending action is always matched to its correspond-
ing receiving action at the same channel); (3) session fidelity: the interactions
of a type-able process exactly follow the specification described by its global
type; and (4) progress: once a communication has been established, well-typed
programs will never get stuck at communication points. The formal definitions
and the proofs of these properties can be found in [16,4,8].

5 Conclusions, Related and Future Work

We have successfully applied the symmetric sum types and assertion extensions
of the multiparty session types to compactly specify flexible, declarative work-
flows with data constraints as needed for CPGs. This enables a decentralised

16 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

execution automatically generated from the specification, which is guaranteed
to be deadlock free by type checking and the subject reduction theorem. We
provided an end-to-end, model-driven, pervasive demonstrator implementation.
Finally, we reported on a successful experiment, letting a physician declaratively
specify her own CPG in an off-the-shelf spreadsheet program and run it on the
demonstrator.

The original implementation of the Process Matrix called Online Consultant
by Resultmaker [12] is database based. This means that communication con-
sists of the sender uploading information to the server, and all participants must
query the server when using the information. Implementing the workflows based
on the π-calculus and session types not only gives the Process Matrix a formal
semantics, but also allows an implementation where participants communicate
their data as peer-to-peer. This offers more natural and robust realisation of
the workflows. It is important to point out that while the current demonstra-
tor prototype executes all participant threads on a single, central server, there
is nothing that hinders decentralised execution of such threads either on local
servers or even at the clients. However, if executed (only) on a mobile client one
loses the possibility to access/recover the thread if the mobile client is lost or
damaged. Also, the theorem provers we have implemented (to verify assertions
in the type checker) are based on the LK and CFLKF proof systems, which
are not very efficient in practice. But there is an abundance of theorem provers
available [22,10] which can enable both more efficient verification (in practice)
and more expressive assertion languages. We can even use a resolution based
theorem prover or indeed any method that can decide assertion validity, as we
do not currently use the derivations for anything.

The approach in the present paper relates to work based on the Lightweight
Coordination Calculus (LCC) [23,9] in being decentralised and representing
clinical protocols and guidelines as message-based interaction models, which
exchange information among agents distributed across different hospitals. As
pointed out in [9], most other approaches ([19]) providing formal modelling, en-
actment and verification of CPGs have been based on centralised models and
executions. While the work based on LCC focuses only on describing the in-
dividual agents, the approach based on global and local session types taken in
the present paper combines the best of both worlds: the global session type cor-
responds to the centralised, global overview of the CPG and the local session
types generated automatically from the global session type provide the indi-
vidual views. Moreover, instead of relying on model checking (of the combined
system of agents) the session type approach extracts the individual communi-
cation protocols which can be type-checked against an individual agent thread
implemented in the π-calculus being interpreted in the current demonstrator.
This also opens up possibilities for implementing local session type checking for
other end-point languages, such as Java, Python, C, Ocaml, LCC and related
formal notations described below.

Another related approach is the declarative Dynamic Condition Response
(DCR) Graphs process model [5,15] developed in the TrustCare project. DCR

Multiparty Session Types for TrustCare 17

Graphs can be verified for safety and liveness properties using the SPIN model
checker [15] and directly formalise the declarative process matrix model and ex-
tend it with the possibility of differentiating between may and must behaviours,
that is, an activity may be possible, but not required in order to fulfil the goal
of the workflow. As for the session types approach, DCR Graphs allow global
descriptions from which end-point descriptions can be derived automatically and
executed locally [7,6]. The distribution technique is more flexible than the one
based on session types, since it is not restricted to a fixed allocation of par-
ticipants in the global description. However, DCR Graphs have so far limited
support for data and no facility for type and assertion checking for local agents
as developed in this paper. This makes the DCR Graphs approach less flexible
with respect to end point implementations which must be based on the projected
DCR Graphs.

As for future work, it would indeed be interesting to explore session typed
LCC, Petri Nets and DCR Graphs, which would enable to provide end-points in
these languages and to include and benefit from the work on these alternative
approaches. We also plan to explore an extension of session types with time
deadlines and violations of such, which are crucial in order to represent real
CPGs. Finally, we are planning a larger experiment with several users and CPGs
in collaboration with It, Medico og Telefoni (IMT) (www.regionh.dk).

Acknowledgements This work was funded in part by the Danish Council for
Strategic Research, Grant #2106-07-0019, the IT University of Copenhagen and
University of Copenhagen (the TrustCare project, www.trustcare.eu). We want
to thank Dorthe Furstrand Lauritzen for participating in the experiment and for
extensive feedback on the demonstrator, and the anonymous reviewers for their
careful reviews and comments.

References

1. W. M. P. v. d. Aalst, M. Pesic, and H. Schonenberg. Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - R&D, 23(2):99–113,
2009.

2. Apims project page. http://www.thelas.dk/index.php/apims.
3. J. E. Bardram and C. Bossen. Mobility work: The spatial dimension of collabora-

tion at a hospital. CSCW, 14:131–160, 2005.
4. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract

for distributed multiparty interactions. In CONCUR 2010, LNCS, pages 162–176.
Springer, 2011.

5. T. Hildebrandt and R. R. Mukkamala. Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In Proceedings of PLACES’10, 2011.

6. T. Hildebrandt, R. R. Mukkamala, and T. Slaats. Declarative modelling and safe
distribution of healthcare workflows. In Foundations of Health Informatics Engi-
neering and Systems (FHIES), volume 7151 of LNCS, pages 39–56, Berlin, Heidel-
berg, August 2011. Springer-Verlag.

7. T. Hildebrandt, R. R. Mukkamala, and T. Slaats. Safe distribution of declarative
processes. In Proceedings of the 9th international conference on Software engi-
neering and formal methods, SEFM’11, pages 237–252, Berlin, Heidelberg, 2011.
Springer-Verlag.

18 Henriksen, Nielsen, Hildebrandt, Yoshida and Henglein

8. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL’08, pages 273–284. ACM, 2008.

9. B. Hu, S. Dasmahapatra, D. Robertson, and P. Lewis. Decentralised clinical guide-
lines modelling with lightweight coordination calculus. In LBM, December 2007.

10. J. A. Kalman. Automated reasoning with Otter. Rinton Press, 2001.
11. J. Koehler, J. Hofstetter, and R. Woodtly. Capabilities and levels of maturity in

it-based case management. In Proceedings of the 10th international conference on
Business Process Management, BPM’12, pages 49–64, Berlin, Heidelberg, 2012.
Springer-Verlag.

12. K. Lyng, T. Hildebrandt, and R. Mukkamala. From paper based clinical practice
guidelines to declarative workflow management. In ProHealth ’08, 2008.

13. W. MacCaull and F. Rabbi. Nova workflow: A workflow management tool targeting
health services delivery. In Foundations of Health Informatics Engineering and
Systems (FHIES), volume 7151 of LNCS, pages 74–91, Berlin, Heidelberg, August
2011. Springer-Verlag.

14. W. MacCaull, F. Rabbi, and A. Mashiyat. Model checking workflow monitors and
its application to a pain management process. In Foundations of Health Informatics
Engineering and Systems (FHIES), volume 7151 of LNCS, pages 110–127, Berlin,
Heidelberg, September 2011. Springer-Verlag.

15. R. R. Mukkamala. A Formal Model For Declarative Workflows - Dynamic Condi-
tion Response Graphs. PhD thesis, IT University of Copenhagen, 2012.

16. L. Nielsen. Regular Expressions and Multiparty Session Types with Applications to
Workflow Based Verification of User Interfaces. PhD thesis, University of Copen-
hagen, 2012.

17. L. Nielsen, N. Yoshida, and K. Honda. Multiparty symmetric sum types. In
EXPRESS’10, volume 41 of EPTCS, pages 121–135, 2010.

18. Object Management Group BPMN Technical Committee. Business
Process Model and Notation, version 2.0. Webpage, January 2011.
http://www.omg.org/spec/BPMN/2.0/PDF.

19. Open clinical. guideline modelling methods summaries. Webpage.
www.openclinical.org/gmmsummaries.html.

20. D. L. Parnas. Software aspects of strategic defense sytsems. Communications of
the ACM, 28(12):1326–1335, 1985. Reprinted from Journal of Sigma Xi, Vol. 73.
No. 5. pp. 432-440.

21. M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business
processes management. In Proceedings of the 2006 international conference on
Business Process Management Workshops, BPM’06, pages 169–180, Berlin, Hei-
delberg, 2006. Springer-Verlag.

22. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI
communications, 15(2, 3):91–110, 2002.

23. D. Robertson. A lightweight coordination calculus for agent systems. In Declarative
Agent Languages and Technologies, pages 183–197, 2004.

24. M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-language services
implementation. Available from http://thrift.apache.org/.

25. A. ten Teije, S. Miksch, and P. Lucas. Computer-based Medical Guidelines and
Protocols: A Primer and Currend Trends. Studies in Health Technology and In-
formatics. IOS Press, 2008.

26. W. M. P. van der Aalst. The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

27. Web Services Choreography Working Group. Choreography Description Language.
http://www.w3.org/2002/ws/chor/.

