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We study categories for reversible computing, focussing on reversible forms of event structures.
Event structures are a well-established model of true concurrency. There exist a number of forms
of event structures, including prime event structures, asymmetric event structures, and general event
structures. More recently, reversible forms of these types of event structures have been defined.
We formulate corresponding categories and functors between them. We show that products and co-
products exist in many cases. In most work on reversible computing, including reversible process
calculi, a cause-respecting condition is posited, meaning that the cause of an event may not be re-
versed before the event itself. Since reversible event structures are not assumed to be cause-respecting
in general, we also define cause-respecting subcategories of these event structures. Our longer-term
aim is to formulate event structure semantics for reversible process calculi.

1 Introduction

Event structures [10], a well-known model of true concurrency, consist of events and relations between
them, describing the causes of events and conflict between events. Winskel [18] defined a category of
event structures, and used this to define event structure semantics of CCS.

Reversible process calculi are a well-studied field [3, 5, 6, 8, 9, 11]. When considering the semantics
of reversible processes, the ability to reverse events leads to finer distinctions of a true concurrency
character [12]; for example the CCS processes a | b and a.b+b.a can easily be distinguished by whether
both a and b can be reversed at the end of the computation. This motivates the study of reversible event
structures. So far, no event structure semantics have been defined for reversible variants of CCS [5,6,11]
(though the reversible π-calculus has been modelled using rigid families [4]); we intend this work to be
one of the first steps towards doing so.

Reversible versions of various kinds of event structures were introduced in [13, 15]. Our aim here
is to interpret these as objects in appropriate categories and study functors between them. So far few
reversible frameworks have been defined categorically, though [7] used category theory to describe the
relationship between RCCS processes and their histories, and [2] used dagger categories to define a
reversible process calculus called Π.

We define categories for the reversible event structures from [13, 15], defining morphisms for each
category and functors, and in some cases adjunctions, between them, along with coproducts, and, in
the case of general reversible event structures, products. We also consider configuration systems [13], a
model of concurrency intended to serve a similar purpose as domains do for the forward-only event struc-
tures, letting the various kinds of reversible event structures be translated into one formalism. We show
that, just as stable domains can be modelled as event structures, so finitely enabled configuration systems
can be modelled as general reversible event structures, giving a tight correspondence (Theorem 5.9).

With a few exceptions [14, 16], reversible process calculi have always adopted causal reversibility.
The reversible event structures of [13, 15] allow non-causal reversibility, inspired by bonding in bio-
chemical processes. We here define subcategories of the reversible event structures of [15] which are
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Figure 1: Categories of forward-only event structures and functors between them: PES were introduced
in [10], and defined categorically along with Dom, SES, ES, Dp, Ppd , Pps, and Ds in [19], AES, A, and
Da were introduced in [1], and Σ in [13]. The adjunction between A and Σ, denoted by a, is new.

(1) stable, meaning that the causes of an event cannot be ambiguous, which is clearly important for re-
versibility, and (2) cause-respecting, meaning that no action can be reversed unless all the actions caused
by it have been reversed first [13], which can be seen as a safety property for causal reversibility. We
show that under these conditions any reachable configuration is forwards reachable (Theorem 6.8).

Structure of the Paper. Section 2 reviews forwards-only event structures; Section 3 looks at re-
versible prime and asymmetric event structures, while Section 4 covers reversible general event struc-
tures. Section 5 describes the category of configuration systems, and Section 6 describes stable and
cause-respecting reversible event structures and configuration systems.

2 Forwards-Only Event Structures

Before describing the different categories of reversible event structures, we recall the categories of
forward-only event structures and functors between them, as seen in Figure 1.

A prime event structure consists of a set of events, and causality and conflict relations describing
when these events can occur. If e < e′ then e′ cannot happen unless e has already happened. And if e ] e′

then e and e′ each prevent each other from occurring.
Definition 2.1 (Prime Event Structure [10]). A prime event structure (PES) is a triple E = (E,<,]),
where E is the set of events and causality, <, and conflict, ], are binary relations on E such that ] is
irreflexive and symmetric, < is an irreflexive partial order such that for every e ∈ E, {e′ | e′ < e} is finite,
and ] is hereditary with respect to <, i.e. for all e,e′,e′′ ∈ E, if e ] e′ and e < e′′ then e′′ ] e′.

For any PES E = (E,<,]), we say that X ⊆ E is a configuration of E if X is left-closed under < and
conflict-free, meaning no e,e′ ∈ X exist, such that e ] e′. Configurations can be ordered by inclusion to
form stable domains (coherent, prime algebraic, finitary partial orders) [19], as seen in Example 2.2.
Example 2.2. The PES E1 with events a,b,c where a < b, a < c, and c ] b, has configurations /0, {a},
{a,b}, and {a,c}, forming the domain seen in Figure 2a.

Morphisms are defined on PESs in Definition 2.3, yielding the category PES. Morphisms on event
structures act as a sort of synchronisation between the two structures, where if X is a configuration then
f (X) is too, and two events, e,e′ can only synchronise with the same f (e) = f (e′) if they are in conflict.
Definition 2.3 (PES morphism [19]). Let E0 = (E0,<0, ]0) and E1 = (E1,<1, ]1) be PESs. A morphism
f : E0→ E1 is a partial function f : E0→ E1 such that for all e∈ E0, if f (e) 6=⊥ then {e1 | e1 <1 f (e)} ⊆
{ f (e′) | e′ <0 e}, and for all e,e′ ∈ E0, if f (e) 6=⊥ 6= f (e′) and f (e) ]1 f (e′) or f (e) = f (e′) then e ]0 e′

or e = e′.
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Figure 2: Examples of domains representing event structures.

Asymmetric event structures [1] resemble prime event structures, with the difference being that the
conflict relation eB e′ ( [1] uses the notation e↗ e′) is asymmetric, so that rather than e and e′ being
unable to coexist in a configuration, e′ cannot be added to a configuration that contains e. The converse
relation e′C e can be seen as precedence or weak causation, where if both events are in a configuration
then e′ was added first, as illustrated by Example 2.4. An AES-morphism is defined in the same way as
a PES morphism, but replacing symmetric conflict with asymmetric. This gives the category AES.

Example 2.4. E2 = (E,<,C) where E = {a,b,c} and a < b and bC c has configurations /0, {a}, {c},
{a,b}, {a,c}, and {a,b,c}, and therefore Da(E2) is the domain seen in Figure 2b.

General event structures, or simply event structures, work somewhat differently from PESs or AESs.
Instead of causation and conflict, they have an enabling relation and a consistency relation.

Definition 2.5 (Event structure [19]). An event structure (ES) is a triple E = (E,Con,`), where E is a
set of events, Con⊆fin 2E is the consistency relation, such that if X ∈ Con and Y ⊆ X then Y ∈ Con, and
` ⊆ Con×E is the enabling relation, such that if X ` e and X ⊆ Y ∈ Con then Y ` e.

Configurations are finitely consistent sets of events, where each event is deducible via the enabling
relation. Once again we define an ES-morphism, giving us the category ES [19]. The idea behind them
is much the same as for PES- and AES-morphisms. Enabling sets are treated in much the same way as
causes, and consistent sets in the opposite way from conflict.

Stable event structures [19] form a full subcategory SES of ES. The idea is that in any given config-
uration, each event will have a unique enabling set.

Example 2.6. E3 = (E,Con,`) where E = {a,b,c}, Con= { /0,{a},{b},{a,c},{b,c}}, and /0 ` a, /0 ` b,
{a} ` c, and {b} ` c can be represented by the domain Ds(E3) seen in Figure 2c.

3 Reversible Prime and Asymmetric Event Structures

Our goal is to define the categories and functors in the lower part of Figure 3.
We start by adding reversibility to PESs. When discussing reversible events we will use e to denote

reversing e and e∗ to denote that e may be performed or reversed. Reversible prime event structures [13]
(Definition 3.1) consist of a set of events, E, some of which may be reversible, causality and conflict
similar to a PES, reverse causality, which works similarly to causality, in that e ≺ e′ means e′ can only
be reversed in configurations containing e, and prevention, which resembles the asymmetric conflict of
AESs, in that eB e′ means that e′ can only be reversed in configurations not containing e.

Definition 3.1 (RPES [13]). A reversible prime event structure (RPES) is a sextuple E = (E,F,<,],≺
,B) where E is the set of events, F ⊆ E is the set of reversible events, and
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Figure 3: Categories of event structures and functors between them: We extend Figure 1 by categorically
defining RPESs, RAESs, CSs, Pp, Φp, Pa, Φa, Cp, Cpr, Ca, Car, and Ar [13] and RESs and Pr [15].
The categories SRES, SCS, and FCS, and functors Ppr, Par, Cr, C, and R are new, as well as the noted
adjunctions.

• < is an irreflexive partial order such that for every e∈ E, {e′ ∈ E | e′ < e} is finite and conflict-free

• ] is irreflexive and symmetric such that if e < e′ then not e ] e′

• B⊆ E×F is the prevention relation

• ≺ ⊆ E×F is the reverse causality relation where for each e ∈ F, e ≺ e and {e′ | e′ ≺ e} is finite
and conflict-free and if e≺ e′ then not eB e′

• ] is hereditary with respect to sustained causation� and� is transitive, where e� e′ means that
e < e′ and if e ∈ F then e′B e

As previously, in order to define the category RPES, we need a notion of morphism. An RPES-
morphism can be seen as a combination of a PES-morphism for the forwards part and an AES-morphism
for the reverse part, and reversible events can only synchronise with other reversible events. The category
RPES has coproducts (Definition 3.2). A coproduct can be described as a choice between two event
structures to behave as, as illustrated by Example 3.3.
Definition 3.2 (RPES coproduct). Given RPESs E0 = (E0,F0,<0, ]0,≺0,B0) and E1 = (E1,F0,<1, ]1,≺1
,B1), their coproduct E0 +E1 is (E,F,<,],≺,B) where:
• E = {(0,e) | e ∈ E0}∪{(1,e) | e ∈ E1} and F = {(0,e) | e ∈ F0}∪{(1,e) | e ∈ F1}
• injection i j exist such that for e ∈ E j, i j(e) = ( j,e) for j ∈ {0,1}
• ( j,e)< ( j′,e′) iff j = j′ and e < j e′

• ( j,e) ] ( j′,e′) iff j 6= j′ or e ] j e′

• ( j,e)≺ ( j′,e′) iff j = j′ and e≺ j e′

• ( j,e)B ( j′,e′) iff e′ ∈ Fj′ and j 6= j′, or eB j e′

Example 3.3 (RPES coproduct). Given RPESs E0 = (E0,F0,<0, ]0,≺0,B0) and E1 = (E1,F1,<1, ]1,≺1
,B1) where E0 = {a,b}, F0 = {a,b}, a <0 b, a≺0 b and E1 = {c,d}, F1 = {c}, and dB1 c, the coproduct
E0 +E1 is (E,F,<,],≺,B), where E = {(0,a),(0,b),(1,c),(1,d)}, F = {(0,a),(0,b),(1,c)}, (0,a) <
(0,b), (0,a) ≺ (0,b), (0,a) ] (1,c), (0,a) ] (1,d), (0,b) ] (0,c), (0,b) ] (0,d), (0,a)B (1,c), (0,b)B
(1,c), (1,c)B (0,a), (1,d)B (0,a), (1,c)B (0,b), (1,d)B (0,b), and (1,d)B (1,c).



E. Graversen, I. Phillips, & N. Yoshida 5

As we did with PESs, we will now add reversibility to AESs. Reversible asymmetric event structures
(RAES) [13] (Definition 3.4) consist of events, some of which may be reversible, as well as causation and
precedence, similar to an AES, except that ≺ is no longer a partial order, and instead just well-founded.
In addition, both work on the reversible events, similarly to the RPES.

Definition 3.4 (RAES [13]). A reversible asymmetric event structure (RAES) is a quadruple E =(E,F,≺
,C) where E is the set of events, F ⊆ E is the set of reversible events, and

• C⊆ (E ∪F)×E is the irreflexive precedence relation

• ≺ ⊆ E× (E ∪F) is the causation relation, which is irreflexive and well-founded, such that for all
α ∈ E ∪F, {e ∈ E | e≺ α} is finite and has no C-cycles, and for all e ∈ F, e≺ e

• for all e ∈ E and α ∈ E ∪F if e≺ α then not eBα

• e≺≺ e′ implies eC e′, where e≺≺ e′ means that e≺ e′ and if e ∈ F then e′B e

• ≺≺ is transitive and if e ] e′ and e≺≺ e′′ then e′′ ] e′

Once again we create a category RAES by defining RAES-morphisms. This definition is nearly iden-
tical to that of an AES-morphism, with the added condition that, like in the RPES morphism, reversible
events can only synchronise with other reversible events. The category RAES has coproducts, defined
very similarly to the RPES coproduct, though without symmetric conflict and combining both causation
relations into one.

4 Reversible General Event Structures

The last kind of event structure we add reversibility to is the general event structure. The reversible
(general) event structure differs from the general event structure, not only by allowing the reversal of
events, but also by including a preventing set in the enabling relation, so that X ; Y ` e means e is
enabled in configurations that include all the events of X but none of the events of Y . An example of
an RES can be seen in Figure 4b. In all examples we will use X ; Y ` e∗ as shorthand for X ′ ; Y ` e∗

whenever X ⊆ X ′ ∈ Con

Definition 4.1 (RES [15]). A reversible event structure (RES) is a triple E = (E,Con,`) where E is the
set of events, Con⊆fin 2E is the consistency relation, which is left-closed, ` ⊆ Con×2E × (E ∪E) is the
enabling relation, and (1) if X ; Y ` e∗ then (X ∪{e})∩Y = /0, (2) if X ; Y ` e then e ∈ X, and (3) if
X ; Y ` e∗, X ⊆ X ′ ∈ Con, and X ′∩Y = /0 then X ′ ; Y ` e∗.

To define the category RES, we need to define a RES-morphism (Definition 4.2). With the exception
of the requirements regarding preventing sets, it is identical to the definition of an ES-morphism. We
treat the preventing set similarly to (asymmetric) conflict in PES, AES, RPES, and RAES-morphisms.

Definition 4.2 (RES morphism). Let E0 = (E0,Con0,`0) and E1 = (E1,Con1,`1) be RESs. A morphism
f : E0→ E1 is a partial function f : E0→ E1 such that

• for all e ∈ E0, if f (e) 6=⊥ and X ; Y `0 e∗ then there exists a Y1 ⊆ E1 such that for all e0 ∈ E0, if
f (e0) ∈ Y1 then e0 ∈ Y and f (X) ; Y1 `1 f (e)∗

• for any X0 ∈ Con0, f (X0) ∈ Con1

• for all e,e′ ∈ E0, if f (e) = f (e′) 6=⊥ and e 6= e′ then no X ∈ Con0 exists such that e,e′ ∈ X

As with RPES and RAES, RES has coproducts (Definition 4.3).



6 Towards a Categorical Representation of Reversible Event Structures

Definition 4.3 (RES coproduct). Given RESs E0 = (E0,Con0,`0) and E1 = (E0,Con0,`0), their coprod-
uct E0 +E1 is (E,Con,`) where:

• E = {(0,e) | e ∈ E0}∪{(1,e) | e ∈ E1}

• injections i j exist such that for e ∈ E j i j(e) = ( j,e) for j ∈ {0,1}

• X ∈ Con iff ∃X0 ∈ Con0.i0(X0) = X or ∃X1 ∈ Con1.i1(X1) = X

• X ; Y ` ( j,e)∗ iff ∃X j,Yj ∈ E j such that X j ; Yj ` e∗, i j(X j) = X, Y = i j(Yj)∪ (E \ i j(E j))

We also define the product of RESs (Definition 4.4). A product can be described as a parallel com-
position of two RESs. The reason we did not define the products of RPESs or RAESs is, that while the
ES product defined in [19] easily translates to RESs, definitions of PES products, such as the one based
on mapping the PESs into a domain and back seen in [17], are far more complex and difficult to translate
directly to a reversible setting. Since we do not have mappings from CSs to RPESs or RAESs, this is not
a possible solution. Example 4.5 shows the product of two RESs.

Definition 4.4 (RES product). Given RESs E0 = (E0,Con0,`0) and E1 = (E1,Con1,`1), their partially
synchronous product E0×E1 is (E,Con,`) where:

• E = E0×∗ E1 = {(e,∗) | e ∈ E0}∪{(∗,e) | e ∈ E1}∪{(e,e′) | e ∈ E0 and e′ ∈ E1}

• there exist projections π0,π1 such that for (e0,e1) ∈ E, πi((e0,e1)) = ei

• X ∈ Con if π0(X) ∈ Con0, π1(X) ∈ Con1, and for all e,e′ ∈ X, if π0(e) = π0(e′) or π1(e) = π1(e′)
then e = e′

• X ; Y ` e∗ if

– if π0(e) 6= ∗ then π0(X) ; π0(Y ) ` π0(e)∗

– if π1(e) 6= ∗ then π1(X) ; π1(Y ) ` π1(e)∗

– if e∗ = e then e ∈ X

Example 4.5 (RES product). Given RESs E0 = (E0,Con0,`0) and E1 = (E1,Con1,`1), where E0 =
{a,b}, Con0 = 2E0 , /0 ; /0 `0 a, {a}; /0 `0 b, {a,b}; /0 `0 b, and {a}; /0 `0 a and E1 = {c}, Con1 =
{ /0,{c}}, /0 ; /0 `1 c, and {c};`1 c, the product E0×E1 is (E,Con,`) where E = {(a,∗),(b,∗),(a,c),
(b,c),(∗,c)}, Con = { /0,{(a,∗)},{(b,∗)},{(a,c)},{(b,c)}, {(∗,c)},{(a,∗),(b,∗)},{(a,∗),(b,c)},
{(a,∗),(∗,c)},{(a,c),(b,∗)},{(b,∗),(∗,c)}, {(a,∗),(b,∗),(∗,c)}}, /0 ; /0 ` (a,∗), {(a,∗) ; /0 ` (b,∗),
{(a,c)} ; /0 ` (b,∗), /0 ; /0 ` (a,c), {(a,∗) ; /0 ` (b,c), {(a,c)} ; /0 ` (b,c), /0 ; /0 ` (∗,c), {(a,∗)} ;
/0 ` (a,∗), {(b,∗),(a,∗)}; /0 ` (b,∗), {(b,∗),(a,c)}; /0 ` (b,∗), {(a,c)}; /0 ` (a,c), {(b,c),(a,∗)};
/0 ` (b,c), and {(∗,c)}; /0 ` (∗,c).

We also create functors from RPES and RAES to RES. While not all AESs have ESs which map
to the same domain, RAESs map into RESs using the preventing set to model asymmetric conflict as
described in Definition 4.6.

Definition 4.6 (From RAES to RES). The mapping Par : RAES→ RES is defined as:

• Par(E ) = (E,Con,`) where
Con= {X ⊆ E |C is well-founded on X}
X ; Y ` e if {e′ | e′ ≺ e} ⊆ X ∈ Con, Y = {e′ | e′B e}, X ∩Y = /0, and e ∈ E
X ; Y ` e if {e′ | e′ ≺ e} ⊆ X ∈ Con, Y = {e′ | e′B e}, X ∩Y = /0, and e ∈ F

• Par( f ) = f
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/0

{a} {b}

{a,b}

(a) CS C

E = (E,Con,`) where
E = {a,b}
Con= { /0,{a},{b},{a,b}}
/0 ; /0 ` a, /0 ; /0 ` b,
{b}; /0 ` b, {a}; {b} ` a

(b) RES E

Figure 4: A CS and the corresponding RES such that R(C ) = E and Cr(E ) = C .

5 Configuration Systems

Configuration systems perform a similar role in the reversible setting to domains in the forward-only
setting, though they have a more operational character. A configuration system [13] (Definition 5.1)
consists of a set of events, E, some of which, F , are reversible, a set C of configurations on these, and an

optionally labelled transition relation→ such that if X
A∪B−−→ Y then the events of A can happen and the

events of B can be undone in any order starting from configuration X , resulting in Y . We also leave out Y
when describing such a transition, since it is implied that Y = (X \B)∪A. A CS is shown in Figure 4a.

Definition 5.1 (Configuration system [13]). A configuration system (CS) is a quadruple C =(E,F,C,→)
where E is a set of events, F ⊆ E is a set of reversible events, C ⊆ 2E is the set of configurations, and

→⊆ C×2E∪F ×C is an optionally labelled transition relation such that if X
A∪B−−→ Y then:

• A∩X = /0, B⊆ X ∩F, and Y = (X \B)∪A

• for all A′ ⊆ A and B′ ⊆ B, we have X
A′∪B′−−−→ Z

(A\A′)∪(B\B′)
−−−−−−−−→ Y , meaning Z = (X \B′)∪A′ ∈ C

We define a notion of morphism (Definition 5.2), creating the category CS.

Definition 5.2 (CS-morphism). Let C0 = (E0,F0,C0,→0) and C1 = (E1,F1,C1,→1) be configuration
systems. A configuration system morphism is a partial function f : E0→ E1 such that

• for any X ,Y ∈ C0, A⊆ E0, and B⊆ F0, if X
A∪B−−→0 Y then f (X)

f (A)∪ f (B)−−−−−−→1 f (Y )

• for any X ∈ C0, f (X) ∈ C1

• for all e0,e′0 ∈ E0, if f (e0) = f (e′0) 6=⊥ and e0 6= e′0 then there exists no X ∈C0 such that e0,e′0 ∈ X

We also define the coproduct of two CSs (Definition 5.3). This is illustrated with CSs modelling the
RPESs and RESs from Examples 3.3 and 4.5 in Example 5.4.

Definition 5.3 (CS coproduct). Given CSs C0 = (E0,F0,C0,→0) and C1 = (E1,F1,C1,→1), their co-
product C0 +C1 = (E,F,C,→) where:

• E = {(0,e) | e ∈ E0}∪{(1,e) | e ∈ E1} and F = {(0,e) | e ∈ F0}∪{(1,e) | e ∈ F1}
• injections i j exist such that for e ∈ E j i j(e) = ( j,e) for j ∈ {0,1}
• X ∈ C iff ∃X0 ∈ C0.i0(X0) = X or ∃X1 ∈ C1.i1(X1) = X

• X
A∪B−−→ Y iff there exists j ∈ {0,1} such that there exist X j,Yj,A j,B j ⊆ E j such that i j(X j) = X,

i j(Yj) = Y , i j(A j) = A, i j(B j) = B, and X j
A j∪B j
−−−→ j Yj.
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Example 5.4 (Coproduct).

/0

{a}{b}

{a,b}

+
/0

{c} {d}

{c,d}

=
/0

{a}{b}

{a,b}

{c} {d}

{c,d}

We also define the product of CSs (Definition 5.5). This is illustrated in Example 5.6, where the CSs
represent the RESs of Example 4.5.

Definition 5.5 (CS product). Given CSs C0 = (E0,F0,C0,→0) and C1 = (E1,F1,C1,→1), their partially
synchronous product C0×C1 = (E,F,C,→) where:

• E = E0×∗ E1 = {(e,∗) | e ∈ E0}∪{(∗,e) | e ∈ E1}∪{(e,e′) | e ∈ E0 and e′ ∈ E1}
• F = F0×∗ F1 = {(e,∗) | e ∈ F0}∪{(∗,e) | e ∈ F1}∪{(e,e′) | e ∈ F0 and e′ ∈ F1}
• there exist projections π0,π1 such that for (e0,e1) ∈ E, πi((e0,e1)) = ei

• X ∈ C if π0(X) ∈ C0, π1(X) ∈ C1, and for all e,e′ ∈ X, if π0(e) = π0(e′) or π1(e) = π1(e′) then
e = e′

• X
A∪B−−→ Y if B⊆ X and

– if π0(A∪B) 6= /0 then π0(X)
π0(A)∪π0(B)
−−−−−−−→0 π0(Y )

– if π1(A∪B) 6= /0 then π1(X)
π1(A)∪π1(B)
−−−−−−−→1 π1(Y )

Example 5.6 (Product).

/0

{a}{b}

{a,b}

×
/0

{c}
=

/0

{(a,∗)}{(b,∗)}{(a,c)} {(b,c)}{(∗,c)}

{(a,∗),(b,∗)} {(a,∗),(b,c)}{(a,∗),(∗,c)}{(a,c),(b,∗)} {(b,∗),(∗,c)}

{(a,∗),(b,∗),(∗,c)}

We define a functor Cr from RES to CS (Definition 5.7).

Definition 5.7 (From RES to CS). The mapping Cr : RES→ CS is defined as

• Cr((E,Con,`)) = (E,F,C,→), where (1) e ∈ F if there exists X ,Y such that X ; Y ` e, (2) C ∈ C

if for all X ⊆fin C, X ∈ Con, and (3) for X ,Y ∈ C, X
A∪B−−→ Y if

– Y = (X \B)∪A, A∩X = /0, B⊆ X, and X ∪A ∈ C

– for all e in A, X ′ ; Z ` e for some X ′,Z such that X ′ ⊆fin X \B and Z∩ (X ∪A) = /0
– for all e ∈ B, X ′ ; Z ` e for some X ′,Z such that X ′ ⊆fin X \ (B\{e}) and Z∩ (X ∪A) = /0

• Cr( f ) = f

Applying this functor to a RES results in a finitely enabled CS (FCS), that is to say a CS such that

there does not exist a transition from an infinite configuration X
A∪B−−→, such that there does not exist

a finite configuration X ′ ⊆fin X such that X ′
A∪B−−→ and whenever X ′ ⊆ X ′′ ⊆ X there exists a transition

X ′′
A∪B−−→. We call the category of these CSs and the CS-morphisms between them FCS, and describe a

functor, R, from this category to RES in Definition 5.8. An example of Cr and R can be seen in Figure 4.

Definition 5.8 (From FCS to RES). The mapping R : FCS→ RES is defined as:

• R((E,F,C,→)) = (E,Con,`) where X ∈ Con if X ⊆fin C ∈ C and:
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– If X
{e∗}−−→ and

∗ X ′ ⊆ X, X ′
{e∗}−−→, and whenever X ′ ⊆ X ′′ ⊆ X there exists a transition X ′′

{e∗}−−→
∗ no X ′′⊂X ′ exists such that X ′′

{e∗}−−→, and whenever X ′′⊆X ′′′⊆X there exists a transition

X ′′′
{e∗}−−→

∗ no X ′′⊃X exists such that X ′′
{e∗}−−→, and whenever X ′⊆X ′′′⊆X ′′ there exists a transition

X ′′′
{e∗}−−→

then
∗ if e∗ = e, then for all X ′′ ∈ Con such that X ′ ⊆ X ′′ ⊆ X ∪{e}, X ′′ ; E \X ∪{e} ` e
∗ if e∗ = e, then for all X ′′ ∈ Con such that X ′ ⊆ X ′′ ⊆ X, X ′′ ; E \ (X \{e} ` e

• R( f ) = f

As Theorem 5.9 states, Cr and R are in many cases inverses of each other. If C = (E,F,C,→) is a
CS, then Cr(R(C )) = C ′ = (E,F ′,C′,→) where C’ is the downwards closure of C and F ′ ⊆ F is the set

of events such that a transition X
{e}−−→ exists.

Theorem 5.9. Given an FCS C = (E,F,C,→), Cr(R(C )) = C if C is downwards closed, and for all
e ∈ F there exists a transition X

e−→. If E = (E,Con,`) is an RES with no “unnecessary” enablings
X ; Y ′ ` e∗ such that X ; Y ` e∗ for Y ⊂ Y ′ then R(Cr(E )) = E .

6 Stable Reversible Event Structures and Configuration Systems

Similarly to the stable event structures, we define the stable reversible event structures (Definition 6.1),
and create the category SRES consisting of SRESs and the RES-morphisms between them. SRESs and
SESs are defined identically, with the exception that in an SRES the preventing sets are included as well,
and treated in much the same way as the enabling sets. Like in a SES, an event in a configuration of a
SRES will have one possible cause as long as the configuration has been reached by only going forwards.

Definition 6.1 (Stable RES). A stable reversible event structure (SRES) is an RES E = (E,Con,`) such
that for all e∗ ∈ E if X ; Y ` e∗, X ′ ; Y ′ ` e∗, and X ∪X ′+ e∗ ∈ Con then X ∩X ′ ; Y ∩Y ′ ` e∗.

Similarly, we can define a stable configuration system (Definition 6.2). This has the property that if
E is a SRES then Cr(E ) is a SCS, and if C is a SCS then R(C ) is a SRES.

Definition 6.2 (Stable CS). A stable CS (SCS) is an FCS C = (E,F,C,→) such that

1. C is downwards closed

2. For all e ∈ F, there exists a transition X
e−→

3. For X1,X2,X3 ∈ C:

(a) if X1 ⊆ X2 ⊆ X3, X1
A∪B−−→, and X3

A∪B−−→, then X2
A∪B−−→

(b) if ((X1∪X2)\B)∪A ∈ C, X1
A∪B−−→, and X2

A∪B−−→, then X1∪X2
A∪B−−→ and X1∩X2

A∪B−−→

(c) if X0,X1,X2,X3 ∈ C, A0,A1,B0,B1 ⊆ E and there exist transitions X0
A0∪B0−−−→ X1, X0

A1∪B1−−−→ X2,

X1
A1∪B1−−−→ X3, and X2

A0∪B0−−−→ X3, then X0
A0∪A1∪B0∪B1−−−−−−−−→ X3

Figure 4a shows a stable CS. One way to make it not stable would be to remove the transition from
/0 to {a,b}, since that would violate Item 3c.
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As [13] did for RPESs and RAESs, we define a subcategory of cause-respecting RESs in Defini-
tion 6.4. This is based on the idea that if e′ enables e, then e′ cannot be reversed from a configuration
which does not have another possible enabling set for e. Unlike causal reversibility [5] however, a con-
figuration fulfilling these conditions does not guarantee that reversing is possible.

Definition 6.3 (Minimal enabling configurations for RES mRES(e)). Given an RES E = (E,Con,`) the
set of minimal enabling configurations of an event e ∈ E is defined as:

mRES(e) = {X ∈ Con | ∃Y.X ; Y ` e and ∀X ′,Y ′.X ′ ; Y ′ ` e⇒ X ′ 6⊂ X}

Definition 6.4 (CRES). A CRES E = (E,Con,`) is an RES such that for all e,e′ ∈ E, e′ ∈ X ∈ mRES(e)
iff whenever X ′ ; Y ′ ` e′, we have e ∈ Y ′ or there exists an X ′′ ⊆ X ′ \{e′} such that X ′′ ∈ mRES(e).

Moreover we define a cause-respecting CS in much that same way as a CRES (Definition 6.6). This
has the property that if E is a CRES then Cr(E ) is a CCS, and if C is a finitely enabled CCS then R(C )
is a CRES. We can then prove Theorem 6.8, which is analogous to a property of cause-respecting RPESs
and RAESs proved in [13]. The CS in Figure 4a is cause-respecting, but removing the transition from /0
to {a} would change that.

Definition 6.5 (Minimal enabling configurations for CS mCS(e)). Given a CS C = (E,F,C,→) the set
of minimal enabling configurations of an event e ∈ E is defined as

mCS(e) = {X ∈ C | X {e}−−→ and ∀X ′.X ′ {e}−−→⇒ X ′ 6⊂ X}

Definition 6.6 (CCS). A cause-respecting CS C = (E,F,C,→) is a CS such that if e′ ∈ X ∈mCS(e), then

whenever X ′
{e′}−−→ Y ′ and e ∈ X ′, there exists an X ′′ ⊆ Y ′ such that X ′′ ∈ mCS(e).

Proposition 6.7. If E is a CSRES then Cr(E ) is a CSCS, and if C is a CSCS then R(C ) is a CSRES.

Theorem 6.8. If C = (E,F,C,→) is a CSCS then every reachable configuration is forwards reachable.

7 Conclusion

We have defined categories for configuration systems (CS), reversible prime event structures (RPES),
reversible asymmetric event structures (RAES), and reversible general event structures (RES), and func-
tors between them, showing all the event structures can be modelled as CSs and finitely enabled CSs can
be modelled as RESs in way that preserves morphisms (Theorem 5.9). We also defined coproducts for
each of these categories, though products only for RESs and CSs.

With a view to the semantics of causal reversible process calculi, we have also defined stable and
cause-respecting subcategories of RESs, in which every reachable configuration is forwards reachable
(Theorem 6.8).

Future Work: Defining a product of RPESs and RAESs will likely be trickier than for RESs, since
definitions of products of prime event structures are far more complex than those of general event struc-
tures [17], and we note that the product of asymmetric event structures is as yet undefined. We plan
to formulate a notion of ‘causal’ RES which strengthens the ‘cause-respecting’ safety condition with a
liveness condition.
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