
Synchronous Multiparty Session Types

Andi Bejleri1 Nobuko Yoshida2

Imperial College London

Abstract

Synchronous communication is useful to model multiparty sessions where control for timing events and
strong sequentially order of messages are essential to the problem specification. This paper continues the
work on multiparty session types initiated by Honda et al. [10] for synchronous communications. It provides
a more relaxed syntax of the calculus, multicasting, higher-order communication via multipolarity labels
and a clear definition of delegation in global types. The linearity property defines when a channel can be
used in two different communications without creating a race condition and the type system checks if all
the processes of a session implement the communication behavior specified in the global type. The type
system of the calculus is proved to be sound with respect to the operational semantics and coherent with
respect to the global types.

Key words: Synchronous Communications, Multipolarity Labels, Multicasting, Delegation, Linearity, Sub-
ject Reduction Theorem

1 Introduction

Multiparty session types for a calculus of asynchronous communication have re-

cently been introduced by Honda et al. [10] and Bonelli-Compagnoni [1]. The idea

of multiparty session types in the first work is based on the choreography metaphor

to describe interactions between processes: interactions are described as a global

scenario. Whilst, the second work is based on the orchestration metaphor: interac-

tions between processes are described as a centralised scenario between one master

process and many slave processes. The system introduced in this paper follows the

metaphor of the first work.

Controlling the timing of events becomes important in multiparty sessions: for

example, in a fire alarm system of a building, we expect that all fire alarms run

before that elevators become blocked. This scenario would be modeled by a control

process that sends in multicast an ON message to fire alarms and after that a

BLOCK message to elevators. The timing of events in the example can be obtained

1 Email: ab406@doc.ic.ac.uk
2 Email: yoshida@doc.ic.ac.uk

Electronic Notes in Theoretical Computer Science 241 (2009) 3–33
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.06.002
1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

mailto: ab406@doc.ic.ac.uk
mailto: yoshida@doc.ic.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

by modeling the session using synchronous communications; the second multicast

send will happen only after the first message is received by the multicast group of

fire alarms.

Binary session types [16,9] on their own are not rich enough to express depen-

dencies between different interactions in a multiparty session. A notion of global

type is therefore introduced in [10] to formalise the global behaviour of a multi-

party session. The example below illustrates the key ideas of multiparty sessions,

dependencies between interactions and global description. In a Client-Addition-

Successor-Predecessor session, the communication protocol (conversation) is de-

fined as: Client sends two natural numbers to Addition and waits to receive

from him the sum of them. If the second operand is equal to 0 then Addition

sends to Client the first operand as result, otherwise it sends the first operand

to Successor and receives from him its successor; after that it sends the second

operand to Predecessor and receives from him its predecessor; this behaviour is

repeated until the second operand is equal to 0. The global description of the

communication protocol in a name-arrow based representation is:

Client → Addition : 〈int〉.

Client → Addition : 〈int〉.

μt.Addition→ {Successor, Predecessor}: {

true : Addition→ Client : 〈int〉.end,

false : Addition→ Successor : 〈int〉.

Successor→ Addition : 〈int〉.

Addition→ Predecessor: 〈int〉.

Predecessor→ Addition : 〈int〉.t}

where A → {B, C} : 〈U〉 means that participant A sends simultaneously a message of

type U to participant B and C, and A → {B, C} : {l1 : · · · , ..., lj : · · · } means that

participant A sends simultaneously a label li where i ∈ {1, ..., j} to participant B

and C. We have omitted channels from the example for simplicity.

In binary sessions, the Client-Addition-Successor-Predecessor conversation

is represented by three sessions: Client-Addition1, Successor-Addition2 and

Predecessor-Addition3. The interactive structure of each participant is:

Client = !〈int〉; !〈int〉; ?〈int〉; end

Addition1 = ?〈int〉; ?〈int〉; !〈int〉; end

Successor = μt.&{true : end, false :?〈int〉; !〈int〉; t}

Addition2 = μt.⊕ {true : end, false :!〈int〉; ?〈int〉; t}

Predecessor = μt.&{true : end, false :?〈int〉; !〈int〉; t}

Addition3 = μt.⊕ {true : end, false :!〈int〉; ?〈int〉; t}

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–334

where !〈U〉 denotes an output of type U , ?〈U〉 denotes an input of type U , ⊕{l1 : · · · ,

..., lj : · · · } denotes a choice of a label and &{l1 : · · · , ..., lj : · · · } denotes branch-

ing on a set of labels. Processes that implement these interaction structures are

well-typed by a binary session type system as the interactive structures between

Client-Addition1, Successor-Addition2 and Predecessor-Addition3 are recip-

rocal to each other. However, the binary session representation of the conversa-

tion breaks the order of messages because in the case when the second operand

is not 0, Addition should add the second operand to the first one before return-

ing it to Client and this dependency between the sessions Client-Addition1 and

Addition2,3-Successor-Predecessor can not be captured by binary session types.

In multiparty sessions types, the conversation is represented by the global de-

scription given above and as a consequence the interactive structure of Addition

is:

?〈int〉; ?〈int〉;μt. ⊕ {true :!〈int〉; end, false :!〈int〉; ?〈int〉; !〈int〉; ?〈int〉; t}.

and of the other participant Client, Successor and Predecessor is the same to

binary session types. Addition is represented now by only one interactive structure.

Hence, the use of global types allows a more complete and intelligible definition of

communication protocols in multiparty sessions.

In the global type definition, a programmer does not specify only the com-

munications of a protocol but also the channels where the communications take

place. This is an important feature in multiparty session types since global types

are not a simple human interpretable descriptive language; global types together

with the projection algorithm and type-system represent a type-checking tool for

communication-based processes.

In synchronous communication calculi, the runtime sequence of interactions fol-

lows more strictly the sequence of global types than in the asynchronous communi-

cation calculus with queue [10], resulting in a simpler typing system of the global

behaviour. Consider a global type:

A → B : m1〈U〉.A → C : m2〈U
′〉.end (1)

where m1 and m2 are abstraction of channels. This ordering means “only after the

first sending and receiving take place, the second sending and receiving take place”

and it is modeled for calculi of synchronous communication but not for asynchronous

ones; e.g. in the asynchronous calculus [10] C may receive its message before B.

A race condition problem is introduced if different interactions use the same

channel. That is, two senders are sending two different messages on the same

channel and two receivers are trying to receive at the same time a message on that

same channel. Even though, there is no communication error, as for each send

corresponds one receive and vice versa, the ambiguity introduced on which of the

two receivers will the message be delivered may break the causalities. Unfortunately,

global types alone do not guarantee from a possible race condition problem.

A linearity property defines when the use of a same channel in two different

communications of a global type does not break the causalities of it. A precise

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 5

analysis of ordering two communications without breaking their causalities is used to

define a partial order between two non consecutive communications. The existence

of this partial order defines if the causalities between the two communications break

or not.

Finally, each process is type-checked with the type obtained by projecting the

global type on each participant. The type system analyses a set of initialization

processes, i.e. processes that are willing/waiting to initiate a session, via a bottom-

up strategy.

Contributions. This paragraph summarizes the main technical contributions

of this paper.

• Synchronous Communications. Synchronous communications are useful to

model multiparty sessions where control for timing events and strong sequentially

order of messages are essential to the problem specification. The runtime sequence

of interactions follows more strictly the one of the global behaviour description

than the asynchronous communication calculus with queue [10], resulting in a

simpler linear property.

• A Simpler Calculus. The syntax of the calculus is more relaxed than the one

introduced by Honda et al. [10]. We do not distinguish syntactically between a

primitive value send and a session channel send following the idea firstly proposed

in [8]. The syntax of the calculus does not introduce queues, neither at the

programmer code level nor at the runtime code level, in contrast to [10].

• Multicasting. The calculus supports the delivery of messages to a group of peers

simultaneously. Multicast increases the expressivity of communication behaviors

in this calculus, mainly due to the restriction introduced by projection on parallel

composition and branching. That is, the global type A → B : m1〈U〉, A → C :

m2〈U〉, where the two interactions can take place in parallel, is not well-formed

due to the definition of projection but we can model this behaviour if the values

sent are the same, using multicast as A → {B, C} : {m1,m2}〈U〉. Also, the global

type A → B : m1{l1 : B → A : m2〈U〉, l2 : C → A : m2〈U
′〉} is not well-formed due

to projection but we can model the branching behaviour by using multicast on

labels as A → {B, C} : {m1,m3}{l1 : B → A : m2〈U〉, l2 : C → A : m2〈U
′〉}.

• Higher Order Communication. High-order communication is defined as k!〈k′〉 |
k?〈k′〉 in the first systems [9,10], where the receiver posseses the transmitted chan-

nel (k′) before the communication takes place. The calculus of this paper models

the transmission of channels with the receiver not possessing the channel until the

communication happens. This feature is modeled safely by adding multipolarity

labels to session channels as in [8,19].

• Delegation. Higher-order communication models the capability of a process to

delegate its session participation to another one. Global types define the inter-

actions only between the participants of a session. In the asynchronous multi-

party calculus, the global types of the Alice-Bob-Carol example (Section 4.4)[10]

Ga = A → B : t1〈s1!〈int〉; end@B〉.end and Gb = B → C : s1!〈int〉.end do not satisfy

the said definition. The session at b is started between A and C, and the global

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–336

type Gb should define the interaction between these two participant, A → C, and

not between the participants that may be involved to send the message due to

delegation at runtime, B → C. This inconsistency of information between Gb and

the implementation of session initiated on b makes process Alice not type-checked

even though it is correct. Following the above definition, the sequent global types

Ga = A → B : t1〈s1!〈int〉; end@A〉 and Gb = A → C : s1!〈int〉.end type-check all

three processes.

Organization. In the remainder of this paper, Section 2 defines the syntax and

operational semantics of the calculus. Section 3 defines the syntax of global types

and introduces the linearity property. Section 4 gives the programming methodol-

ogy, syntax of local types, projection algorithm and type system. Section 5 con-

cludes by comparing the system with related works and gives possible future work.

Appendixes A gives the full proofs of the theorems presented in the paper.

2 A Synchronous Multiparty-Session Calculus

The syntax and the operational semantics of the multiparty-session synchronous

calculus are basically the ones of binary session calculus [9] extended with construct

and operational semantic rule for session initiation and multicasting. Throughout

the paper we will refer to the calculus as the MS-calculus.

2.1 Syntax

The syntax of the MS-calculus is a more relaxed version of the one introduced by

Honda et al. [9]. The calculus does not distinguish between a primitive value send

and a session channel send following the idea firstly proposed in [8]. The syntax

of the calculus does not introduce queues, neither at the programmer code level

nor at the runtime code level. The multiparty-session request is represented in the

same way as in the asynchronous calculus. The MS-calculus supports higher-order

communications by introducing multipolarity labels [19,8] to session channels and

multicasting by sending messages to a group of peers simultaneously.

The next part of this section will introduce some of the definitions and notations

used in the formal definition of the calculus.

Definition 2.1 a, b, c, ... represent shared names; e, e’, ... represent expressions;

l, l1, l2, ... refer to labels; p, q, n, r, ... range over naturals; i, j, ... denote indexes

over a set of naturals; κp, ... refer to session channels; x, y, z, ... refer to variables

of the calculus; X, Y, ... refer to process variables and P,P1, P2, ...Q, ... refer to

processes.

Notation 2.2 The notation k̃ denotes a list of channels k1, ..., kn.

Figure 1 introduces the abstract grammar of the calculus syntax. The terms of

the calculus represent a range of processes from simple inactive one to processes

that implement complex communication behaviours. The paragraphs below will

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 7

P ::= a[2..n] (x̃).P multicast session request

| a[p] (x̃).P session acceptance

| k̃!〈ẽ〉;P value sending

| k?(x̃);P value reception

| k̃ � l;P label selection

| k � {li : Pi}i∈I label branching

| if e then P else Q conditional branch

| P | Q parallel composition

| 0 inaction

| (νn)P hiding

| def D in P recursion

| X〈ẽ〉 process call

e ::= x | v | e and e′ | not e ... expressions

v ::= a | true | false | k values

k ::= x | κp session channels variables and values

p ::= 1 | ... | n channels multipolarity

D ::= X1(ỹ1) = P1 and · · · and Xn(ỹn) = Pn declaration for recursion

Fig. 1. Syntax

give an informal description of the constructs introduced in the figure.

A session is established among peers via shared names, which represent public

points of communication. In the calculus a session initiation would be

a[2, 3](y1, y2, y3).P1 | a[2](y1, y2, y3).P2 | a[3](y1, y2, y3).P3

where a represents the shared name. The process with over-lined a represents the

process willing to initiate a session with participant numbered two and three and the

others represent processes waiting to initiate a session. The set of bound variables

{y1, y2, y3} represent placeholders for session channels which will be generated at

runtime.

Sending of values is defined by the channel (channels in case of multicasting) and

the values to send; receiving of values is defined by the channel and the placeholders

of the values to receive; selecting a label is defined by the channel (channels in case

of multicasting) and the label to send; branching labels is defined by the channel

and the set of labels which contains the label to receive.

The conditional branch and parallel composition have the same definition as in

other process calculi. 0 represents the process that cannot do any action (inaction).

The hiding operation on n has the standard definition of restricting or generating

new session channels (κp) or shared names (a). The recursion and process call

constructs define recursion in the calculus; the recursion construct defines terms

with a recursive behaviour and the process call construct invokes that behaviour.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–338

The values sent among peers can be session channels (κp) and other primitive values

as booleans, strings, natural, etc.

The association of ”|” is the weakest over all operators (ν, def D in P). Below,

we define free names (fn) and free process variables (fpv) on MS-terms:

fn(a[2..n] (x̃).P) � {a}
⋃

fn(P)

fn(a[p] (x̃).P) � {a}
⋃

fn(P)

fn((νn)P) � fn(P) \ {n}

fpv(def D in P) � fpv(P)\dpv(D)

fpv(X〈ẽ〉) � {X}

where dpv(D) represents the set of process variables {Xi}i∈I introduced in X1(ỹ1) =

P1 and · · · and Xn(ỹn) = Pn.

2.2 Operational Semantics

The two communication-based operations on session channels are value sending-

receiving and label selection-branching. Multicast session request-acceptance rep-

resents a communication idiom that is used only at session initiation.

Structural congruence ≡ is the smallest congruence on processes that satisfies

the axioms showed in Figure 2.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νn)P | Q ≡ (νn)(P | Q) if n �∈ fn(Q)

(νnn′)P ≡ (νn′n)P (νn)0 ≡ 0 def D in 0 ≡ 0

def D in (νn)P ≡ (νn)def D in P if n �∈ fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P) ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅

Fig. 2. Structural congruence.

The operational semantics of the calculus is given via the reduction relation →
where the state of the machine is defined by only MS-terms. Figure 3 defines the

rules of a small step operational semantics of the calculus. The paragraphs below

give a description of the rules.

Notation 2.3 κ[m1, ...,mr]p denotes κm1p, ..., κmrp.

[Link] initiates a session between n peers. The result of the reduction is generation

of session channels and substitution of them in processes. Note that session channels

for each process are labeled by a multipolarity index ranging [1, ..., n], where n is

the number of participants involved in a session. The calculus uses multipolarity

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 9

session channels to support higher-order communications safely (see Section 2.4).

An example of session initiation reduction is:

a[2, 3](y1, y2, y3).y1!〈5〉;P1 | a[2](y1, y2, y3).y1?(y4);P2 | a[3](y1, y2, y3).y2!〈”blue”〉;P3

→ (νκ1, κ2, κ3)(κ11!〈5〉;P1[κ11, κ21, κ31/y1, y2, y3] |
κ12?(y4);P2[κ12, κ22, κ32/y1, y2, y3] | κ23!〈”blue”〉;P3[κ13, κ23, κ33/y1, y2, y3]).

[Multicasting] actions the value sending-receiving communication between

two and more peers. The result of the communication is the substitution of the

place holders with the received values by the receivers. Note that the reduction

holds if the channels are the same in both peers despite the polarity is different.

The relation ↓ evaluates the expression e to the value v and the value v to itself.

An example of value communication is:

κ11!〈5〉;P
′
1 | κ12?(y4);P

′
2 → P ′

1 | P2[5/y4].

[MultiLabel] actions the selection-branching communication between two and

more participants. The selection process sends the label l i to the branching pro-

cesses and the result of the communication is the resting part of the label selection

process (P1) in parallel with the process labeled by l i (P [2..k]i).

[If1] and [If2] action the evaluation of e; if e evaluates to true then rule [If1]

is applied otherwise rule [If2].

[Def] invokes the behaviour (P) identified by X with values for arguments ṽ in

the context.

[Scop] actions the reduction of the process inside the scope of the ν operator.

(νκ1, κ2, κ3)(κ11!〈5〉;P
′
1 | κ12?(y4);P

′
2 | κ23!〈”blue”〉;P ′

3)

→ (νκ1, κ2, κ3)(P
′
1 | P ′

2[5/y4] | κ23!〈”blue”〉;P ′
3).

[Par] states that if one process (P) evolves to another process (P ′) then the

parallel composition process (P | Q) can evolve to another parallel composition

process with the evolved component process (P ′ | Q); i.e.

κ11!〈5〉;P
′
1 | κ12?(y4);P

′
2 | P ′

3 → P ′
1 | P ′

2[5/y4] | P ′
3.

[Defin] states that if process P can evolve to a process P ′ then the entire

recursive term can evolve to a new recursive term.

[Str] states that the reduction relation is defined on structural congruent terms.

2.3 Examples

Addition Protocol. The program below implements the session between Client-

Addition-Successor-Predecessor introduced in Section 1. The process addition

implements the communication pattern of adding two natural numbers; successor

and predecessor processes implement the communication pattern of receiving a num-

ber and sending its successor and predecessor, respectively.

• client � a[2, 3, 4] (x1, x2, x3).x1!〈5〉;x1!〈4〉;x1?(y1); 0

• addition � def X1〈y1, y2, x1, x2, x3〉 =

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3310

a[2..n] (ỹ).P1 | a[2] (ỹ).P2 | · · · | a[n] (ỹ).Pn → (νκ̃)(P1[κ̃1/ỹ] | P2[κ̃2/ỹ] | ... | Pn[κ̃n/ỹ])

[Link]

κ[m1, ...,mr]p1 !〈ẽ〉;P1 | κ[m1]p2?(ỹ);P2 | · · · | κ[mr]pr+1
?(ỹ);Pr+1

→ P1 | P2[ṽ/ỹ] | · · · | Pr+1[ṽ/ỹ] (p1 �= p2 �= · · · �= pr+1, ẽ ↓ ṽ)

[Multicasting]

κ[m1, ...,mr]p1 � li;P1 | κ[m1]p2 � {lj : P2j}j∈I | · · · | κ[mr]pr+1
� {lj : Pr+1j}j∈I

→ P1 | P2i | · · · | Pr+1i (p1 �= p2 �= · · · �= pr+1, i ∈ I)

[MultiLabel]

if e then P else Q → P (e ↓ true) [If1]

if e then P else Q → Q (e ↓ false) [If2]

def D in (X〈ẽ〉 | Q) → def D in (P [ṽ/ỹ] | Q) (ẽ ↓ ṽ,X(ỹ) = P ∈ D)

[Def]

P → P ′ ⇒ (νn)P → (νn)P ′ [Scop]

P → P ′ ⇒ P | Q → P ′ | Q [Par]

P → P ′ ⇒ def D in P → def D in P ′ [Defin]

P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q ⇒ P → Q [Str]

Fig. 3. Operational Semantics

if (y2 = 0) then x2, x3 � true;x1!〈y1〉;P
else x2, x3 � false;x2!〈y1〉;x2?(y1);x3!〈y2〉;x3?(y2);

X1〈y1, y2, x1, x2, x3〉
in a[2] (x1, x2, x3).x1?(y1);x1?(y2);X1〈y1, y2, x1, x2, x3〉

• successor � def X2〈x2〉 = x2 � {true : 0, false : x2?(y1);x2!〈y1 + 1〉;X2〈x2〉}
in a[3] (x1, x2, x3).X2〈x2〉

• predecessor � def X3〈x3〉 = x3 � {true : 0, false : x3?(y1);x2!〈y1 − 1〉;X3〈x3〉}
in a[4] (x1, x2, x3).X3〈x3〉

Processes successor and predecessor use two different channels to communicate with

addition. One receive for the first operand (x2?(y1) in successor) and another for

the second operand (x3?(y1) in predecessor) are both from addition. Hence there is

no guarantee that the receptions are in a fixed order, even though the deliveries are

ordered. Thus if we were to use x2 for both actions, the message of first operand

can be received by predecessor. The problem becomes visible after the fifth step of

the below reduction. Later we shall show our type discipline can detect such an

error. Processes Q,R and S are equal by definition to:

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 11

Q � if (y2 = 0) then x2, x3 � true;x1!〈y1〉;P

else x2, x3 � false;x2!〈y1〉;x2?(y1);x3!〈y2〉;x3?(y2);X1〈y1, y2, x1, x2, x3〉

R � x2 � {true : 0, false : x2?(y1);x2!〈y1 + 1〉;X2〈x2〉}

S � x3 � {true : 0, false : x3?(y1);x2!〈y1 − 1〉;X3〈x3〉}

then the first reduction steps of the parallel composition of the above processes are:

client | addition | successor | predecessor → [Str],[Link]

def X1〈y1, y2, x1, x2, x3〉 = Q,X2〈x2〉 = R,X3〈x3〉 = S in

(νκ1, κ2, κ3) (κ11!〈5〉;κ11!〈4〉;κ11?(y1); 0

| κ12?(y1);κ12?(y2);X1〈y1, y2, κ12, κ22, κ32〉

| X2〈κ23〉

| X3〈κ34〉) → [Multicasting],[Multicasting]

def X1〈y1, y2, x1, x2, x3〉 = Q,X2〈x2〉 = R,X3〈x3〉 = S in

(νκ1, κ2, κ3) (κ11?(y1); 0

| X1〈5, 4, κ12, κ22, κ32〉

| X2〈κ23〉

| X3〈κ34〉) → [Def]

def X1〈y1, y2, x1, x2, x3〉 = Q,X2〈x2〉 = R,X3〈x3〉 = S in

(νκ1, κ2, κ3) (κ11?(y1); 0

| if (4 = 0) then κ22, κ32 � true;κ12!〈y1〉;P

else κ22, κ32 � false;κ22!〈5〉;κ22?(y1);κ32!〈4〉;κ32?(y2);

X1〈y1, y2, κ12, κ22, κ32〉

| κ23 � {true : 0, false : κ23?(y1);κ23!〈y1 + 1〉;X2〈κ23〉}

| κ34 � {true : 0,

false : κ34?(y1);κ34!〈y1 − 1〉;X2〈κ34〉}) → [If2],[MultiLabel]

def X1〈y1, y2, x1, x2, x3〉 = Q,X2〈x2〉 = R,X3〈x3〉 = S in

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3312

(νκ1, κ2, κ3) (κ11?(y1); 0

| κ22!〈5〉;κ22?(y1);κ32!〈4〉;κ32?(y2);X1〈y1, y2, κ12, κ22, κ32〉

| κ23?(y1);κ23!〈y1 + 1〉;X2〈κ23〉

| κ34?(y1);κ34!〈y1 − 1〉;X2〈κ34〉) → [Multicasting]...

Fire Alarm Protocol. The fire alarm protocol given in Section 1 is a simple

representation of the communication pattern of a fire alarm system. Only two of

the main components are considered: notification appliances and building safety

interfaces. The implementation of the fire alarm protocol in the MS-calculus is:

controller � a[2, 3, ..., j + k](x1, x2, ..., xj−1, yj, ..., yj+k−1).x1, ..., xj−1!〈“ON”〉;

yj, ..., yj+k−1!〈“BLOCK”〉;P

firealarm1 � a[2](x1, x2, ..., xj−1, yj , ..., yj+k−1).x1?(x);P1

. . .

f irealarmj−1 � a[j](x1, x2, ..., xj−1, yj , ..., yj+k−1).xj−1?(x);Pj−1

elevatorj � a[j + 1](x1, x2, ..., xj−1, yj, ..., yj+k−1).yj?(x);Q1

. . .

elevatorj+k−1 � a[j + k](x1, x2, ..., xj−1, yj , ..., yj+k−1).yj+k−1?(x);Qk−1

First, the controller sends in multicast an ON message to the fire alarms to notify

the persons in the building and then sends a BLOCK message to the elevators

to safely lead the persons towards safety exits. Due to the synchronous nature of

communications in the MS-calculus, the second send will take place only after the

first message has been received by all the fire alarms; the implementation follows

correctly the timing specification of the events in a fire alarm system.

2.4 Higher-order Communications

The system developed by Honda et al. [9,10] does not define the term

throw k[k′];P1 | catch k(k′′) 3 in P2 �

semantically correct. In order to reduce, the receiver should possess the channel

k′ before the communication take place. It would be nice if a system could allow

the transmission of channels with the receiver not possessing the channel before the

communication. Yoshida and Vasconcelos [19] describe different extensions to the

operational semantics and analyze soundness of the type system with respect to the

operational semantics. The first solution is to rename the bound channel k′′ into k′

but that might bind the free occurrences of k′ in P2. Another solution could be to

change the operational semantic rule in

3 The terms throw k[k′] and catch k(k′′) translate k!〈k′〉 and k?(k′) in the syntax of the MS-calculus.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 13

throw k[k′];P1 | catch k(k′′) in P2 → P1 | P2[k
′/k′′].

This rule breaks soundness of the type system. Indeed the process

accept b(k′) accept a(k) in throw k[k′] | request b(k′) request a(k) in catch

k(k′′) in k′′?(y) in k′![1]

is well typed by [9] type system but the derived term

k′?(y) in k′![1]

is not well-typed under the same type system because in the derived term the type of

k′ involves one read and one write rather than only one write as it was in the starting

definition of the second process. Even though, this example might be controversial

if it is useful or not in practice, it is a well formed term of the calculus that breaks

soundness of the type system. The solution proposed by Yoshida and Vasconcelos

defines channels as runtime entities; i.e. they are not part of the syntax used by

programmers and are generated at initiation time, as in the calculus introduced in

this paper. The above example written in their system is

accept b(y1) accept a(y2) in throw y2[y1] | request b(y1) request a(y2) in

catch y2(y3) in y3?(y4) in y1![1].

Session channels are labeled by a polarity sign (+, -) when substituted in each

process at session initiation time. By convention, the polarity label - is assigned to

a channel that is substituted in the process that is requesting to establish a session

and + to the process that is waiting to establish a session. The polarity label is

syntax added to channels in order to extend their definition as a communication

abstraction entity. In other words, a channel is not only an entity that belongs to

a communication but also that belongs to one of the two endpoint processes. The

reduced term of the above process

κ′+?(y) in κ′−![1]

is well-typed as k′ of one endpoint differs by a polarity sign from the other. SJ [12],

an implementation of binary session types in Java, rejects at runtime the above

example. Indeed, this term stucks in a non final value state and fails progress of

the system.

The system given in this paper uses the same logic of [19,8] to represent channels.

The only change is that of having multipolarity. That is, their system used a binary

polarity (+, -) because in binary sessions only two processes are involved, but for

the multiparty calculus the number processes participating in a session is generally

more than two, thus we introduce an index label ranging [1, ..., n], where n is the

number of processes involved in a session. As it can be noticed in the operational

semantics rule, a polarity label is assigned to every channel of the session when

substituted in a process.

Higher-order communication models the capability of a process to delegate its

session participation to another one. The example below gives the implementa-

tion of a session on a where participants 1 and 2 send author and title of a book

to participant 3. Participant 1 delegates its part of the conversation to another

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3314

participant, implemented by process D, by sending all the channels of the session.

Participant 1, 2 and 3 are implemented by processes A, B and C, respectively.

• A � a[2, 3] (x1, x2).b[2] (y1).y1!〈x1, x2〉;

• B � a[2] (x1, x2).x2!〈“The computer and the brain”〉;

• C � a[3] (x1, x2).x1?(y
′);x2?(y

′′);

• D � b[2] (y1).y1?(y2, y3); y2!〈“John von Neumann”〉;

3 Global Session Types and Causality Analysis

Programming multiparty sessions without errors requires a lot of programming effort

to define all the communications dependencies between all the participants and avoid

race conditions on channels. As illustrated by the addition protocol in Section

1, binary session types can not capture all the interaction dependencies, thus a

notion of global type is introduced in [10]. However, global types do not guarantee

programs from having broken causalities introduced by a race condition on channels;

a linearity property checks global types for the presence of this condition. Global

types and causalities will be discussed in this section.

3.1 Syntax

The syntax of global session types or global types as we will refer to them through

the paper, is presented in Figure 4. The constructors to build global session types

for the MS-calculus are those of [10] extended with multicast send of values and

labels. Type p → {p1, ..., pr} : {m1, ...,mr} 〈S̃〉.G′ represents all sessions, where

participant p sends a message of type S̃ to all participants {p1, ..., pr} through

channels indexed m1, ...,mr where ∀i, j ∈ {1, ..., r} s.t. i �= j then mi �= mj ,

and that the rest of session is represented by G′. The calculus does not sup-

port global types that have multicasting delegation (see Section 5). Type p →
{p1,, pr} : {m1, ...,mr} {lh : Gh}h∈J represents all sessions, where participant p

selects and sends to all participants {p1, ..., pr} one of the J labels through channels

indexed m1, ...,mr where ∀i, j ∈ {1, ..., r} s.t. i �= j then mi �= mj and that the rest

of the session is represented by G′. We abbreviate to p → p′ : m when there is a

single receiver.

Type G,G′ represents all sessions where parts of them, in this case represented

by global types G and G′, run in parallel. Type μt.G represents all sessions that

define a recursive behaviour on G. Type end represents the empty session and is

used as a base type to build more complex global session types.

Type U represents the types of values sent among participants, such as booleans,

naturals, strings, channels or names. The type 〈G〉 is a set 〈T@p1, ..., T@pr〉 where

T@p (see Section 4.2) is an end-point type for participant p, and is used to type

shared names.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 15

G ::= p → {p1, ..., pr} : {m1, ...,mr} 〈S̃〉.G
′ values

| p → p′′ : m 〈T@q〉.G′ values

| p → {p1, ..., pr} : {m1, ...,mr} {lh : Gh}h∈J branching

| G,G′ parallel

| μt.G recursion

| t variable

| end end

S ::= bool | nat | ... | 〈G〉 Sort

m ::= 1 | 2 | · · ·

Fig. 4. Syntax of Global Session Types

3.2 Prefix Ordering

The definitions below formally define the ordering of communications on a global

type. The ordering relation will be later used to define the linearity property.

Definition 3.1 (prefix) We say the initials “p → pi : mi” for all i ∈ {1..r} in

p → {p1, ..., pr} : {m1, ...,mr}〈U〉.G′ and p → {p1, ..., pr} : {m1, ...,mr}{lh : Gh}h∈J

are called prefixes from p to pi at mi over G′ and {Gh}h∈J , where in the former

U is called a carried type. If U is a carried type in a prefix in G then U is also a

carried type in G.

Conventions 1 We assume that in each prefix from p to p′ we have p �= p′, i.e. we

prohibit reflexive interaction.

Definition 3.2 (prefix ordering) Write n, n′, .. for prefixes occurring in a global

type, say G (but not in its carried types), seen as nodes of G as a graph. We write

n ∈ G when n occurs in G. Then we write n1 ≺ n2 ∈ G when n1 directly or indirectly

prefixes n2 in G. Formally ≺ is the least partial order generated by:

ni ≺ nr+1 ∈ p → p1, ..., pr : m1, ...,mr 〈U〉.G′ if ni = p → pi : mi, nr+1∈G′

i ∈ {1, ..., r}

ni ≺ nr+1 ∈ p → p1, ..., pr : m1, ...,mr {lh : Gh}h∈J if ni = p → pi : mi,

∃h∈J. nr+1∈Gh, i ∈ {1, ..., r}

Further we set n1 ≺ n2 ∈ G if n1 ≺ n2 ∈ G′ and G′ occurs in G but not in its carried

types.

Consider a global type:

A → B :m1 〈U〉.A → C : m2 〈U
′〉.end (2)

The two prefixes are ordered by ≺, A → B : m1 ≺ A → C : m2. This ordering

means “only after the first sending and receiving take place, the second sending and

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3316

receiving take place”. It is modeled for calculi of synchronous communications but

not for asynchronous ones; e.g. in the asynchronous calculus [10] C may receive its

message before B.

3.3 Causality Analysis

Section 2.3 discussed why the causalities between Successor-Addition and Prede-

cessor-Addition can be broken if it is used the same channel in this two communi-

cations. It would be nice if we could statically check programs from race conditions

on channels. Global types provide a global representation of a session’s causalities

and channels used. The global type of the addition protocol is:

1 Client→ Addition : 1〈int〉.

2 Client→ Addition : 1〈int〉.

3 μt.Addition→ {Successor, Predecessor}: 2, 3{

4 true : Addition→ Client : 1〈int〉.end,

5 false : Addition→ Successor : 2〈int〉.

6 Successor→ Addition : 2〈int〉.

7 Addition→ Predecessor: 3〈int〉.

8 Predecessor→ Addition : 3〈int〉.t}

Even though Addition → Successor ≺ Addition → Predecessor the receip-

tions are not ordered so if a same channel is used in both communications then the

causalities can be broken.

Figure 5 presents all the possible scenarios of ordering two consecutive communi-

cations without breaking the causalities. The letters A and S represent respectively

the asynchronous and synchronous calculus where the cases are considered. All

the six cases are considered for ordering in the synchronous MS-calculus unlike the

asynchronous one [10] where the output-input (OI) and output-output (OO) are not

considered. The output-input case is not consider in [10] because the reception of

the message from P2 can occur before that the message sent is received by P1. The

situation is the same for the output-output case, the second message sent can be

received before the first one. If channels are the same, in the (II) case the order

of messages can break, in the (IO) case the message sent by participant P1 can be

received by participant P2 breaking therefore causalities, in the case (OI) the mes-

sage sent by participant P2 can be received by participant P1 as in (IO) and in the

(OO) case the order of messages can break as in (II). The break of messages order

turns to be as harmful as a broken causality when the values of messages sent are

different.

The above observations lead to causalities order on global types.

Definition 3.3 (dependency relations) Fix G. The relation ≺φ, with φ ∈ {II, IO,

OI, OO}, over its prefixes is generated from:

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 17

(II) A, S (II) A, S (IO) A, S (IO) A, S

(Good) (Bad) (Good) (Bad)

P1 → P : k1

P2 → P : k2

P1 → P : k

P2 → P : k

P1 → P : k1

P → P2 : k2

P1 → P : k

P → P2 : k

(OI) S (OI) S (OO) S (OO) S

(Good) (Bad) (Good) (Bad)

P → P1 : k1

P2 → P : k2

P → P1 : k

P2 → P : k

P → P1 : k1

P → P2 : k2

P → P1 : k

P → P2 : k

(OO, II) A, S (IO,OI) A, S

(Good) (Good)

P → P1 : k

P → P1 : k

P1 → P : k

P → P1 : k

Fig. 5. Causality Analysis

n1 ≺II n2 if n1 ≺ n2 and ni = pi → p : mi (i = 1, 2)

n1 ≺IO n2 if n1 ≺ n2, n1 = p1 → p : m1 and n2 = p → p2 : m2.

n1 ≺OI n2 if n1 ≺ n2, n1 = p → p1 : m1 and n2 = p2 → p : m2.

n1 ≺OO n2 if n1 ≺ n2, ni = p → pi : mi (i = 1, 2)

An input dependency from n1 to n2 is a chain of the form n1 ≺φ1
· · · ≺φn

n2

(n ≥ 0) such that if

φi ∈ {OI, II} then φi+1 ∈ {OO,OI} or

φi ∈ {IO,OO} then φi+1 ∈ {II, IO}

for 1 ≤ i ≤ n − 1 and φn ∈ {II,OI}.

P1 P2 Pn Pn+1

κ11! κ12?

κ22

κ1n!

κ1n+1?

κjn+1

…κi1

An output dependency from n1 to n2 is a chain of the form n1 ≺φ1
· · · ≺φn

n2

(n ≥ 0) such that if

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3318

φi ∈ {OI, II} then φi+1 ∈ {OO,OI} or

φi ∈ {IO,OO} then φi+1 ∈ {II, IO}

for 1 ≤ i ≤ n − 1 and φn ∈ {OO, IO}.

P1 P2 Pn Pn+1

κ11! κ12?

κ22

κjn

κ1n+1?…κi1
κ1n!

Definition 3.4 (linearity) G is linear if, whenever ni = pi → p′i : m (i = 1, 2) are

in G for some m and do not occur in different branches of a branching, then both

input and output dependencies exist from n1 to n2. In case of multicasting (values

or labels), all the chains achieved by distributing each prefix of multicasting on the

rest of G have to be checked if they satisfy the above conditions. If G carries other

global types, we inductively demand the same.

We illustrate the condition on branching by an example:

1. A → B : m{ok : C → D : m1.end

2. quit : C → D : m1.end }

branching

The type represents branching: since only one of two branches is selected, there

is no conflict between the two prefixes C → D : m1 in Lines 1 and 2.

Linearity and its violation can be detected algorithmically, without infinite un-

foldings. First we observe we do need to unfold once.

μX.(A → B : m.end, B → A : m1.X)

This is linear in its 0-th unfolding (i.e. we replace X with end): but when

unfolded once, it becomes non-linear, as witnessed by:

A → B : m.end, B → A : m1.μX.(A → B : m.end, B → A : m1.X)

since the two prefixes A → B : m appear in parallel. But in fact unfolding once

turns out to be enough. Taking G as a syntax, let us call the one-time unfolding of

G the result of unfolding once for each recursion in G (but never in carried types),

and replacing the remaining variable with end.

Proposition 3.5 (1) The one-time unfolding of a global type is linear iff its n-th

unfolding is linear. (2) The linearity of a global type is decidable at worst case in

cubic time-complexity.

Proof. See [13]. �

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 19

4 Typing Discipline

4.1 Programming Methodology

The programming methodology of this calculus follows a top-down approach as in

the asynchronous calculus [10], CDL [18] and End Point Projection [4].

The first step when programming a multiparty session is the definition of the

global type. The global type defines the communication protocol (conversation)

between only the participants of a session.

In the second step, the programmer programs each participant of the session.

Participants can be implemented by different programmers and they may be differ-

ent from the one who has written the global type.

4.2 End-point Session Types

End-point session types (see Figure 6) or end-point types capture the behaviour of

a process; the constructs used to build them are those of binary session types [9]

extended with multicasting send of values and labels.

U ::= S̃ | T@p Value

S ::= bool | ... | 〈G〉 Sort

T ::= m?〈U〉;T receive

| m̃!〈U〉;T send

| m̃ ⊕ {li : Ti}i∈I selection

| m&{li : Ti}i∈I branching

| μt.T | t | end

Fig. 6. Syntax of Local Types

Session type m̃!〈U〉;T represents all processes that send a value of type U on

channels indexed m̃ and that the rest of behaviour is abstracted by T. Session type

m?〈U〉;T represents all processes that receive a value of type U on channel indexed

m and that the rest of behaviour is abstracted by T. Session type m̃ ⊕ {li : Ti}i∈I

represents all processes that send one of the i labels and that the rest of behaviour

is abstracted by Ti. Session type m&{li : Ti}i∈I represents all processes that receive

one of the i labels and that the rest of behaviour is abstracted by Ti. Session type

μt.α represents all processes that have a recursive behaviour captured by T. Type

session end represents the 0 process. The type U represents the same set of values

as in global types. When U defines a session type then the local type represents a

session channel send or receive.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3320

4.3 Projection and Coherence

This section defines formally the projection of a global type over its participants.

The results of the projection are the end-point types that will be used by the type

system to type-check the process that implements the session.

Definition 4.1 (Projection) Let G be linear. The projection of G onto p′, writ-

ten G�p′, is inductively given as:

(p → {p1, ..., pr} : {m1, ...,mr} 〈S̃〉.G
′)�p′

def
=⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m1, ...,mr !〈S̃〉; (G
′ �p′) if p′ = p and p′ /∈ {p1, ..., pr}

mi?〈S̃〉; (G
′ �p′) if p′ ∈ {p1, ..., pr} and i ∈ {1, ..., r}

and p′ �= p

(G′ �p′) if p′ /∈ {p1, ..., pr} and p′ �= p

(p → p′′ : m 〈T@q〉.G′)�p′
def
=

⎧⎪⎨
⎪⎩

m!〈T@q〉; (G′ �p′) if p′ = p and p′ �= p′′

m?〈T@q〉; (G′ �p′) if p′ = p′′ and p′ �= p

(G′ �p′) if p′ �= p′′ and p′ �= p

(p → {p1, ..., pr} : {m1, ...,mr} {lk : Gk}k∈J)�p′
def
=⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1, ...,mr ⊕ {lk : (Gk �p′)}k∈J if p′ = p and p′ /∈ {p1, ..., pr}

mi&{lk : (Gk �p′)}k∈J if p′ ∈ {p1, ..., pr} and i ∈ {1, ..., r}

and p′ �= p

(G1 �p′) if p′ /∈ {p1, ..., pr} and p′ �= p,

∀k, j ∈ J.Gk �p′ = Gj �p′

(G1, G2)�p′
def
=

{
Gi �p′ if p′ ∈ Gi and p′ �∈ Gj , i �= j ∈ {1, 2}

end if p′ �∈ G1 and p′ �∈ G2

(μt.G)�p′
def
=

{
μt.(G�p′) if p′ ∈ G

end if p′ /∈ G

t�p′ = t, and end�p′ = end

When a side condition does not hold the map is undefined.

The mapping is intuitive. In the branching, all projections should generate

an identical end-point type (otherwise undefined). In the parallel composition, p′

should be contained in at most a single type, ensuring each type is single-threaded.

The single-threaded definition of the calculus does not allow programmers to define

global types such as A → B : m1〈U〉, A → C : m2〈U〉. However, by using multicast

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 21

we can model them as A → B, C : {m1,m2}〈U〉, only when the values send are the

same. Also, the global type A → B : m1{l1 : B → A : m2〈U〉, l2 : C → A : m2〈U
′〉}

is not well-formed due to branching condition on projection but we can model the

branching behaviour by using multicast on labels as A → {B, C} : {m1,m3}{l1 :

B → A : m2〈U〉, l2 : C → A : m2〈U
′〉}. Below pid(G) denotes the set of participant

numbers occurring in G (but not in carried types).

Definition 4.2 (Coherence) (1) We say G is coherent if it is linear and G � p is

well-defined for each p ∈ pid(G), similarly for each carried global type inductively.

(2) {Tp@p}p∈I is coherent if for some coherent G s.t. I = pid(G), we have G�p = Tp

for each p ∈ I.

Theorem 4.3 Coherence of G is decidable at the worst case in O(n6) time com-

plexity.

Proof. See [13]. �

4.4 Static Semantics

The static type system rules are basically the ones for binary session calculi [9]

extended with rules that type multicasting session initiation. The typing system

uses a map from shared names to their sorts (S, S′, ..). As given in Figure 6, other

than atomic types, a sort has the shape 〈G〉 assuming G is coherent. Using these

sorts we define the grammar of sortings and typings as follows. Below in “Γ, a : S”,

we assume a does not occur in Γ and in “Δ, k̃ : {T@p}p∈I”, we assume no channel

in k̃ occurs in the domain of Δ.

Γ ::= ∅ | Γ, a : S | Γ,X : S̃T̃

Δ ::= ∅ | Δ, k̃ : {T@p}p∈I

A sorting (Γ,Γ′, ..) is a finite map from names to sorts and from process variables

to sequences of sorts and types. Typing (Δ,Δ′, ..) records linear usage of session

channels. In the binary sessions, it mapped each channel in its domain to a type:

now it maps each vector of session channels in its domain to a family of located

types. We also write sid(G) for the set of session channel numbers in G.

Definition 4.4 A partial operator · is defined as:

{Tp@p}p∈I · {T
′
p′@p′}p′∈J = {Tp@p}p∈I ∪ {T ′

p′@p′}p′∈J

if I ∩ J = ∅. Then we say Δ1 and Δ2 are compatible, written Δ1 � Δ2, if for all

κ̃p ∈ dom(Δ1) and κ̃q ∈ dom(Δ2) such that κ̃ = κ̃p = κ̃q and Δ1(κ̃p) · Δ2(κ̃q) is

defined. When Δ1 � Δ2, the composition of Δ1 and Δ2, written Δ1 ◦ Δ2, is given

as:

Δ1 ◦ Δ2 = {κ̃p, κ̃q : Δ1(κ̃p) · Δ2(κ̃q) |κ̃ ∈ dom(Δ1) ∩ dom(Δ2)}

∪Δ1 \ dom(Δ2) ∪ Δ2 \ dom(Δ1)

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3322

Γ, a : S � a : S Γ � true, false : bool
Γ � ei � bool

Γ � e1or e2 : bool
[NameI], [Bool], [Or]

Γ � a : 〈G〉 Γ � P � Δ, x̃ : (G�1)@1 |x̃| = |sid(G)|

Γ � a[2..n] (x̃).P � Δ
[Mcast]

Γ � a : 〈G〉 Γ � P � Δ, x̃ : (G�p)@p |x̃| = |sid(G)|

Γ � a[p] (x̃).P � Δ
[Macc]

Γ � ẽ : S̃ Γ � P � Δ, k̃ : T@p

Γ � k[m1, ...,mn]!〈ẽ〉; P � Δ, k̃ : m1, ...,mn!〈S̃〉; T@p
[Send]

Γ, ỹ : S̃ � P � Δ, k̃ : T@p

Γ � k[m]?(ỹ); P � Δ, k̃ : m?〈S̃〉; T@p
[Rcv]

Γ � P � Δ, k̃ : T@p

Γ � k[m]!〈t̃〉; P � Δ, k̃ : m!〈T ′@p′〉; T@p, t̃ : T ′@p′
[Thr]

Γ � P � Δ, k̃ : T@p, ỹ : T ′@p′

Γ � k[m]?(ỹ); P � Δ, k̃ : m?〈T ′@p′〉; T@p
[Cat]

Γ � P � Δ, k̃ : Tj@p j ∈ I

Γ � k[m1, ...,mn] � lj ; P � Δ, k̃ : m1, ...,mn ⊕ {li : Ti}i∈I@p
[Sel]

Γ � Pi � Δ, k̃ : Ti@p ∀i ∈ I

Γ � k[m] � {li : Pi}i∈I � Δ, k̃ : m &{li : Ti}i∈I@p
[Br]

Γ � P � Δ Γ � Q � Δ′ Δ 	 Δ′

Γ � P | Q � Δ ◦ Δ′
[Conc]

Γ � e � bool Γ � P � Δ Γ � Q � Δ

Γ � if e then P else Q � Δ
[If]

Γ � P � Δ Δ <: Δ′

Γ � P � Δ′
[<:]

Δ end only

Γ � 0 � Δ

Γ, a : 〈G〉 � P � Δ

Γ � (νa)P � Δ
[Inact],[NRes]

Γ � P � Δ, κ̃p1 : T1@p1 ◦ ... ◦ κ̃pn : Tn@pn

Γ � (νκ̃)P � Δ
[CRes]

Γ � ẽ : S̃ Δ end only

Γ, X : S̃T̃ � X〈ẽ, k̃〉 � Δ, k̃ : T̃@~p
[Var]

Γ, X : S̃T̃ , ỹ : S̃ � P � ỹ′ : T̃@~p

Γ, X : S̃T̃ � Q � Δ

Γ � def X(ỹ, ỹ′) = P in Q � Δ
[Def]

Fig. 7. Typing System for Expressions and Processes

The paragraph gives a description of the static type system rules. A multicast

session initiation (accept or request) process is well-typed if the process under (the

prefix) is well-typed with the end-point type obtained by projection. The end-point

types for each process of a session are stored in the typing of the shared name

where the session has initiated (a : 〈G〉). A value process that sends or receive a

value is well-typed if the process under (the prefix) is well-typed. The notation of

channels in rules [Send] and [Sel] is defined in Notation 2.2 and Notation 2.3. A

process that selects a label is well-typed if the continuation process is well-typed. A

process that branches over a set of labels is well-typed if the continuation processes

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 23

over that set are well-typed. A parallel composition process is well-typed if each

component process is well-typed and the two components belong to two different

process entities. The system considers as a structural congruence rule the following

one on restriction of channels: (νk)(νk′)P ≡ (νk, k′)P .

4.5 Type-checking Examples

This section gives the type-checking of the processes under the prefixes of multicas-

ting session request or session accept introduced in Section 2.3 with the end-point

types obtained by the projection algorithm.

Addition Protocol. Type-checking is defined for the process under the prefix

of the multicasting session request or session accept with the sorting list Γ = {a :

〈G〉}, letting Client = 1, Addition = 2, Successor = 3, Predecessor = 4:

Γ � client � x1, x2, x3 : 1!〈int〉; 1!〈int〉; 1?〈int〉; end@Client

Γ � addition � x1, x2, x3 : 1?〈int〉; 1?〈int〉;μt.2, 3⊕

{true : 1!〈int〉; end,

false : 2!〈int〉; 2?〈int〉; 3!〈int〉; 3?〈int〉; t}@Addition

Γ � successor � x1, x2, x3 : μt.2&{true : end, false : 2?〈int〉; 2!〈int〉; t}@Successor

Γ � predecessor � x1, x2, x3 : μt.3&{true : end, false : 3?〈int〉; 3!〈int〉; t}@Predecessor

Fire Alarm Protocol. With the sorting list Γ = {a : 〈G′〉} where G′ is:

Controller→ FireAlarm1, ..., FireAlarmj−1 : 1, ..., j − 1〈string〉

Controller→ Elevatorj, ..., Elevatorj+k−1 : j, ..., j + k − 1〈string〉

letting Controller = 1, FireAlarm1 = 2, ..., FireAlarmj−1 = j, Elevatorj = j+1,

..., Elevatorj+k−1 = j+k, the processes under the prefix of the multicasting session

request or session accept are type-checked:

Γ � controller � x1, ..., xj+k−1 : 1, ..., j − 1!〈string〉; j, ..., j + k − 1!〈string〉; end@Controller

Γ � fire alarm1 � x1, ..., xj+k−1 : 1?〈string〉; end@FireAlarm1

· · ·

Γ � fire alarmj−1 � x1, ..., xj+k−1 : j − 1?〈string〉; end@FireAlarmj−1

Γ � elevatorj � x1, ..., xj+k−1 : j?〈string〉; end@Elevatorj

· · ·

Γ � elevatorj+k−1 � x1, ..., xj+k−1 : j + k − 1?〈string〉; end@Elevatorj+k−1

Delegation. With the assumption list Γ = {a : 〈Ga〉, b : 〈Gb〉} where Ga and

Gb are:

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3324

Gb = A → D : 1 〈1!〈string〉; end@A〉.end

Ga = A → C : 1 〈string〉.B → C : 2 〈string〉.end.

letting A = 1, B = 2, C = 3, D = 4, the typechecking of the processes is defined as

follows:

Γ � A � y1 : 1!〈1!〈string〉; end@A〉@A, x1, x2 : 1!〈string〉@A

Γ � B � x1, x2 : 2!〈string〉@B

Γ � C � x1, x2 : 1?〈string〉; 2?〈string〉@C

Γ � D � y1 : 1?〈1!〈string〉; end@A〉@D

4.6 Soundness

We now prove that the type system we have introduced is sound: its type-checking

rules prove only terms that are valid with respect to the operational semantics.

We need subject congruence when proving subject reduction for [Str].

Theorem 4.5 (subject congruence) Γ � P � Δ and P ≡ P ′ imply Γ � P ′ � Δ.

Proof. See Appendix A. �

Theorem 4.6 (subject reduction) Γ � P �Δ with Δ coherent and P → P ′ imply

Γ � P ′ � Δ′ where Δ = Δ′ or Δ → Δ′ with Δ′ coherent.

Note the definition of coherence for Δ is given in Definition 4.2(2).

Proof. See Appendix A. �

5 Related and Future Work

Synchronous Session Types

Multiparty session types have been firstly studied for asynchronous communi-

cation calculi [10,1]. In these calculi, for problems that specify a strict order of

communications, programmers have to specify the order by adding extra communi-

cations, that send an empty message, and channels to preserve linearity of the late

ones. Considering the fire alarm system introduced in Section 1 for a calculus of

asynchronous communications e.g. [10], the global type is now defined:

Controller→ FireAlarm1, ..., FireAlarmj−1 : 1, ..., j − 1〈string〉.

FireAlarm1 → Controller : j〈〉.

· · ·

FireAlarmj−1 → Controller : 2 ∗ j − 1〈〉.

Controller→ Elevatorj, ..., Elevatorj+k−1 : 2 ∗ j, ..., 2 ∗ j + k − 1〈string〉

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 25

where the additional communications between the fire alarms and the controller,

and the new channels are introduced to preserve the order of communications be-

tween Controller-FireAlarm1, ..., FireAlarmj−1 and Controller-Elevatorj, ...,

Elevatorj+k−1 and linearity.

Recently, contracts for web-services [5] have been studied for a calculus of syn-

chronous communications. A contract is a binary session type between a client

and a service, that can capture a combination of an internal and external choice at

participants. The work on contracts does not address ordering and causalities of

communications in a multiparty session. Merging of sessions is modeled via inter-

actions inside a session and locations in [3]; the result of the type safety property

is left as future work.

A calculus of service-oriented computing is introduced in [17], where a conversa-

tion models the interactions between a client and various services. New primitives

of communication are introduced such as conversation context (shared interaction

point) communication and communication inside an end-point. An exception han-

dling mechanism similar to those proposed for functional languages is introduced

for the calculus. The calculus in essence is similar to the ones presented for session

types [9,16] but does not address resolution of safe communications at static time.

Choreography and Orchestration

WS-CDL [18] is the first language that uses the metaphor of choreography to de-

scribe interactions between participants of a session. A distilled version of WS-CDL

[4] is used to study a theory of end-point projection (EPP). The global calculus syn-

tax given in EPP offers syntactic sugar useful to write invocation-based protocols

such as assignment of processes to local variables and independent choice over global

behaviors. In contrast to the global calculus, global types support high-order com-

munication and multicasting. “Choreography” is used to describe cryptographic

protocols [7], which protect session execution from both external attackers and ma-

licious participants. The work in [7] defines a model to program cryptographic

systems rather than a typing discipline for programming languages.

WS-BPEL [2] is the first language that uses the metaphor of orchestration to

describe interactions between participants of a session.

Implementation of Session Types

Several academic projects address the implementation of binary session types in

Java [11], Haskell [14] and C++ [6]. Scribble [15] is an implementation for Java of

multiparty session types as an industry project.

Future work:
• Inner Delegation. A scenario of inner delegation is defined when a participant

delegates its part of session to a participant that is already part of that session.

Such scenario can reduce to a process that can stuck at runtime; e.g.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3326

Ga = A → C : 1〈string〉.B → C : 2〈string〉.end

Gb = A → B : 1〈1!〈string〉.end〉.end

where the session at a is defined between participants A, B and C, and A delegates

the ability of sending a-string-to-C to B. The implementation of the global type:

· A � a[2, 3] (x1, x2).b[2] (y1).y1!〈x1, x2〉;
· B � a[2] (x1, x2).b[2] (y1).y1?(y2, y3);x2!〈“The computer and the brain”〉;

y2!〈“John von Neumann”〉;
· C � a[3] (x1, x2).x1?(y

′);x2?(y
′′);

stucks on the first interaction of process B with process C as the late one is

waiting to receive on channel place hold by x1 whilst, the former is sending on

channel place hold by x2.

• Delegation in Multicast. The actual syntax of global types does not allow

programmers to write global types that contain delegation in multicast. It is

intuitive that delegating to more than one participant the same behaviour breaks

progress.

Multicast in delegation as an operation where a behaviour is split and delegated

to several participants, can be an interesting construct; e.g.

Ga = A → C : 1 〈string〉.A → C : 1 〈string〉.B → C : 2 〈int〉.end.

Gb = A → D, E : 1, 2 〈1!〈string〉@A, 1!〈string〉@A〉.end.

where participant A splits the behaviour of sending the title and the author of

a book into two independent behaviors and delegates each of them to D and E

respectively. However, the splitting operation should be defined only when there

is no order between the two behaviors. The implementation below illustrates the

problem introduced by the new construct:

· A � a[2, 3] (x1, x2).b[2, 3] (y1, y2).y1, y2!〈x1, x2〉;
· B � a[2] (x1, x2).x2!〈11〉;
· C � a[3] (x1, x2).x1?(y

′);x1?(y
′);x2?(y

′′);

· D � b[2] (y1, y2).y1?(y3, y4); y3!〈“The computer and the brain”〉;
· E � b[3] (y1, y2).y2?(y3, y4); y3!〈“John von Neumann”〉;

where processes D and E are both able to send their messages at the same time,

breaking therefore their order.

As future work, we plan to develop a typing theory that checks global types from

inner-delegation scenarios and rejects implementation of such scenarios. We plan to

extend delegation with multicasting; i.e. allowing delegation of different behaviors

that do not have dependencies between them to a group of participants simultane-

ously.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 27

Acknowledgement

We thank the reviewers for their comments. The work is partially supported by

EPSRC GR/T03208, EPSRC GR/T03215, and IST2005–015905 MOBIUS.

References

[1] Bonelli, E. and A. B. Compagnoni, Multipoint session types for a distributed calculus, in: TGC, Lecture
Notes in Computer Science 4912 (2008), pp. 240–256.

[2] Web services business process execution language version 2.0, Available at
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html .

[3] Bruni, R., I. Lanese, H. C. Melgratti and E. Tuosto, Multiparty sessions in SOC, in: D. Lea and
G. Zavattaro, editors, COORDINATION, Lecture Notes in Computer Science 5052 (2008), pp. 67–82.

[4] Carbone, M., K. Honda and N. Yoshida, Structured communication-centred programming for web
services, in: ESOP, Lecture Notes in Computer Science 4421 (2007), pp. 2–17.

[5] Castagna, G., N. Gesbert and L. Padovani, A theory of contracts for web services, in: G. C. Necula
and P. Wadler, editors, POPL (2008), pp. 261–272.

[6] Collingbourne, P. and P. Kelly, Inference of session types from control flow, FESCA, ENTCS (2008).

[7] Corin, R., P.-M. Deniélou, C. Fournet, K. Bhargavan and J. J. Leifer, Secure implementations for typed
session abstractions, in: CSF (2007), pp. 170–186.

[8] Gay, S. J. and M. Hole, Subtyping for session types in the pi calculus, Acta Inf. 42 (2005), pp. 191–225.

[9] Honda, K., V. T. Vasconcelos and M. Kubo, Language primitives and type discipline for structured
communication-based programming, in: C. Hankin, editor, ESOP, Lecture Notes in Computer Science
1381 (1998), pp. 122–138.

[10] Honda, K., N. Yoshida and M. Carbone, Multiparty asynchronous session types, in: G. C. Necula and
P. Wadler, editors, POPL (2008), pp. 273–284.

[11] Hu, R., Session-based Distributed Programming in JAVA, Available at
http://www.doc.ic.ac.uk/~rh105/sessiondj.html .

[12] Hu, R., N. Yoshida and K. Honda, Session-based distributed programming in JAVA, in: J. Vitek, editor,
ECOOP, Lecture Notes in Computer Science 5142 (2008), pp. 516–541.

[13] Multiparty asynchronous session types, Available at http://www.doc.ic.ac.uk/~ab406/journal.pdf.

[14] Sackman, M., Session Types in Haskell, Available at
http://www.wellquite.org/sessions/tutorial_1.html .

[15] Scribble, Available at http://pi4scribble.wiki.sourceforge.net/ .

[16] Takeuchi, K., K. Honda and M. Kubo, An interaction-based language and its typing system, in:
C. Halatsis, D. G. Maritsas, G. Philokyprou and S. Theodoridis, editors, PARLE, Lecture Notes in
Computer Science 817 (1994), pp. 398–413.

[17] Vieira, H. T., L. Caires and J. C. Seco, The conversation calculus: A model of service-oriented
computation, in: S. Drossopoulou, editor, ESOP, Lecture Notes in Computer Science 4960 (2008),
pp. 269–283.

[18] Web services choreography description language version 1.0, Available at
http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html .

[19] Yoshida, N. and V. T. Vasconcelos, Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session communication,
Electr. Notes Theor. Comput. Sci. 171 (2007), pp. 73–93.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3328

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://www.doc.ic.ac.uk/~rh105/sessiondj.html
http://www.doc.ic.ac.uk/~ab406/journal.pdf
http://www.wellquite.org/sessions/tutorial_1.html
http://pi4scribble.wiki.sourceforge.net/
http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html

A Soundness
Notation A.1 “By inversion” denotes inversion on a rule. That is, a conclusion judgment that is
achieved by applying a certain rule is true if the premises on that rule are true.

Notation A.2 “By rule” denotes applying a rule. That is, given the premises and side conditions of a
rule then we can conclude the judgment by applying that rule.

A.1 Subject Reduction

Subject reduction ensures that the type of an expression is preserved during its evaluation. For the proof
of subject reduction, we need three standard properties: channel replacement, weakening and substitution
lemma. We need the channel replacement lemma for rules [Link], [Multicasting] and [Def], weakening
for rule [Def] and subject congruence, and substitution for rule [Multicasting] and [Def].

Lemma A.3 (substitution and weakening) (1) Γ, x̃ : S̃ � P � Δ and Γ � ṽ : S̃ imply Γ � P [ṽ/x̃] � Δ.
(2) Whenever Γ � P � Δ is derivable then its weakening, Γ � P � Δ, Δ′ for disjoint Δ′ where Δ′ contains
only empty type contexts and for types end, is also derivable.

Proof. Standard, see [19]. �

Lemma A.4 (Channel Replacement) If Γ � P � Δ, x̃ : T@p and κ̃p /∈ dom (Δ), then Γ � P [κ̃p/x̃] �
Δ, κ̃p : T@p.

Proof. A straightforward induction on the derivation tree for P . We give the proof of the most interesting
cases.
Case: [Conc]

Γ � P � Δ1 Γ � Q � Δ2 Δ1 	 Δ2

Γ � P | Q � Δ, x̃ : T@p

Γ � P | Q � Δ, x̃ : T@p and κ̃p /∈ dom (Δ) By assumption
Γ � P � Δ1 Γ � Q � Δ2 Δ1 	 Δ2

where Δ, x̃ : T@p = Δ1 ◦ Δ2 and κ̃p /∈ dom (Δ) By inversion on [Conc]
First Subcase: x̃ : T@p ∈ Δ1 and x̃ : T@p /∈ Δ2 By Δ1 	 Δ2

Δ1 = Δ′

1
, x̃ : T@p Γ � P [κ̃p/x̃] � Δ′

1
, κ̃p : T@p By induction

Γ � P [κ̃p/x̃] | Q � Δ′

1, κ̃p : T@p ◦ Δ2 By rule [Conc]
Δ′

1, κ̃p : T@p ◦ Δ2 = Δ′

1 ◦ Δ2, κ̃p : T@p κ̃p /∈ dom (Δ)
Γ � P [κ̃p/x̃] | Q � Δ, κ̃p : T@p
Second Subcase: x̃ : T@p ∈ Δ2 and x̃ : T@p /∈ Δ1 By Δ1 	 Δ2

Δ2 = Δ′

2
, x̃ : T@p Γ � Q[κ̃p/x̃] � Δ′

2
, κ̃p : T@p By induction

Γ � P | Q[κ̃p/x̃] � Δ1 ◦ (Δ′

2
, κ̃p : T@p) By rule [Conc]

(Δ′

2, κ̃p : T@p) = Δ′

1 ◦ Δ2, κ̃p : T@p κ̃p /∈ dom (Δ)
Γ � P | Q[κ̃p/x̃] � Δ, κ̃p : T@p

Note that (P | Q)[κ̃p/x̃] = P [κ̃p/x̃] | Q or (P | Q)[κ̃p/x̃] = P | Q[κ̃p/x̃].

Case: [If]
Γ � e � bool Γ � P � Δ, x̃ : T@p Γ � Q � Δ, x̃ : T@p

Γ � if e then P else Q � Δ, x̃ : T@p

Γ � if e then P else Q � Δ, x̃ : T@p and κ̃p /∈ dom (Δ) By assumption
Γ � P � Δ, x̃ : T@p and Γ � Q � Δ, x̃ : T@p and κ̃p /∈ dom (Δ) By inversion on [If]
Γ � P [κ̃p/x̃] � Δ, κ̃p : T@p and Γ � Q[κ̃p/x̃] � Δ, κ̃p : T@p By induction
Γ � (if e then P else Q)[κ̃p/x̃] � Δ, κ̃p : T@p By rule [If]

Note that (if e then P else Q)[κ̃p/x̃] = if e then P [κ̃p/x̃] else Q[κ̃p/x̃].
�

Next we introduce reduction over session typings, which abstractly represent interaction (message
delivery) in processes. We also assume well-formedness of types.

m1, ...,mn!〈S̃〉; T@p, m1?〈S̃〉; T1@p1, ...,mn?〈S̃〉; Tn@pn → T@p, T1@p1, ..., Tn@pn [TR-Mult]

m!〈T2@p2〉; T@p, m?〈T2@p2〉; T1@p1 → T@p, T1@p1 [TR-MultD]

m1, ...mn ⊕ {... , l : T, ...}@p, m1&{..., l : T1, ...}@p1, ..., mn&{..., l : Tn, ...}@pn

→ T@p, T1@p1, ..., Tn@pn [TR-MultL]

T1@p1, ..., Tn@pn → T ′

1
@p1, ..., T ′

n@pn

Δ, κ̃p1 , ..., κ̃pn : T1@p1, ..., Tn@pn, → Δ, κ̃p1 , ..., κ̃pn : T ′

1
@p1, ..., T ′

n@pn,
[TR-Context]

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 29

Definition A.5 (1) (coherence of typings) We say Δ is coherent if Δ(k̃) is coherent for each k̃ ∈ dom (Δ).
(2) (full projection) Assume G is coherent and let G�pi = Ti for each pi ∈ pid(G). Then [[G]], called

full projection of P , denotes the family {Ti@pi}.
(3) (causal edges on [[G]]) For [[G]] given above, regarding each type in [[G]] as the corresponding regular

tree, we define the causal edges ≺II, ≺IO, ≺OI and ≺OO among its prefixes precisely we have done in G.

Proposition A.6 Each causal edge in G is preserved and reflected through the projection onto [[G]].

Proof. This is because every causal edges record prefixing on the same participant is preserved by projec-
tion. The statement becomes more clear when considering the four possible cases of edges on prefixes:

Case II. B → A : m1.G.C → A : m2, where B → A : m1 ≺II C → A : m2, is mapped into {(m1!〈〉; G �

B)@B, (m1?〈〉; G�A; m2?〈〉)@A, (G�C; m2!〈〉)@C}

Case IO. B → A : m1.G.A → C : m2, where B → A : m1 ≺IO A → C : m2, is mapped into {(m1!〈〉; G �

B)@B, (m1?〈〉; G�A; m2!〈〉)@A, (G�C; m2?〈〉)@C}

Case OI. A → B : m1.G.C → A : m2, where A → B : m1 ≺OI C → A : m2, is mapped into {(m1?〈〉; G �

B)@B, (m1!〈〉; G�A; m2?〈〉)@A, (G�C; m2!〈〉)@C}

Case OO. A → B : m1.G.A → C : m2, where A → B : m1 ≺OO A → C : m2, is mapped into {(m1?〈〉; G �

B)@B, (m1!〈〉; G�A; m2!〈〉)@A, (G�C; m2?〈〉)@C}
�

Definition A.7 (merge set) Assume G is coherent. Then we say two prefixes in G in different branches
of a branching prefix are mergeable with each other when they are collapsed in its projection. A prefix is
always mergeable with itself. Given a prefix n, its merge set is the set of prefixes mergeable with n.

Proposition A.8 Two prefixes in G are mergeable iff they are related to one common input prefix and
one common output prefix in [[G]] through projection.

Proof. This is because, in the defining clauses of projection, there are no other cases than the one for
branching which collapse two prefixes. �

Proposition A.9 (1) If a pair of prefixes in [[G]] form a redex with respect to → then they are not prefixed
by any pair of prefixes that form a ≺II, ≺IO, ≺OI or ≺OO dependency.

(2) Given coherent G, let G′ be the result of taking off the merge set of a prefix from G which is not
prefixed by any of ≺II, ≺IO, ≺OI or ≺OO. Then G′ is again coherent.

(3) Let G be coherent. Then the causal edges are preserved and reflected between the two merge sets
in G and their images in [[G]]. Further each redex pair in [[G]] is the image of some prefix in G.

Proof. For (1), observe that redexes in the base rules over session typing, [TR-Mult], [TR-MultD] and
[TR-MultL], are in the minimal positions and since there is no permuation of prefixes, as it is for the asyn-
chronoous calculus for OO, we conclude. (Two output-output actions are strictly orderd due to synchrony.)

For (2) , first, for linearity, suppose n1,2 are in G′ sharing a channel. Then they are also in G and
causal edges between them do not differ so they have the same dependencies as in G. Second, the coherence
in projection is immediate since we lose one prefix from the projection of each branch.

For (3), the first part is immediate from the construction. For the second point assume there is a redex
pair in [[G]] whose two parts have different pre-images. Then we have co-occurring prefixes in G which are
not related by the two dependencies, by (1) and the first part of (3), a contradiction. �

Lemma A.10 (1) Δ1 → Δ′

1
for κ̃ and Δ1 	 Δ2 imply Δ′

1
	 Δ2 and Δ1 ◦ Δ2 → Δ′

1
◦ Δ2.

(2) Let Δ be coherent. Then Δ → Δ′ implies Δ′ is coherent.

Proof.
(1) For (1) suppose Δ1 → Δ′

1
and Δ1 	 Δ2. Note Δ1 	 Δ2 means that each pair of vectors of

channels from Δ1,2 either coincide or are disjoint, and that, if they coincide, their image are participant-
wise composable by ◦. Since no typed reduction rule invalidate either condition we conclude Δ′

1 	 Δ2.
Δ1 ◦ Δ2 → Δ′

1
◦ Δ2 follows directly from [TR-Context].

(2)For (2), suppose Δ is coherent and Δ → Δ′. Suppose the associated redex is in Δ(s̃). By coherence
we can write Δ(s̃) as [[G]] for some coherent G. Now consider the preimage of the associated redex in [[G]],
whose existence is guaranteed by Proposition A.9 (3). This preimage is not suppressed (related) by causal
edges by Proposition A.9 (1,3). reducing [[G]] corresponds to eliminating its preimage from G, say G′, whose
projection [[G′]] precisely gives the result of reducing [[G]]. Since G′ is coherent by Proposition A.9 (2) we
are done.

�

We need subject congruence when proving subject reduction for [Str].

Theorem A.11 (subject congruence) Γ � P � Δ and P ≡ P ′ imply Γ � P ′ � Δ.

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3330

Proof. By rule induction on the derivation of Γ � P � Δ when assuming that P ≡ P ′ and Γ � P ′ � Δ when
assuming that P ′ ≡ P . For each structural congruence axiom, we consider each session type system rule
that can generate Γ � P � Δ.

Case: P | 0 ≡ P

Γ � P | 0 � Δ By assumption
Γ � P � Δ1 and Γ � 0 � Δ2 where Δ = Δ1 ◦ Δ2, Δ1 	 Δ2 By inversion
Δ2 is only end and for Δ2 such that dom (Δ1) ∩ dom (Δ2) = ∅ By inversion
then Γ � P � Δ1, Δ2 By weakening
and Δ = Δ1 ◦ Δ2 = Δ1, Δ2

Γ � P � Δ By assumption
Γ � 0 � Δ′ where Δ′ is only end and dom (Δ) ∩ dom (Δ′) = ∅ By rule [Inact]
Γ � P | 0 � Δ, Δ′ By rule [Conc]
for Δ′ = ∅ we have that
Γ � P | 0 � Δ

Case: P | Q ≡ Q | P

Γ � P | Q � Δ By assumption
Γ � P � Δ1 and Γ � Q � Δ2

where Δ = Δ1 ◦ Δ2 and Δ1 	 Δ2 = Δ2 	 Δ1 By inversion
Γ � Q | P � Δ By rule [Conc]

The other case is symmetric to the above one.

Case: (P | Q) | R ≡ P | (Q | R)

Γ � (P | Q) | R � Δ By assumption
Γ � P � Δ1, Γ � Q � Δ2 and Γ � R � Δ3 where Δ = Δ1 ◦ Δ2 ◦ Δ3
and Δ1 	 Δ2 	 Δ3 By inversion
Γ � P | (Q | R) � Δ By rule [Conc]

The other case is symmetric to the above one.

The other axioms are proved in the similar way as in Vasconcelos and Yoshida [19]. �

Theorem A.12 (subject reduction) Γ � P � Δ with Δ coherent and P → P ′ imply Γ � P ′ � Δ′ where
Δ = Δ′ or Δ → Δ′ with Δ′ coherent.

Proof. By rule induction on the derivation of P → P ′. There is a case for each operational semantics rule.
For each operational semantics rule, we consider each type system rule that can generate Γ � P � Δ. By
Lemma A.10(2) we have that Δ′ is coherent as well.

Case: [Link]

a[2..n] (x̃).P1 | a[2] (x̃).P2 | · · · | a[n] (x̃).Pn → (νκ̃)(P1[κ̃1/x̃] | P2[κ̃2/x̃] | ... | Pn[κ̃n/x̃])

Γ � a[2..n] (x̃).P1 | a[2] (x̃).P2 | · · · | a[n] (x̃).Pn � Δ By assumption
Γ � a[2..n] (x̃).P1 � Δ1 ... Γ � a[n] (x̃).Pn � Δn where Δ = Δ1 ◦ ... ◦ Δn

and Δ1 	 ... 	 Δn By inversion on [Conc]

a : 〈G〉, Γ � P1 � Δ1, x̃ : (G�1)@1 |x̃| = max(sid(G)) By inversion on [Mcast]
a : 〈G〉, Γ � P2 � Δ2, x̃ : (G�2)@2, |x̃| = max(sid(G)) By inversion on [Macc]
...
a : 〈G〉, Γ � Pn � Δn, x̃ : (G�n)@n, |x̃| = max(sid(G)) By inversion on [Macc]

κ̃1 /∈ dom (Δ1), ..., κ̃n /∈ dom (Δn) for every i ∈ {1, ..., n}.κ̃i are newly generated

Γ � P1[κ̃1/x̃] � Δ1, κ̃ : (G�1)@1 By Lemma A.4
...
Γ � Pn[κ̃n/x̃] � Δn, κ̃ : (G�n)@n By Lemma A.4

κ̃1 : (G�1)@1 	 ... 	 κ̃n : (G�n)@n By Definition 4.4
Γ � P1[κ̃1/x̃] | P2[κ̃2/x̃] | ... | Pn[κ̃n/x̃]�
Δ1, κ̃1 : (G�1)@1 ◦ ◦ Δn, κ̃n : (G�n)@n By rule [Conc]

Δ1, κ̃1 : (G�1)@1 ◦ ◦ Δn, κ̃n : (G�n)@n =
Δ1 ◦ ... ◦ Δn, κ̃1 : (G�1)@1 ◦ ◦ κ̃n : (G�n)@n
Γ � (νκ̃)(P1[κ̃1/x̃] | P2[κ̃2/x̃] | ... | Pn[κ̃n/x̃]) � Δ By rule [CRes]

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 31

Case: [Multicasting]

κ[m1, ...,mn]p!〈ẽ〉; Pp | κm1p1?(ỹ); Pp1
| · · · | κmnpn?(ỹ); Ppn → P | Pp1

[ṽ/ỹ] | · · · | Ppn [ṽ/ỹ]

(p �= p1 �= · · · �= pn, ẽ ↓ ṽ)

Γ � κ[m1, ...,mn]p!〈ẽ〉; Pp | κm1p1?(ỹ); Pp1
| · · · | κmnpn?(ỹ); Ppn � Δ By assumption

Γ � κ[m1, ...,mn]p!〈ẽ〉; Pp � Δ1

Γ � κm1p1?(ỹ); Pp1
� Δ2

. . .
Γ � κmnpn?(ỹ); Ppn � Δn+1

where Δ = Δ1 ◦ ... ◦ Δn+1 and Δ1 	 ... 	 Δn+1 By inversion on [Conc]

Δ1 = Δ′

1
, κ̃p : m1, ...,mn!〈S̃〉; T@p By rule [Send]

Δ2 = Δ′

2
, κ̃p1 : m1?〈S̃〉; T1@p1 By rule [Rcv]

. . .
Δn+1 = Δ′

n+1
, κ̃pn : mn?〈S̃〉; Tn@pn By rule [Rcv]

Γ � ẽ � S̃ Γ � Pp � Δ′

1
, κ̃p : T@p By inversion on [Send]

Γ, ỹ : S̃ � Pp1
� Δ′

2
, κ̃p1 : T1@p1 By inversion on [Rcv]

. . .
Γ, ỹ : S̃ � Ppn � Δ′

n+1
, κ̃pn : Tn@pn By inversion on [Rcv]

Γ � Pp1
[ṽ/ỹ] � Δ′

2
, κ̃p1 : T1@p1 By Lemma A.3.1

. . .
Γ � Ppn [ṽ/ỹ] � Δ′

n+1, κ̃pn : Tn@pn By Lemma A.3.1

Γ � Pp | Pp1
[ṽ/ỹ] | · · · | Ppn [ṽ/ỹ]

�Δ′

1
, κ̃p : T@p ◦ Δ′

2
, κ̃p1 : T1@p1 ◦ ... ◦ Δ′

n+1
, κ̃pn : Tn@pn By rule [Conc]

Δ′

1
, κ̃p : T@p ◦ Δ′

2
, κ̃p1 : T1@p1 ◦ ... ◦ Δ′

n+1
, κ̃pn : Tn@pn =

Δ′

1 ◦ ... ◦ Δ′

n+1, κ̃p : T@p ◦ ... ◦ κ̃t : Tn@pn

Δ′

1
◦ ... ◦ Δ′

n+1
, κ̃p : m1, ...,mn!〈S̃〉.T@p ◦ κ̃p1 : m1?〈S̃〉.T1@p1 ◦ ... ◦ κ̃t : mn?〈S̃〉.Tn@pn

→ Δ′

1
◦ ... ◦ Δ′

n+1
, κ̃p : T@p ◦ ... ◦ κ̃pn : Tn@pn By [TR-Context, TR-Mult]

Case: [Multicasting]
κmp!〈t̃〉; Pp | κmp′?(ỹ); Pp′ → Pp | Pp′ [t̃/ỹ]

Γ � κmp!〈t̃〉; Pp | κmp′?(ỹ); Pp′ � Δ By assumption
Γ � κmp!〈t̃〉; Pp � Δ1 Γ � κmp′?(ỹ); Pp′ � Δ2

where Δ = Δ1 ◦ Δ2 and Δ1 	 .Δ2 By inversion on [Conc]

Δ1 = Δ′

1
, κ̃p : m!〈T ′′@p′′〉; T@p, t̃ : T ′′@p′′ By rule [Thr]

Δ2 = Δ′

2, κ̃p′ : m?〈T ′′@p′′〉.T ′@p′ By rule [Cat]

Γ � Pp � Δ′

1, κ̃p : T@p By inversion on [Send]
Γ � Pp′ � Δ′

2
, κ̃p′ : T ′@p′, ỹ : T ′′@p′′ By inversion on [Cat]

Γ � Pp′ [t̃/ỹ] � Δ′

2, κ̃p′ : T1@p′, t̃ : T ′′@p′′ By Lemma A.4

Γ � Pp | Pp′ [t̃/ỹ] | � Δ′

1
, κ̃p : T@p ◦ Δ′

2
, κ̃p′ : T

′@p′, t̃ : T ′′@p′′ By rule [Conc]

Δ′

1, κ̃p : T@p ◦ Δ′

2, κ̃ : T ′@p′, t̃ : T ′′@p′′ = Δ′

1 ◦ Δ′

2, t̃ : T ′′@p′′, κ̃p : T@p ◦ κ̃p′ : T
′@p′

Δ′

1 ◦ Δ′

2, t̃ : T̃ ′′@ ~p′′, κ̃p : m!〈T ′′@p′′〉; T@p ◦ κ̃p′ : m?〈T ′′@p′′〉.T ′@p′ →
Δ′

1
◦ Δ′

2
, t̃ : T ′′@p′′, κ̃p : T@p ◦ κ̃p′ : T

′@p′ By [TR-Context, TR-MultD]

Case: [MultiLabel]

κ[m1, ...,mn]p � li; P | κm1p1 � {lj : P1j}j∈I | · · · | κmnpn � {lj : Pnj}j∈I → P | P1i | · · · | Pni

(p �= p1 �= · · · �= pn, i ∈ I)

Γ � κ[m1, ...,mn]p � li; P | κm1p1 � {lj : P1j}j∈I | · · · | κmnpn � {lj : Pnj}j∈I

�Δ By assumption
Γ � κ[m1, ...,mn]p � li; P � Δ1

Γ � κm1p1 � {lj : P1j}j∈I � Δ2

. . .

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–3332

Γ � κmnpn � {lj : Pnj}j∈I � Δn+1 where Δ = Δ1 ◦ ... ◦ Δn+1

and Δ1 	 ... 	 Δn+1 By inversion on [Conc]

Δ1 = Δ′

1
, κ̃p : m1, ...,mn ⊕ {lj : Tj}j∈J@p By rule [Sel]

Δ2 = Δ′

2
, κ̃p1 : m1&{lj : T1j}j∈J@p1 By rule [Br]

. . .
Δn+1 = Δ′

n+1
, κ̃pn : mn&{lj : Tnj}j∈J@pn By rule [Br]

Γ � P � Δ′

1, κ̃p1 : Ti@p and i ∈ J By inversion on [Sel]
∀j ∈ J, Γ � P1j

� Δ′

2, κ̃p : T1j
@p1 By inversion on [Br]

. . .
∀j ∈ J, Γ � Pnj

� Δ′

n+1, κ̃pn : Tnj
@pn By inversion on [Br]

Γ � P | P1i | · · · | Pni � Δ′

1
◦ ... ◦ Δ′

n+1
, κ̃p1 : Ti@p ◦ ... ◦ κ̃pn : Tni

@pn By rule [Conc]

Δ′

1
, κ̃p1 : m1, ...,mn ⊕ {lj : Tj}j∈J@p, Δ′

2
, κ̃p : m1&{lj : T1j}j∈J@p1, ...,

Δ′

n+1
, κ̃pn : mn&{lj : Tnj}j∈J@pn →

Δ′

1 ◦ ... ◦ Δ′

n+1, κ̃p1 : Ti@p ◦ ... ◦ κ̃pn : Tni
@pn By [TR-Context, TR-MultL]

Case: [If1] and [If2] are trivial by induction.

Case: [Def]

def D in (X〈ẽ〉 | Q) → def D in (P [ṽ/ỹ] | Q) (ẽ ↓ ṽ, X(ỹ) = P ∈ D)

Γ � def D in (X〈ẽ〉 | Q) � Δ By assumption
Γ, X : S̃T̃ , ỹ1 : S̃ � P � ỹ2 : T̃@~p, Γ, X : S̃T̃ � X〈ẽ〉 | Q � Δ
where ỹ1 ∈ ỹ and ỹ2 ∈ ỹ By inversion on rule [Def]
Γ, X : S̃T̃ � X〈ẽ〉 � Δ1 and Γ, X : S̃T̃ � Q � Δ2

where Δ = Δ1 ◦ Δ2 and Δ1 	 Δ2 By inversion on rule [Conc]
Γ � ẽ1 � S̃ and Δ1 = Δ′

1
, κ̃ : T̃@~p where κ̃, ẽ1 ∈ ẽ By inversion on rule [Var]

Γ, X : S̃T̃ � P [ṽ/ỹ] � κ̃ : T̃@~p By Lemma A.3.1 and Lemma A.4
Γ, X : S̃T̃ � P [ṽ/ỹ] � Δ′

1
, κ̃ : T̃@~p By Lemma A.3.2

Γ, X : S̃T̃ � P [ṽ/ỹ] | Q � Δ′

1
, κ̃ : T̃@~p ◦ Δ2 = Δ By rule [Conc]

Γ � def D in (P [ṽ/ỹ] | Q) � Δ By rule [Def]

Case: [Par]
P → P ′ ⇒ P | Q → P ′ | Q

Γ � P | Q � Δ By assumption
Γ � P � Δ1 and Γ � Q � Δ2 where Δ = Δ1 ◦ Δ2 and Δ1 	 Δ2 By rule [Conc]
Γ � P ′ � Δ′

1
where Δ1 = Δ′

1
or Δ1 → Δ′

1
By induction

when Δ1 = Δ′

1
then the proof is trivial so we investigate the second case

when Δ1 → Δ′

1

Δ2 	 Δ′

1 and Δ1 ◦ Δ2 → Δ′

1 ◦ Δ2 By Lemma A.10 (1)
Γ � P ′ | Q � Δ′

1
◦ Δ2 By rule [Conc]

Case: [Defin] is trivial by induction.
Case: [Str]

P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q ⇒ P → Q

Γ � P � Δ, P ≡ P ′, P ′ → Q′ and Q′, Q′ ≡ Q By assumption
Γ � P ′ � Δ, P ′ → Q′ and Q′, Q′ ≡ Q By Theorem A.11
Γ � Q′ � Δ, Q′ ≡ Q By induction
Γ � Q � Δ By Theorem A.11

�

A. Bejleri, N. Yoshida / Electronic Notes in Theoretical Computer Science 241 (2009) 3–33 33

	Introduction
	A Synchronous Multiparty-Session Calculus
	Syntax
	Operational Semantics
	Examples
	Higher-order Communications

	Global Session Types and Causality Analysis
	Syntax
	Prefix Ordering
	Causality Analysis

	Typing Discipline
	Programming Methodology
	End-point Session Types
	Projection and Coherence
	Static Semantics
	Type-checking Examples
	Soundness

	Related and Future Work
	Acknowledgement
	References
	Soundness
	Subject Reduction

