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Abstract

This paper proposes a session typing system for the higher-order π-calculus
(the HOπ-calculus) with asynchronous communication subtyping, which al-
lows partial commutativity of actions in higher-order processes. The system
enables two complementary kinds of optimisation of communication code,
mobile code and asynchronous permutation of session actions, within pro-
cesses that utilise structured, typed communications. Our first contribution
is to establish a session typing system for the higher-order π-calculus us-
ing techniques from the linear λ-calculus. Integration of arbitrary higher-
order code mobility and sessions leads to technical difficulties in type sound-
ness, because linear usage of session channels and completion of sessions
are required in executed code. Our second contribution is to introduce the
asynchronous subtyping system which uniformly deals with type-manifested
asynchrony and linear functional types. The most technical challenge for the
asynchronous subtyping is to prove the transitivity of the subtyping relation.
For the runtime system we propose a new compact formulation that takes
into account stored higher-order values with open sessions, as well as asyn-
chronous commutativity. The paper also demonstrates the expressiveness of
our typing system with an e-commerce example, where optimised processes
can interact respecting the expected sessions.
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1. Introduction

The Higher-Order π-Calculus with Session Types. In global computing en-
vironments, applications are executed across multiple distributed sites or
devices. The use of mobile code is prominent in such environments, where
several participants are synthesised by communication of not only passive
values but also of runnable code: for example a service can be delegated to
different participants, by sending either a channel via which it is accessible, or
code that accesses it; and incoming code may transit through several devices
that alter their computational behaviour or their data through interaction
with it. Indeed, mobile code has become really pervasive at many levels.
For example when we speak of “software updates,” we are in fact referring to
mobile code, and we use it in mobile phone applications, operating systems,
and all kinds of networked applications.

The Higher-Order π-calculus (HOπ-calculus) [46] is a general formalism of
interaction in which two kinds of mobility, name passing and process passing,
are integrated in a simple and universal form: in this model, processes can
be instantiated by names and other processes, just like a piece of mobile
code is instantiated with local capability after migration. This additional
expressiveness inherited from the λ-calculus provides a powerful basis for
describing and analysing dynamic behaviour in global computing scenarios.

As a type-theoretic foundation for highly structured communication pro-
tocols often found in distributed applications, this paper focuses on the no-
tion of sessions and their types [48, 54, 24]. A session is a series of com-
munications between two parties which form a meaningful logical unit, just
like a web session between a browser and a server when a human user in-
teracts with an e-commerce site. Session types model such interactions as
an abstract structure of typed choice, inputs and outputs. The study of
session typing systems is now wide-spread due to the need for structured
communications in various scenarios in distributed computing. While many
advanced session types for the π-calculus and programming languages have
been studied, before our work [35] there existed no session typing systems
for the HOπ-calculus. Incorporation of sessions into this language offers a
general theoretical basis for examining the interplay between two non-trivial
features in communication-based programming, higher-order mobility and
session-based structured interaction.

As the first contribution, this article establishes the first session type
theory for the HOπ-calculus which can statically validate the type safety of
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complex distributed scenarios with code mobility. In spite of their simple type
syntax, the previous literature have shown that obtaining type soundness
for session types is an intricate task because of delegation of sessions [54].
Preservation of typability becomes even more non-trivial in the presence of
higher-order process passing, especially when the mobile processes contain
free sessions.

Higher-Order Processes with Asynchronous Sessions. We now outline tech-
nical challenges by examples. Code mobility in HOπ-calculus is facilitated by
sending not just ground values and channels, but also abstracted processes
that can be received and activated locally, reducing the number of transmis-
sions of remote messages. The simplest code mobility operations are sending
a thunked process pPq via channel s (denoted as s!〈pPq〉), and receiving and
running it by applying the unit (denoted as s?(x).x ()). In our calculus, com-
munications are always within a session, established when accept and receive
processes synchronise on a shared channel:

a(x).x!〈5〉.x!〈true〉.x?(y).(y() | R) | a(x).x?(z1).x?(z2).(x!〈pPq〉 | Q)

This results in a fresh session, consisting of two channels s and s, each private
to one of the two processes, and their queues initialised to be empty:

(νs)(s!〈5〉.s!〈true〉.s?(y).(y() | R) | s?(z1).s?(z2).(s!〈pPq〉 | Q) | s :ε | s :ε)

To avoid conflicts, an output on a channel s (resp. s) places the value on the
dual queue s (resp. s), while an input on s reads from s (resp. for s). Thus,
after two steps the outputs of 5 and true are placed on queue s as follows:

(νs)(s?(y).(y() | R) | s?(z1).s?(z2).(s!〈pPq〉 | Q) | s :ε | s :5 · true )

and in two more steps the right process receives the values and becomes
s!〈pPq{5/z1}{true/z2}〉 | Q{5/z1}{true/z2}. Similarly the next step transmits
the thunked process, and R can interact with P locally.

The session types S1 of s and S2 of s:

S1 =![nat].![bool].?[U ].end S2 =?[nat].?[bool].![U ].end

where U is the type of pPq, have the property S1 = S2 derived from a duality
relation on types, and this guarantees that values are communicated in a
complementary order.
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Asynchronous Communication Optimisation with Code Mobility. The main
idea of optimisation by message permutation, in the context of buffered com-
munications, is that outputs can be performed in advance without affecting
correctness with regards to the delayed inputs. This is based on the fact
that there are two buffers per session (as there are two streams per socket
in network programming) which means that we only need to preserve the
relative order of outputs (resp. inputs) to avoid communication mismatches.
In the previous example, suppose the size of P is very large and it does not
contain z1 and z2, for example because they appear in Q and the program
is not optimised. Then, if s does not appear in P , the right process might
wish to start transmission of P to s : ε concurrently without waiting for the
delivery of 5 and true on s : ε. Thus, we can send pPq ahead obtaining
s!〈pPq〉.s?(z1).s?(z2).Q where s now has the type S ′2 =![U ].?[nat].?[bool].end.
The interaction with the left process is still safe since both s and s continue
to receive the expected type of value and in the expected order, specifically
s will receive U and s will receive first nat then bool. However, the opti-
mised code is not composable with the other party by the original session
system [48] since it cannot be assigned S2 for s which is the only type such
that S1 = S2. To make this optimisation valid, we proposed asynchronous
subtyping in [37] by which we can refine a protocol to maximise asynchrony
without violating the session. For example, in the above case, S ′2 is an asyn-
chronous subtype of S2, written S ′2 6c S2, so the optimised process can also
be assigned S2, and can therefore compose with the left process as before.
Unsafe optimisations, such as one where the left process sends values in a
different order, first ![bool] and then ![nat], are filtered out by the typing
system, otherwise z1 of type nat would receive a value of type bool.

The idea of this subtyping is intuitive and the combination of two kinds
of optimisations is vital for typing many practical protocols [50, 23] and
parallel algorithms [38], but it requires subtle formal formulations due to
the presence of higher-order code. The linear functional typing permits to
send a value that contains free session channels: for example, s!〈pPq〉 can be
s!〈ps′?(x).s′!〈x〉q〉 or even s!〈ps?(x).s!〈x〉q〉 which contains its own session (if
R conforms with the dual session, e.g., R = s!〈7〉.s?(z).0). In the first case,
we can permute the output s!〈pPq〉 as explained, but in the second case it
would be unsafe, since the input action s?(x) from the thunk will appear in
parallel with s?(z1).s?(z2).Q, creating a race condition, as seen in:

(νs)(s?(x).s!〈x〉 | R | s?(z1).s?(z2).Q | s :ε | s :5 · true )
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This article shows that the combination of two optimisations is indeed possi-
ble by establishing soundness and communication-safety. The technical chal-
lenge is to prove the transitivity of the asynchronous subtyping integrated
with higher-order (linear) function types and session-delegation, since the
types now appear in arbitrary positions, both covariantly and contravariantly.
Moreover, the definitions are now exposed in detail. Another challenge is to
formulate a runtime typing system which handles both stored higher-order
code with open sessions and asynchronous subtyping. We demonstrate all as-
pects of type-preserving optimisations explained above by using e-commerce
scenarios.

Outline. This article is a full version of the extended abstracts published in
two conference papers [35, 36] and the first author’s PhD thesis [32]. Here it
includes the detailed definitions, expanded explanations, more detailed ex-
amples, and complete proofs. We have also updated the related work with
recent literature. In the rest of the article, Section 2 defines the syntax,
operational semantics, and demonstrates the combined use of sessions, code
mobility and asynchronous optimisation with examples. Section 3 defines
types and Section 4 introduces the asynchronous subtyping. Section 5 il-
lustrates the typing system for programs and Section 6 extends it to the
typing system for runtime processes. Section 7 proves the main theorems,
type soundness and communication safety of the typed processes. Section 8
discusses related work and Section 9 concludes the article. Appendices list
the detailed definitions and proofs which are omitted from the main sections.

2. The Higher-Order π-Calculus with Asynchronous Sessions

The HOπ-calculus with asynchronous sessions, HOSπ, is a variant of the HO
π-calculus [46]. There are two notable differences compared to [46]. First, in
HOSπ communications occur in the context of an initiated session synchro-
nising two processes that perform a prescribed protocol. Second, communi-
cations are buffered in message queues, to realise asynchronous FIFO seman-
tics. HOSπ encompasses two types of mobility: name passing, with which
dynamic communication topologies can be programmed, and code passing,
where by transmitting processes a dynamic behaviour can be achieved. Note
that the calculus is monadic, i.e., only one value is sent/received at each com-
munication step, but this does not affect the results and serves for simplicity.
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(Identifiers) u, v, w ::=
x, y, z variables
| a, b, c shared channels

k ::=
x, y, z variables
| s, s session channels

(Terms)
P,Q,R ::=
V value
| u(x).P server
| u(x).P client
| k?(x).P input
| k!〈V 〉.P output
| k B {l1 :P1, . . . , ln :Pn} branching
| k C l.P selection
| P |Q parallel
| (νa : 〈S〉)P restriction
| (νs)P restriction
| P Q application
| 0 nil process
| k :~h queue

(Values)
V ::=
u, v, w shared
| k linear
| () unit
| λ(x :U).P function
| µ(x :U → T ).λ(y :U).P recursion

(Message Values)
h ::=
l label
| V

(Abbreviations)
pPq

def
= λ(x :unit).P (x 6∈ fv(P )) thunk

run def
= λx.(x ()) run

Figure 1: Syntax

2.1. Syntax
The syntax of HOSπ is given in Figure 1. The calculus extends the HOπ
with a small kernel of session primitives: a way to initiate a session over a
shared channel, a class of session names — which we call endpoints — used
for communications within sessions, and primitives for offering and making
choices indexed by labels.

Identifiers. Variables range over x, y, z, . . .. Shared channel names, which are
used only to initiate sessions (we describe this in detail further below), are
ranged over a, b, c, . . .. We write u, v, w, . . . to represent shared identifiers,
that is, those that are either variables or shared channel names. Session
channels, ranged over s, . . . and s, . . ., are the endpoints through which values
are communicated within an established session (which as we shall see is
always between exactly two processes). The name s denotes the dual of s,
that is, if one process in a session uses s, the other process uses s, and in this
way each of the two processes possess a unique endpoint. This separation of
endpoints is similar to the use of two polarities in [19, 54]. We define duality
to be idempotent, thus, we have that s = s. This property of endpoint names
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is used in the reduction semantics, where a communication is synchronised
over the two endpoints of a session. We write k, k′, k′′, . . . for linear identifiers,
consisting of variables and session channels.

Values. We write V, V ′,W, . . . for those terms that may be used as values,
that is, as the object of a communication or as the argument in function
application. First, we have identifiers, shared and linear (as standard). Ab-
straction, written λ(x : U).P , encapsulates a process P , where x may occur
free, into a function over x (with type annotation U). This is the basic
mechanism for the exchange of processes, and the unit () is useful when we
wish to obtain a value from an arbitrary process P : take a variable x not
free in P , then λ(x : unit).P is a value, usually referred to as a thunk, and
abbreviated to pPq. To reveal and execute a process within a thunk, we use
the run function λ(y : unit→ �).(y ()) which takes a thunk as argument and
applies it to the unit value to obtain the hidden process.

To facilitate terms that exhibit infinitary behaviour, we introduce a re-
cursive function constructor µ(x :U → T ).λ(y :U).P . In this fixpoint repre-
sentation, instances of the variable x within P represent the function itself.

Terms. Terms range over P,Q,R, . . .. The main constructs are:

Session initialisation u(x).P and u(x).Q are prefixed processes that may
synchronise and commence a session. The interactions will adhere to
the session type assigned to the shared identifier u, and since each
session consists of two endpoints used in a complementary way, we
distinguish the two different behaviours with respect to this type using
u and ū. The bound variable x is a placeholder for a fresh session
endpoint, initialised after the prefixes react to establish a session.

Input and Output k?(x).P is the standard input prefixed process, with
linear subject k and using x as a placeholder for the received value.
k!〈V 〉.P is an output prefixed process, sending value V over session k.

Branching and Selection k B {l1 : P1, . . . , ln : Pn} offers a set of label-
indexed choices li : Pi on endpoint k, with a process continuation Pi
corresponding to each label li. It is often written k B {li : Pi}i∈I with
index set I. The dual (or co-action) of a branch is a process ready to
perform a selection kC l.P where the chosen label is within the domain
of the branch set. Essentially a branching is an input expecting a
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label and performing case analysis (which covers all cases) on this label
to choose a continuation. Dually, a selection is an output of a label
designating a choice. Clearly, it is undesirable to allow the empty set in
branching, since no selection can be made (that is, there is no effective
co-action), and henceforth we assume that there is at least one branch
(and the respective indexing sets, when used, are non-empty).

Fresh names We write (νa : 〈S〉)P to denote a process P in which the
shared channel a (typed by 〈S〉) is unique. With (νs)P we denote
that the two endpoints s and s are unique in P , that is, no external
process can perform a session action on either of these endpoints; this
gives non-interference within a session.

Message queues A message queue s :~h provides access, via a session that
uses s, to the ordered messages ~h. It can be thought of as a network
pipe in a TCP-like transport mechanism. The messages can be values,
or labels which are required for selection and branching.

Other constructs are the nil process 0, parallel composition P |Q, and func-
tional application PQ, which are standard from π-calculus and λ-calculus.

We often omit 0 and some type annotations when not relevant.
The bindings are induced by (νa : 〈S〉)P , (νs)P , u(x).P , u(x).P , k?(x).P ,

λ(x : U).P , and µ(x :U → T ).λ(y :U).P . The derived notions of bound and
free identifiers, alpha equivalence and substitution are mostly standard. We
write fv(P )/fn(P ) for the set of free variables/names, respectively, extended
to queue processes (which can contain labels) as follows; the complete defi-
nition is in Figure A.13.

fn((νs)P ) = fn(P ) \ {s, s} fn(l) = ∅ fn(s : h1 . . . hn) = (∪i∈1..nfn(hi))∪{s}

As usual, in all mathematical contexts we assume Barendregt’s variable
convention, that is, free and bound variables are always chosen to be different,
and all bound variables are distinct; the same applies to names.

Note that queues and session restrictions appear only at our formalisation
of runtime systems, since programmers do not normally write protocols with
“open” sessions. Furthermore, we use the terminology program for a process
which does not contain such runtime elements.

2.2. Reduction Semantics
We define the standard structural congruence, denoted ‘≡’, as the smallest
equivalence relation which is congruent with respect to the calculus construc-
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tors (parallel composition, name restriction, prefixes) and respects the axioms
and rules in Figure 2. The only non-standard rule is for garbage collecting
queues from completed sessions: (νs) (s : ε | s : ε) ≡ 0. The single-step

P =αQ ⇒ P ≡ Q P |Q ≡ Q |P (P |Q) |R ≡ P | (Q |R) P |0 ≡ P
(νa : 〈S〉)P |Q ≡ (νa : 〈S〉) (P |Q) a 6∈ fn(Q) (νa : 〈S〉) (νs)P ≡ (νs) (νa : 〈S〉)P
(νs)P |Q ≡ (νs) (P |Q) s, s 6∈ fn(Q) (νa : 〈S〉) (νb : 〈S′〉)P ≡ (νb : 〈S′〉) (νa : 〈S〉)P
(νs) (νs′)P ≡ (νs′) (νs)P (νa : 〈S〉)0 ≡ 0 (νs)0 ≡ 0 (νs) (s :ε | s :ε) ≡ 0

Figure 2: Structural Congruence

(λ(x : U).P )V −→ P{V/x} (beta)

(µy.λx.P )V −→ P{V/x}{µy.λx.P/y} (rec)

k!〈V 〉.P | k :~h −→ P | k :~h · V (send)

k?(x).P | k :V · ~h −→ P{V/x} | k :~h (recv)

k C l.P | k :~h −→ P | k :~h · l (sel)

k B {li : Pi}i∈I | k : lm · ~h −→ Pm | k :~h (m ∈ I) (bra)

a(x).P | a(z).Q −→ (νs) (P{s/x} | Q{s/z} | s :ε | s :ε) (?) (conn)
(?) s 6∈ fn(P,Q)

P −→ P ′

PQ −→ P ′Q
Q −→ Q′

V Q −→ V Q′
(app-l, app-r)

P −→ P ′

(νs)P −→ (νs)P ′
P −→ P ′

(νa :〈S〉)P −→ (νa :〈S〉)P ′ (ress, resc)

P −→ P ′

P |Q −→ P ′ |Q
P ≡ P ′ −→ Q′ ≡ Q

P −→ Q (par, str)

Figure 3: Reduction

call-by-value reduction, denoted −→, is a binary relation from closed terms
to closed terms, defined by the rules in Figure 3. Rule (beta) is standard from
the call-by-value λ-calculus. The case of (rec) is similar, with the added step
of unfolding the recursive function, by substituting it in place of the variable
y within the function body P .
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Rule (conn) establishes a new session between two processes a(x).P and
a(z).Q ready to synchronise on a. The result of this rewriting is a parallel
composition of the session bodies P and Q with a fresh set of endpoints
s and s substituted for the session variables x and z, respectively. The
side condition ensures that the new endpoints do not already appear free
in either P or Q. The result contains empty queues corresponding to the
session channels (ε denotes the empty sequence).

Rules (send) and (sel) respectively enqueue a value or label at the tail of
the queue for the dual endpoint k. When V is a function, we have higher-
order code passing ; when V is a session endpoint, we call it higher-order
session passing. Rules (recv) and (bra) dequeue, from the head of the queue,
a value or label. The rule (recv) substitutes value V for x in P , while (bra)
selects the corresponding branch for index m. The received label lm must be
in the branch set as indicated by the side condition. Due to the self-inverse
duality property of endpoints, if k = s then we have an output from s to s,
and if k = s, the output is from s to s.

Since (conn) provides a queue for each channel, these rules say that a send-
ing action is never blocked (asynchrony) and that two messages from the same
sender to the same channel arrive in the sending order (order preservation).

In the remaining rules: (app-l) and (app-r) implement a left to right reduc-
tion order for functional application; (par) reduces the leftmost parallel pro-
cess; (resc) and (ress) are standard and reduce a process under name hiding.
The last rule, (str), introduces structural congruence [31] into the reduction
relation. This is necessary for re-arranging terms to match reduction rules.

With “�” we denote the multi-step reduction defined as (≡ ∪ →)∗.

Encoding Replication. By using recursion, we can represent infinite behaviours
of processes such as, e.g., the definition agent def, or the replication !u(x).P
of [30, 54, 24, 35]. Replication on a shared name, useful for defining persistent
servers, can be encoded as follows:

!u(x).P
def
= (µy.λz.z(x).(P | y z))u taking y, z 6∈ fv(P )

Hereafter when writing a replicated connection-prefixed process we shall
mean that this encoding is used. Note that we did not (and by typing we
cannot) replicate a session endpoint, since that would violate linearity. To
validate the encoding, we can observe a reduction using a replicated connec-
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tion !a(x).P and a suitable co-action a(z).Q:

!a(x).P | a(z).Q −→ a(x).(P | !a(x).P ) | a(z).Q
−→ (νs) (P{s/x} | !a(x).P | Q{s/z}) ≡ (νs) (P{s/x} | Q{s/z}) | !a(x).P

Note that in the application of rule (conn), since x is bound in !a(x).P ,
the substitution {s/x} has no effect on this subterm. Once a connection is
established via (conn), we can apply structural congruence ≡ to obtain a
term where !a(x).P can react again; for this we used the fact that s and s do
not occur free in !a(x).P , which is ensured by the conditions of the previous
reduction with (conn).

2.3. Example: Business Protocol with Code Mobility
We show a simple protocol which contains essential features by which we
can demonstrate the expressivity of the code mobility and session primitives
for the HOSπ-calculus; it consists of a combination of code mobility, session
delegation and branching. This extends a typical collaboration pattern that
appears in many web service business protocols [23, 8, 47] to code mobility.

Client Agency Hotel

x : london

x : date

x : continue with y

y : roomtype

y : roomrate

y : creditcard

x : commission

Figure 4: Hotel Booking

Client Agency Hotel

x : london

x : date

x : move to y

y : code

Code

y : roomtype

y : roomrate

y : creditcard

x : commission

Figure 5: Hotel Booking with Mobile Code

In Figure 4, we show the sequence diagram for a protocol which models a hotel
booking: first, Booking Agency and Client initiate interaction at session x
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over channel a; then Client starts exchanging a series of information with
Agency; during this initial communication, Agency calculates its Round Trip
Time (RTT) between Client and Agency; Agency selects an appropriate
Hotel and creates a new session y over channel b with that Hotel. If the
RTT is short (Figure 4), then Agency delegates to Client its part of the
remaining activity with Hotel, by sending session channel y to Client; then
Client and Hotel continue negotiations by message passing. If the RTT is
long (Figure 5), since many remote interactions increase the communication
time as well as the danger of communication failures, Agency asks Client
to send mobile code to the Hotel (via y) which contains the communications
pertaining to the Client’s room plan and negotiation behaviour. Client
sends the code to Hotel, then Hotel runs it locally, finishing a series of
interactions in its location. Finally, Agency receives a commission fee (10
percent of the room rate) via session x, concluding the transaction.

The given scenario is straightforwardly encoded in our calculus, where
session primitives make the structure of interactions clearer. Agency first
initiates at a and starts the interactions with Client; then it initiates at b
and establishes session y; next it invokes either label cont or label move in
Client depending on the RTT and sends y (higher-order session passing) to
it, and waits for completion of the transaction between Client and Hotel
at x (“if-then-else” can be encoded using branching, and we use other base
types and their operators).

Agency def
= !a(x).x?(area).x?(date) . . . b(y) .

if rtt < 100

then xC cont . x!〈y〉 . x?(z) . P (1)
else xCmove . x!〈y〉 . x?(z) . P (2)

Client requests a service at a and starts a series of interactions with Agency,
and either continues the remaining activity with Hotel or sends the code (a
thunk in Line 4). Note that Client can safely send the commission fee back
to Agency because the return message x〈z × 0.1〉 which uses session channel
x is embedded in the thunk.

Client def
= a(x).x!〈london〉...

xB { cont : x?(y).y C cont.y!〈roomtype〉.y?(z)...x!〈z × 0.1〉 , (3)
move : x?(y).y Cmove.y!〈py!〈roomtype〉.y?(z)...x!〈z × 0.1〉q〉} (4)
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Hotel performs the interactions with Agency and Client via a single session
at y (by the facility of higher-order sessions). In Line 6, the code sent by
Client is run locally.

Hotel def
=

!b(y).y B { cont : y?(z).y!〈roomrate(z)〉.Q ; (5)
move : y?(code).(run code | y?(z).y!〈roomrate(z)〉.Q)} (6)

This example demonstrates a couple of subtle points whose slight modifica-
tion would violate the expected “complementarity” of session actions, leading
to obvious violations of soundness. First, in Line 4, if we send code which
does not complete the session, e.g. if we have interactions at y (say y!〈w〉)
after sending the thunk in Line 4 of Client, the session at y will eventually
appear in three threads (two in Hotel, one in Client), so values may get
mixed up due to the non-determinism on y-actions. Secondly, in Line 6, if we
have two or more applications (say run code | run code) instead of exactly one
run code, we will end up with duplication of session endpoints (both y and x).
Finally, if the code is not activated in Line 6 (for example if we use (λx.0)code
instead of run code), the other end of the session, y?(z) . y!〈roomrate(z)〉.Q,
will never find a matching output. Hence, the variable code must appear
exactly once and become instantiated into a process exactly once. We type
this example in § 6.2.

2.4. Example: Optimised Business Protocol with Code Mobility
We now show a business protocol which integrates the two kinds of type-
safe optimisation: code mobility, by which a protocol can be executed at
the location of the receiver, which is especially useful when latency is high;
and also message re-ordering, which allows an implementation to perform
outputs in advance, essentially permitting both participants of a session to
send at the same time. We thus extend the previous protocol to highlight
the behaviours that are possible using our methods. Figure 6 draws the
sequencing of actions modeling a hotel booking through a process Agent.
On the left Client behaves dually to Agent; on the right, an optimised
MClient utilises type-safe asynchronous behaviour.
The Agent behaves the same towards both clients: initially it calculates the
round-trip time (RTT) of communication (rtt) and sends it; it then offers to
the other party the option to consider the RTT and either send mobile code to
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Client Agent MClient

Code Code

x : rtt

x : move

x : code

x : hotel

x : roomtype

x : rate

x : creditcard

x : move

x : code

x : hotel

x : roomtype

x : rtt

x : rate x : ccard

Figure 6: Standard (left) and Optimised (right) Interaction for Hotel Booking

interact with the Agent on its location, or to continue the protocol with each
executing remotely their behaviour. When mobile code (after choice move)
is received, it is run by the Agent completing the transaction on behalf of the
client, in a sequence of steps. The behaviour of Client is straightforward and
complementary to Agent, but MClient has special requirements: it represents
a mobile device with limited processing power, and irrespective of the RTT
it always sends mobile code; moreover, it does not care about money, and
provides the credit card number (card) before finding out the rate.

To represent this optimised scenario, we start from the process for Agent
(which is a simplification of Agency):

Agent = a(x).x!〈rtt〉.xB {move : x?(code).(run code | Q), local : Q}
Q = x?(hotel).x?(roomtype).x!〈rate〉.x?(creditcard) . . .

The session is initiated over a, then the rtt is sent, then the choices move
and local are offered. If the first choice is made then the received code is run
in parallel to the process Q which continues the agent’s session, performing
optimisation by code mobility. As expected, Client has dual behaviour:

Client = a(x).x?(rtt).xCmove.x!〈px!〈ritz〉.x!〈suite〉.x?(rate).x!〈card〉. . . .q〉

A more interesting optimisation is given by MClient, one which at first may
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seem to disagree with the intended protocol:

MClient = a(x).xCmove.x!〈px!〈ritz〉.x!〈suite〉.x!〈card〉.x?(rtt).x?(rate) . . .q〉

After the session is established, it eagerly sends its choice move, ignoring rtt,
followed by a thunk that will continue the session; and another important
point is that in the mobile code the output of the card happens before rtt

and rate are received.
As explained in the previous subsection, even without subtyping, the

typing of sessions in the HOπ-calculus poses delicate conditions; in the
present system, we can further verify that the optimisation of MClient does
not violate communications safety: when values are received they are al-
ways of the expected type, conforming to a new subtyping relation given
in § 4. Optimisation by permutation is very delicate, for example as ex-
plained in the introduction we cannot optimise s?(z1).s?(z2).s!〈ps!〈5〉q〉.0 into
s!〈ps!〈5〉q〉.s?(z1).s?(z2).0, because the thunk in the first process contains the
sender’s session (on s) and a permutation to the left (before the inputs) will
cause interference as explained in the previous example. In fact, the second
term is untypable.

3. Higher-Order Linear Types

This short section presents the syntax of the types, which combine linear
functions, unrestricted functions, and session types.

3.1. Types
The syntax of types is given on Figure 7. It is an integration of the types

from the simply typed λ-calculus with unit and the session types from the
π-calculus. Term types range over T , and can be value types, ranging over
U , or the process type �. Value types consist of the unit type unit, the type
U → T of shared functions, the type U ( T of linear functions, the type
S of sessions, and the shared channel type 〈S〉 which enforces that sessions
initiated on the corresponding channel will follow the protocol defined by S.

The session types are defined inductively as follows. The type ![U ].S
represents the sending of a value of type U , followed by the remaining session
S. Dually, with ?[U ].S the action will be to receive a value of expected type
at least U , followed by S as before. The selection type ⊕[l1 : S1, . . . , ln :
Sn] signifies that one of the choices l1, . . . , ln will be made (operationally
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Term
T ::= U value

| � process

Value
U ::= unit unit

| U → T shared function
| U ( T linear function
| 〈S〉 shared channel
| S session

Session
S ::= ![U ].S output

| ?[U ].S input
| ⊕[l1 :S1, . . . , ln :Sn] selection
| &[l1 :S1, . . . , ln :Sn] branching
| t type variable
| µt.S recursion
| end ending

Figure 7: Types

this is an output of a label), and depending on this label the corresponding
session continuation chosen from S1, . . . , Sn will take place. The co-type
of selection is the branch type &[l1 : S1, . . . , ln : Sn] corresponding to the
reception of a label followed by the corresponding continuation type as in
selection. Recursive session types are written µt.S, where the type variable
t is bound and may occur free in S. We only consider contractive recursive
types [18, 54]. Practically, contractiveness of µt.S means that every free
instance of t in S is guarded under at least one input, output, selection or
branching constructor. For example µt.![nat].t is contractive, but µt.µt′.t is
not. Moreover, we only consider tail-recursive session types, therefore types
such as µt.![t].end are not well-formed. To indicate that a session is finished,
we use the terminal end.

We write T for the set of types.

Abbreviated Forms. We often write &[li : Si]i∈I and ⊕[li : Si]i∈I for branching
and selection types, pTq for unit → T and pTq1 for unit ( T . The terminal
end is sometimes omitted.

More general recursive types. Our restriction to tail-recursive types may
cause a slight limitation with regards to expressiveness, and as noted in [3]
there are safe processes that are not tail-recursive. For example, if we were to
encode a data type such as a tree with elements of type T , we would need a
type of the shape µt.⊕ [tree :![t].![t].end, leaf :![T ].end]. The first branch uses
recursion to send the left and right subtrees to the client (which will have a
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dual type). However, we can easily lift the restriction without changing any-
thing substantial with respect to subtyping, and with minor modifications to
some definitions (e.g., Definition 4.1 which defines how recursive types are
unfolded), and so it serves for simplicity.

3.2. Examples of Types
Session types can encode many common interactions. For example the

following type can be used to iterate through a list containing elements of
type U :

µt.⊕ [hasnext : &[next :?[U ].t , finished : end] , finished : end]

The type describes the behaviour of the client process accessing the list:
first a choice is made, either to query the list and discover if it has more
elements, by choosing hasnext; or alternatively the choice finished can be
made in which case the protocol reaches its end. If hasnext is chosen, then
the list can respond by choosing next, after which the client can receive a
value of type U . Moreover the type variable t signifies that at this point
the protocol is repeated from the point of definition, that is, from the µ-
binder at the beginning. If the list replies by choosing finished, the protocol
is complete.

Abstractions that contain running sessions must be used exactly once,
which demonstrates the difference between linear and unrestricted functional
types:

1. ( λ(x : U).x · () ) · ps!〈5〉.0q
This term is safe, since the thunk which contains s is used exactly
once within the function that receives it. To denote linear usage, the
argument has type U = unit( �.

2. ( λ(x : U ′).0 ) · pa(x).x!〈5〉.0q
Although the function disappears after the application, this term is
safe, because even if the thunk will not be used in the function, it does
not contain any linear or session element that needs to be preserved.
Hence, the argument must have type U ′ = unit → �. These examples
are easy to check with the typing rules in § 5.
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![U ].S =?[U ].S ?[U ].S =![U ].S t = t µt.S = µt.S end = end

⊕[l1 :S1, . . . , ln :Sn] = &[l1 : S1, ..., ln : Sn] &[l1 :S1, . . . , ln :Sn] = ⊕[l1 : S1, ..., ln : Sn]

Figure 8: Type Duality

Duality. In the above example (3.2) we show the type of the iterator, but not
of the list. In fact the list’s type can be obtained by duality. Each session type
S has a dual type, denoted by S, which describes complementary behaviour.
This is inductively defined by the rules in Figure 8. Essentially, dualisation
interchanges input (?) with output (!), branching (&) with selection (⊕),
leaving end, type variables and µ binders unchanged. Duality is idempotent.
Note that we do not need to define duality for other types such as function
types, as these are never dualised.

4. Higher-Order Asynchronous Subtyping

This section presents our theory of asynchronous session subtyping: reordered
communications between two processes, in the presence of higher-order values
and session mobility, can preserve the type-safety of the original protocol.

As we have seen in the introduction, asynchronous subtyping allows pro-
cesses to perform output actions (which include selections) in advance within
the same session, taking advantage of the underlying buffered model of com-
munication. Thus, we enable certain permutations of inputs with outputs.
However, a permutation of two inputs or two outputs is not permissible be-
cause it can violate type-safety. Suppose:

P = s!〈2〉.s!〈true〉.s?(x).0 and Q = s?(y).s?(z).s!〈y + 2〉.0.

These processes interact correctly. If we permute the outputs of P to get
P ′ = s!〈true〉.s!〈2〉.s?(x).0, then the parallel composition (P ′ | Q) causes
a type-error. By duality, it is easy to understand why two inputs cannot
be permuted. Moreover, an alteration in the relative order of inputs and
outputs such that an input is done in advance may cause deadlock, losing
progress in session s. For example, consider exchanging s!〈true〉 and s?(z)
in P , obtaining:

P ′′ = s!〈2〉.s?(x).s!〈true〉.0 and Q = s?(y).s?(z).s!〈y + 2〉.0.
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Obviously (P ′′ | Q) ends with deadlock, since the two inputs (the second
action on both P ′′ and Q) are blocked after the initial prefixes interact. The
only way to optimise the communication within a session is to place outputs
before inputs, for example:

P = s!〈2〉.s!〈true〉.s?(x).0 and Q′ = s?(y).s!〈y + 2〉.s?(z).0.

The communication in Q′ is optimised and (P | Q′) is type-safe.

4.1. Asynchronous Subtyping
We begin with some preliminary notions. An occurrence of a type constructor
not under a recursive prefix in a recursive type is called a top-level action.
For example, ![U1] and ?[U2] in ![U1].?[U2].µt.![U3].t are top-level, but ![U3] in
the same type is not.

Consider the following types:

S1 = ![U1].?[U2].µt.![U1].?[U2].t

S2 = µt.?[U2].![U1].t

Intuitively, we want to include S1 in the subtypes of S2, because in the infinite
expansion of the types any action of S1 can be matched to one in S2. The
first output ![U1] of S1 needs to be matched with a copy of the same output
obtained after unrolling the recursion in S2 once, resulting in:

S ′2 =?[U2].![U1].S2

This unrolling is necessary because under the µ binder every action is re-
peated, and by unrolling once we can obtain one of the possibly infinite
instances of the action. For this strategy to succeed, we need to obtain the
output ![U1] in S ′2 which is guarded under the input action ?[U2]. Then, the
input action can be compared, and the remaining types checked, following
the standard coinductive method.

To summarise, in asynchronous coinductive subtyping we need to for-
malise both the unfolding of a type and also the type contexts specifying the
top-level actions that may guard an output (or selection).

We generalise the type unfolding function defined in [19] so that it can
be applied to guarded types, yielding the following definition, based on [37]:
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Definition 4.1 (n-time unfolding).
unfold0(S) = S for all S unfold1+n(S) = unfold1(unfoldn(S))
unfold1(![U ].S) =![U ].unfold1(S) unfold1(⊕[li : Si]i∈I) = ⊕[li : unfold1(Si)]i∈I
unfold1(?[U ].S) =?[U ].unfold1(S) unfold1(&[li : Si]i∈I) = &[li : unfold1(Si)]i∈I
unfold1(t) = t unfold1(µt.S) = S[µt.S/t] unfold1(end) = end

For any recursive type S, unfoldn(S) is the result of inductively unfolding
the top level recursion up to a fixed level of nesting. For example:

unfold1(?[U ].µt.![U ′].t) = ?[U ].![U ′].µt.![U ′].t

unfold2(?[U ].µt.?[U ].µt′.![U ′].t′) =

unfold1(?[U ].?[U ].µt′.![U ′].t′) = ?[U ].?[U ].![U ′].µt′.![U ′].t′

From the definition we have that unfold1(unfoldn(S)) = unfoldn(unfold1(S)),
even though normally we apply from the outside. Also, since recursive types
are not unfolded until they become guarded, but only n-times, unfoldn(S)
terminates. Moreover, because our recursive types are contractive, there is
no need to apply unfolding indefinitely to obtain a guarded type.

Then, we proceed to define the contexts corresponding to a nested struc-
ture of top-level input actions (where branching is treated like input in the
sense that a label is to be received). The rationale is that a supertype is less
asynchronous than a subtype, hence may consist of input actions before any
outputs that need to be checked first, based on the prefix of the subtype.
Thus, the multi-hole asynchronous contexts are defined as follows:

Definition 4.2 (Asynchronous Contexts).

A ::= 〈·〉h∈H | ?[U ].A | &[li : Ai]i∈I

We write A〈Sh〉h∈H for the context A with holes indexed by h ∈ H, where
each hole 〈·〉h∈H is substituted with Sh. For example, taking H = {1, 2} and

A = &[l1 :?[U ].〈·〉1∈H , l2 : 〈·〉2∈H ]

we obtain

A〈![U ′].Sh〉h∈H = &[l1 :?[U ].![U ′].S1 , l2 :![U ′].S2]
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To formalise subtyping in the presence of recursive types a simulation-
based (or coinductive) method is used, in which subtyping is determined
by membership of the goal within a binary relation on types. We adapt
the standard simulation approaches from [19, 44, 11], extending the method
non-trivially to account for asynchrony.

Definition 4.3 (Asynchronous Subtyping). A relation < ∈ T × T is an
asynchronous type simulation if (T1, T2) ∈ < implies the following:

1. If T1 = �, then T2 = �.
2. If T1 = unit, then T2 = unit.
3. If T1 = U → T , then T2 = U → T .
4. If T1 = U ( T , then T2 = U ( T .
5. If T1 = 〈S1〉, then T2 = 〈S2〉 and (S1, S2) ∈ < and (S2, S1) ∈ <.
6. If T1 = end, then for some n, unfoldn(T2) = end.
7. If T1 =![U1].S1, then for some n, unfoldn(T2) = A〈![U2].S2h〉h∈H with

(U2, U1) ∈ < and (S1,A〈S2h〉h∈H) ∈ <.
8. If T1 =?[U1].S1, then for some n, unfoldn(T2) =?[U2].S2, (U1, U2) ∈ <

and (S1, S2) ∈ <.
9. If T1 = ⊕[li : S1i]i∈I , then for some n, unfoldn(T2) = A〈⊕[lj : S2jh]j∈Jh〉h∈H

and ∀h ∈ H . I ⊆ Jh and ∀i ∈ I.(S1i,A〈S2ih〉h∈H) ∈ <.
10. If T1 = &[li : S1i]i∈I , then for some n, unfoldn(T2) = &[lj : S2j]j∈J ,

J ⊆ I and ∀ j ∈ J.(S1j, S2j) ∈ <.
11. If T1 = µt.S, then (unfold1(T1), T2) ∈ <.

The coinductive subtyping T1 6c T2 (read: T1 is an asynchronous subtype
of T2) is defined when there exists a type simulation < with (T1, T2) ∈ <.
Formally, 6c is the largest type simulation, defined as the union of all type
simulations.

Most cases are similar to the ones in [37, 11], but in order to facilitate the
asynchronous rules the unfolding of the supertype is performed at each case
for some level n. (1–4,6) are the base cases, while (5) says that the shared
channel type is invariant (as in the standard session types [19, 37, 24]).

Now we focus on the new rules: in (7), an output prefix of T1 can be
simulated when T2 can be unfolded to obtain a type that has an output
hidden under an asynchronous context A, which by definition consists of only
inputs and branchings. The type U1 is compared to U2, the first available top-
level output; this is contravariant which is standard in π-calculus [44]. Then,
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the continuation S1 of T1 is compared with the type A〈S2h〉h∈H consisting of
the asynchronous context in which the output(s) have been removed, since
they were matched with the output prefix of T1. For the input in (8), we
do not use any context, since the input must appear as the first action after
unfolding. No action can appear before the desired input at the supertype:
if there is a branching (which is a form of input, with labels as values) it is
not comparable, and if there is an output or selection then T2 cannot be a
supertype of the input-prefixed type T1, since it would be intuitively more
asynchronous.

In (9), selection is defined similarly to output and any label appearing in
T1 must be included in the top level selections of the asynchronous context
derived from T2. Note that in the supertype, each hole in the context may
use a different indexing set Ih, but the set I of the subtype is smaller than
all these sets (∀h ∈ H . I ⊆ Jh). Dually to selection, in (10), branching is
defined like input and any labeled branch of (the unfolding of) T2 must be
supported in T1. Finally (11) forces T1 to be unfolded until it becomes a
guarded type.

Remark. To include subtyping between base types, we would need to fol-
low [32] where we employ a slightly more elaborate definition, in which for
all types except session types output is covariant and input is contravariant.
There, we define:

(S, S ′)~ = (S ′, S) (T, T ′)~ = (T, T ′) if T, T ′ are not session types

The subtyping simulation in [32] has the following output-input clauses:

7. If T1 =![U1].S1, then for some n, unfoldn(T2) = A〈![U2].S2h〉h∈H with
(U1, U2)

~ ∈ < and (S1,A〈S2h〉h∈H) ∈ <.
8. If T1 =?[U1].S1, then for some n, unfoldn(T2) =?[U2].S2, (U2, U1)

~ ∈ <
and (S1, S2) ∈ <.

In this definition output appears covariant, but because of the inversion ap-
plied only to session types it becomes, in this case, contravariant. This ex-
plains why our present definitions show contravariant output subtyping (unit
and other invariant types are not affected). Now, if we consider the types
int and real with int 6c real, then we have (int, real)~ = (int, real),
i.e., no inversion, hence in (7) above we would obtain a covariant subtyping.
For example, we would have ![int].end 6c![real].end, and not the opposite
which would be non-sensical.
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The usual subtyping for functional types can also be integrated into (3,4)
using the above definition from [32], but it is orthogonal to our purposes and
therefore omitted for simplicity.

4.2. Examples of Asynchronous Subtyping
We show four small but representative examples which highlight key points
of our subtyping relation. The first example shows that permuting outputs
in advance of inputs in an infinite type preserves subtyping. The second
example demonstrates that in some subtypings, a finite number of extra
outputs can appear in the subtype, and dually, a finite number of extra inputs
can appear in the supertype; this is acceptable when the total outputs remain
infinite without losing type compatibility, and similarly for inputs. The third
example demonstrates a case where n-level unfolding is required. The fourth
example which is atypical exposes a class of subtypings that induce infinite
simulation relations, due to asynchronous subtyping.

Three typical examples. Consider the types given previously:

S1 = ![U1].?[U2].µt.![U1].?[U2].t S2 = µt.?[U2].![U1].t

It is easy to verify that S1 6c S2 by checking that the following relation is a
type simulation:

< = { (S1, S2), (U1, U1), (?[U2].µt.![U1].?[U2].t, ?[U2].S2),
(U2, U2), (µt.![U1].?[U2].t, S2) }

It is also straightforward to show that for the following types:

S3 = ![U1].µt.![U1].?[U2].t S4 = ?[U2].µt.?[U2].![U1].t

it holds that S3 6c S4 using the following simulation:

< = { (S3, S4), (U1, U1), (µt.![U1].?[U2].t, ?[U2].S4),
(![U1].?[U2].µt.![U1].?[U2].t, ?[U2].S4),
(?[U2].µt.![U1].?[U2].t, ?[U2].?[U2].S4), (U2, U2) }

We can demonstrate easily that for the following types:

S5 = µt.![U ].?[U ].&[l1 : t, l2 : t]

S6 = µt1.?[U ].µt2.&[l1 :![U ].t1, l2 :![U ].t1]
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we have that S5 6c S6 with the following simulation:

< = { (S5, S6), (U,U), (unfold1(S5), S6),
(?[U ].&[l1 : S5, l2 : S5], ?[U ].&[l1 : S6, l2 : S6]),
(&[l1 : S5, l2 : S5],&[l1 : S6, l2 : S6])}

in which the fourth pair (which is added when matching the output) is ob-
tained after unfolding S6 at level n = 2, i.e., using unfold2(S6); this is because
there is are two µ-binders guarding the asynchronous context where the out-
put is located. Moreover, since as we prove in the next subsection 6c is
transitive, we can also find a simulation <′ such that:

(µt.![U1].?[U ].&[l1 : t, l2 : t], µt1.?[U ].µt2.&[l1 :![U2].t1, l2 :![U3].t1]) ∈ <′

whenever (U2, U1) ∈ <′ and (U3, U1) ∈ <′. For this the simulation will
support the intermediate results

(µt.![U1].?[U ].&[l1 : t, l2 : t], µt1.?[U ].µt2.&[l1 :![U1].t1, l2 :![U1].t1]) ∈ <′

and

(µt1.?[U ].µt2.&[l1 :![U1].t1, l2 :![U1].t1], µt1.?[U ].µt2.&[l1 :![U2].t1, l2 :![U3].t1]) ∈ <′

A more controversial example. Consider the types:

S7 = µt.![U1].t S8 = µt.![U1].?[U2].t

Perhaps surprisingly, it holds that S7 6c S8, as evidenced by the following
simulation:

< = { (U1, U1),
(S7, S8),
(![U1].S7, S8),
(S7, ?[U2].S8),
(![U1].S7, ?[U2].S8),
(S7, ?[U2].?[U2].S8),
(![U1].S7, ?[U2].?[U2].S8),

...
(S7, ?[U2]

ω.S8),
(![U1].S7, ?[U2]

ω.S8)}

= {(U1, U1)} ∪ {(S7, ?[U2]
n.S8), (![U1].S7, ?[U2]

n.S8) | n ∈ N}
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where ?[U2]
n.S8 is the type S8 prefixed with a sequence of n input actions

?[U2]. Effectively, the subtype is sending all the infinite outputs in advance,
and never receives any values, i.e., it is taking asynchronous optimisation to
the extreme. There are many similar examples, where the common denom-
inator in all is the presence, within a recursion at the subtype, of a greater
proportion of output actions (including selection) compared to the supertype.
For instance, µt.![U1].![U1].?[U2].t 6c µt.![U1].?[U2].t also holds and can be
shown with an infinite simulation relation.

The above examples may seem slightly pathological, since values re-
ceived in a buffer may never be used by the process that owns it. For
instance, by S7 6c S8 a process can record the interface s : S8 when it
actually implements the behaviour s : S7, and by duality it can interact
with s : S8 = µt.?[U1].![U2].t. Clearly, the values of type U2 are received in
the buffer s (by the outputs on s) but not in the program that implements
s : S7. As a consequence, in a naive implementation the buffer can increase
in size indefinitely, which is undesirable and in some cases unsafe (e.g., buffer
overflow). However, dealing with unreachable data is typically the job of a
garbage collector, as in most mainstream languages, so we do not think this
is a real problem.

Type Soundness and Progress in the presence of Asynchronous Subtyping
As shown in the last example, a surprising property of our notion of

asynchronous subtyping is that it allows an implementation to not actually
receive all the values sent to its buffer. It is then natural to ask how this
may affect the properties one expects from a sessions system.

First, type safety is not violated since no value of unexpected type is ever
received within a term, because two inputs (resp. two outputs) on the same
endpoint cannot be permuted. However, one property that can be affected is
progress. Specifically, if a session on s or a linear function containing s is never
received from a buffer — due to a subtyped process not performing the input
at all — then a process waiting to perform an action on the dual endpoint
s may become stuck.1 This situation is not easy to address in the present
framework, because asynchronous optimisation means that we can postpone
inputs ad infinitum, which is not so different than not having those inputs
at all. On the other hand, the “standard” sessions systems only guarantee

1Issues pertaining to such “orphan” messages are also discussed in [12, 13].
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progress on a per session basis, allowing the interleaving of sessions even if
it may cause deadlocks, so in that sense not much is lost. We should note
that, if one wishes to ensure that all messages are received, there are some
solutions: we can restrict subtyping as in [32, p. 181], or following the recent
work [9], motivated in part by our subtyping; we return to this later.

4.3. The Relation 6c is a Preorder
We conclude this section with the main theorem, stating that 6c is a

preorder. In inductively defined subtyping systems, commonly presented as
a set of deduction rules, transitivity is a property by definition [18, 43]. In a
coinductive setting, transitivity cannot be assumed, and not every simulation
is guaranteed to contain the necessary hypotheses; however, we can prove that
6c is transitive by careful construction of supporting simulations, containing
the necessary components up to unfolding and context manipulation.

If 6c was not transitive, there would not be type safety. The typical
explanation is that, if there exists U1 6c U2 and U2 6c U3 such that U1 66c U3,
then from two consecutive applications of subsumption we may provide a
value of type U1 when U3 is expected, which is unsafe when U1 66c U3. For a
detailed exposition to the issues arising from the use of coinductive definitions
in subtyping, see Chapter 21 of [43].

The standard method of relational composition [19] is not enough for
proving the transitivity of 6c. The difficulty is that, given S1 6c S2 and
S2 6c S3, we need to find a subtyping relation that includes enough elements
to justify S1 6c S3 directly. However, due to the use of nested n-times
unfolding with manipulation of asynchronous contexts, S1 6c S2 provides
insufficient information which cannot be straightforwardly combined with
the hypotheses from S2 6c S3 to obtain the result.

Our objective is to discover how to obtain the “missing elements,” and to
achieve it we gradually formalise a set of extensions on simulations, essentially
monotonous functions from simulations to simulations, and then utilise them
to prove the main result, Theorem 4.4, stating that 6c is a preorder.

Theorem 4.4 (6c is a Preorder). The relation 6c is reflexive and transi-
tive.

Overview of Proof. The proofs of Theorem 4.4 are given in Appendix B.
Specifically, we perform the following steps:
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1. We prove as standard that unfolding S1 or S2 or both in S1 6c S2

preserves subtyping. We formalise the unfolding extension of a simula-
tion to include such n-times unfoldings. (Lemma B.1 and B.2, Defini-
tion B.3, Proposition B.1.)

2. We define a class of single-step permutation contexts representing an
input/branching guarded type. Then we formalise rules for moving an
output/selection appearing within such a context (that is, immediately
after the initial input/branching), to the position ahead of it. This
represents the finest granularity of permutation since it is not defined
to be transitive. (Definition B.4.)

3. The contextual extension of a simulation is defined, which is a support-
ing construction. It is necessary in order to obtain the subtypings that
arise when removing an output/selection from a single-step permuta-
tion context, thus changing its original structure. (Definition B.5 and
Lemma B.6.)

4. The asynchronous extension of degree n is defined by applying n consec-
utive single-step permutations on the subtypes in a simulation relation,
and up to contexts A (that is, also deep within the structure of types).
Both the contextual and the unfolding extensions are necessary to prove
that this relation is also a simulation. (Definition B.7 and Lemma B.8.)

5. Multi-step permutations that can extract an output/selection from
deep within a context A, placing it ahead of all actions (that is, pre-
fixing A), are shown to be included in the asynchronous extension of
degree ω. This is effectively a proof that the transitive application of
nested single-step permutations is included in the asynchronous exten-
sion. (Corollary B.9.)

6. The transitivity connection of two simulations is then defined, utilising
a composition of asynchronous extensions for the given simulations.
The proof that the transitivity connection is a simulation implies that
6c is transitive. (Definition B.10 and Lemma B.11.)

7. The relation 6c is shown to be a preorder: reflexivity is easy to obtain
using straightforward techniques, and transitivity is proved directly by
utilising the result for transitivity connections. (Theorem 4.4.)
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5. Higher-Order Linear Session Typing System

5.1. Typing System
We now present the typing system, which combines techniques from linear

λ-calculus and session typing, integrating the asynchronous subtyping from
the previous section. The system presented here is for initial programs, i.e.,
for terms without any queues or already activated sessions. We will augment
the type system later, so as to also cover the runtime constructs.

Environments. We first define three kinds of finite mappings for environ-
ments, needed when typing a term with free identifiers:

(Shared) Γ ::= ∅ | Γ, u : unit | Γ, u : U → T | Γ, u : 〈S〉
(Linear) Λ ::= ∅ | Λ, x : U ( T (Session) Σ ::= ∅ | Σ, k : S

Γ is a finite mapping, associating shared value types to identifiers. Λ as-
sociates variables and linear function types. Σ is a finite mapping from
variables/session channels to session types. Σ,Σ′ and Λ,Λ′ denote disjoint-
domain unions. Γ, u : U means u 6∈ dom(Γ), and similarly for the other
environments.

Typing Judgement. The typing judgement takes the shape:

Γ; Λ; Σ ` P : T

which is read: under a (global) shared environment Γ and a linear function
environment Λ, a term P has type T with session usages described by Σ. We
say that a judgement is well-formed if the environments (pairwise) do not
share elements in their domains, that is, when the disjoint union dom(Γ) ]
dom(Λ) ] dom(Σ) is defined.

To reduce the number of type rules, we make use of the following abbre-
viation:

(Γ; Λ; Σ) # u : T =


Γ; Λ, u : T ; Σ if T = U ( T ′,

Γ; Λ; Σ, u : T if T = S,

Γ, u : T ; Λ; Σ otherwise.
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(Common)

(Unit)

Γ; ∅; ∅ ` () :unit

(Shared)

Γ, u :U ; ∅; ∅ ` u :U

(LVar)

Γ; {x :U ( T} ; ∅ ` x : U ( T

(Session)

Γ; ∅; {k :S} ` k : S

(Structure, Subtyping)

(Promotion)
Γ; ∅; ∅ ` P :U ( T

Γ; ∅; ∅ ` P :U → T

(Dereliction)
Γ; Λ, x :U ( T ; Σ ` P :T ′

Γ, x :U → T ; Λ; Σ ` P :T ′

(Sub)
Γ; Λ; Σ ` P :T Σ 6c Σ′ T 6c T

′

Γ; Λ; Σ′ ` P :T ′

(Functional)

(Abs)
(Γ; Λ; Σ) # x :U ` P :T

Γ; Λ; Σ ` λ(x :U).P :U ( T

(Rec)
Γ, x :U → T ; ∅; ∅ ` λ(y :U).P :U → T

Γ; ∅; ∅ ` µ(x :U → T ).λ(y :U).P :U → T

(App) T ′ = U → T or T ′ = U ( T

Γ; Λ1; Σ1 ` P :T ′ Γ; Λ2; Σ2 ` Q :U

Γ; Λ1,Λ2; Σ1,Σ2 ` P Q :T

Figure 9: Linear Session Typing: Common and Functional Rules
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(Process)

(Nil)

Γ; ∅; ∅ ` 0 :�

(New)
Γ, a :〈S〉; Λ; Σ ` P :�

Γ; Λ; Σ ` (νa :〈S〉)P :�

(Conn)
Γ; ∅; ∅ ` u:〈S〉 Γ; Λ; Σ, x :S ` P :�

Γ; Λ; Σ ` u(x).P :�

(ConnDual)
Γ; ∅; ∅ ` u:〈S〉 Γ; Λ; Σ, x :S ` P :�

Γ; Λ; Σ ` u(x).P :�

(Recv)
(Γ; Λ; Σ, k :S) # x :U ` P :�

Γ; Λ; Σ, k :?[U ].S ` k?(x).P : �

(Send)
Γ; Λ1; Σ1 ` P : � Γ; Λ2; Σ2 ` V : U k :S ∈ Σi i = 1 or i = 2

Γ; Λ1,Λ2; (Σ1,Σ2) \ {k : S} , k : ![U ].S ` k!〈V 〉.P : �

(Par)
Γ; Λ1,2; Σ1,2 ` P1,2 :�

Γ; Λ1,Λ2; Σ1,Σ2 ` P1 | P2 :�

(Bra)
Γ; Λ; Σ, k :Si ` Pi : � (∀i ∈ I)

Γ; Λ; Σ, k : &[li : Si]i∈I ` k B {li : Pi}i∈I : �

(Close)
Γ; Λ; Σ ` P :T k 6∈ dom(Γ,Λ,Σ)

Γ; Λ; Σ, k :end ` P :T

(Sel)
Γ; Λ; Σ, k : Sj ` P : � j ∈ I

Γ; Λ; Σ, k : ⊕[li : Si]i∈I ` k C lj.P :�

Figure 10: Linear Session Typing: Processes
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Typing Rules. The typing rules for identifiers, subtyping, and functions are
given in Figure 9. The rules for processes and sessions are given in Figure 10.
In each rule, we assume that the environments in the consequence are defined.

Starting from Figure 9, the first group is (Common). First we have a rule
for the unit value (), assigning the type unit. In the conclusion, notice that an
arbitrary Γ is allowed, but no linear variables (Λ = ∅), or sessions (Σ = ∅).
This restriction agrees with the use of weakening only for shared environ-
ments, a condition necessary for the preservation of linearity. (Shared) is an
introduction rule for identifiers with shared types, i.e., not including U ( T
or S. (LVar) is for linear variables and (Session) is for session endpoints,
recording x :U ( T in Λ and k :S in Σ, respectively. The general strategy is
that the environments Λ and Σ record precisely the desired usages of linear
variables/sessions, and then within a derivation these usages are combined
using disjoint union (to ensure that no copying takes place) and prefixing
composition in the case of sessions (to ensure that certain separated usages
are seen as one largest use). The use of disjoint union effectively forbids
contraction. The absence of weakening guarantees that all linear hypotheses
are actually used.

The group (Structure) consists of two rules from Linear Logic [21]. The
rule (Promotion) ensures that shared functions do not contain linear terms,
as unrestricted functions may be used more than once, breaking linearity, or
may not be used at all, again violating linearity by making endpoints or linear
functions disappear. The rule is a special case of linear promotion [21], since
the type U → T is basically !(U ( T ). Dually, (Dereliction) allows to use a
shared function in a linear way, which is perfectly safe, and this is convenient
when we wish to record, e.g., ![U ( T ].S in an environment where the sent
function has the unrestricted type U → T . The group (Subtyping) consists
of one subsumption rule, (Sub), introducing the coinductive subtyping 6c
into typing derivations. We write Σ 6c Σ′ when dom(Σ) = dom(Σ′) and for
all k :S ∈ Σ, we have k :S ′ ∈ Σ′ with S 6c S ′. Notice that subsumption can
apply to the session environment, but not to other environments, and it can
also apply to the given type T for the term P .

The second group, (Function), comes from the simply typed linear λ-
calculus. In the abstraction rule (Abs), the argument x : U is from the
appropriate environment following the definition of #, and it is removed in
the conclusion, as expected. (App) is the rule for functional application, and
allows the arrow type to be either linear or unrestricted, similarly to [53];
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this is needed due to (Rec), since abstractions and variables can always be
assigned a linear arrow type, by rules (Abs) and (Dereliction), respectively.
The conclusion says that the session environments and linear variable sets of
P and Q must be disjoint; otherwise, there is copying (more than one usage)
of the respective linear terms, which is forbidden. Rule (Rec) is similar to
(Abs), but with the addition of a hypothesis for x in the premise, representing
the function itself, and used for typing instances of the function within its
body. It is required that the linear function and session environments are
empty, since a recursive function may rewrite itself repetitively copying all
its contents.

In Figure 10 we have the final group, (Process), for processes integrated
with linear functional and session typing. Rule (Nil) types the empty process.
(New) hides a shared name. There is no typing rule for session channels
(s, s) in initial programs, but in § 6 we define a rule (News) that verifies the
communication patterns for the two endpoints s and s, in order to ensure
compatible dyadic interactions up to asynchronous permutations.

(Conn) and (ConnDual) are for initiating sessions. In the premises of
(Conn), the usage S of the endpoint x in P has to agree with the type
〈S〉 recorded for the shared identifier u in the typing environment Γ. Rule
(ConnDual) is similar, however the type in the environment Γ is dual to the
usage in the session body P . This is needed in order to indicate which side of
the session is followed with respect to a shared channel type, since connecting
processes must use their endpoints dually. (Recv) is for receiving values, and
uses the notation with # to cover the different cases for linear, session, and
unrestricted types. The new session type is composed in the conclusion’s
session environment, in a way that agrees with the protocol, that is, the
input is appended before any subsequent actions on k within P .

(Send) is the most complex rule, integrating session typing and linear
typing. Either Σ1 or Σ2 contains the complete session k :S, which in prac-
tice means that after sending a value, the rest of the session on endpoint k
must appear (and be completed) either in the continuation P of the sending
process, or inside the value V . In the latter case, we can even have that
V = k, which implements higher-order session passing of k over k, i.e., a
self-delegation. The composition Σ1,Σ2 is defined in the conclusion, which
entails that no endpoint appears in both the remaining sender P and the
sent value V , because, in that case, we would have a race condition between
the receiver of V and P , in the usage of communications over these common
sessions. The same applies to linear variables free in V and P . If V has a
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functional type, all session endpoints within it must be complete, that is, suf-
fixed with end, because they should not compose further. This is achieved by
the necessary use of a suitable instance of (Close). This rule uniformly gener-
alises the corresponding rules in the session types literature [19, 48, 54, 24].
In the conclusion, we delete k : S where it occurs, either in Σ1 or Σ2, and
the updated type for k is recorded in the conclusion’s session environment,
consisting of the continuation type S prefixed with the output ![U ].

In (Par), we parallel-compose two processes, assuming disjointness of lin-
ear function and session environments, as in (App). (Bra) and (Sel) are the
standard rules for branching and selection from [24]. In (Bra) all continu-
ations Pi must have corresponding session usages on k that agree with the
branch type. In (Sel) the continuation P must have a usage Sj on k that
agrees with the type corresponding to the selected label lj on the selection
type of the conclusion.

Closing sessions. In the above rules for session communication, the premises
always contain a hypothesis for the subject of the session action, e.g., k : S
appears in Σi located in the premise of the typing for k!〈V 〉.P . This does
not necessarily imply that k appears in P , as the usage {k : end} can be
obtained using (Close). This rule is used to effectively close a session on k
by introduction of a hypothesis k :end, in order for further composition (i.e.,
more session actions on k) to be rejected.

5.2. Examples of Typing
Here we state a few examples and counter-examples that demonstrate the

purpose of the type system. We revisit some examples from § 3.2 and from
the Introduction.

First, session endpoints must not become “forgotten”:

(λ(x :S).0 ) · s

In the above term, after reduction by the (beta) rule, the endpoint s will not
appear any more, and the session on s might become stuck. This term is
only typable if S = end, otherwise it is not typable because in the premises
of rule (Abs) we require a session hypothesis x :S which cannot be introduced
in the typing of 0 except by use of (Closed). Second, session endpoints must
not be copied:

( λ(x :S).(x!〈V 〉 | x!〈V ′〉) ) · s
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The above term reduces to:

s!〈V 〉 | s!〈V ′〉

in which we have copied s breaking the condition of linearity, which is un-
desirable as the endpoint s will nondeterministically interact with one of the
outputs, leaving the other waiting forever. The first term is untypable be-
cause typing the function body x!〈V 〉 | x!〈V ′〉 with (Par) requires that the
sessions in each parallel process are disjoint, which is not the case here due
to the common presence of x. We also revisit the examples in § 3.2.

1. ( λ(x : U).x · () ) · ps!〈5〉.0q is typed with U = unit( �, using (App)
followed by (Abs) for the left and right subterms of the application,
respectively.

2. ( λ(x : U).0 ) · ps!〈5〉.0q
This term is unsafe as the thunk which contains s does not appear in
the function that receives it, after reduction. This is an indirect way for
an endpoint to become “forgotten” as before. The typing fails because
U = unit ( � (as above) and (Abs), used for the left subterm of the
application, requires x : U to appear in the linear function environment
of the typing of 0, which is impossible.

3. ( λ(x : U ′).0 ) · pa(x).x!〈5〉.0q is typed with U ′ = unit → �, applying
(App) followed by (Abs) for the two subterms, respectively.

We finally type the optimised higher-order mobility from the Introduction.
In the connect process:

a(x).x!〈5〉.x!〈true〉.x?(y).(y() | R),

a has a type 〈S1〉 where S1 =![nat].![bool].?[U ].end and U is the type of y
(receiving the mobile code pPq). This is obtained by applying (Conn), (Send),
and (Recv) appropriately. On the other hand, in the optimised session:

a(x).x!〈pPq〉.x?(z1).x?(z2).Q,

x is typed with S ′2 =![U ].?[nat].?[bool].end, applying (ConnDual) with a :〈S ′2〉,
then (Send) and (Recv). By an application of (Sub) in the body of the session,
x can also be typed by S2 (the dual of S1), because S ′2 6c S2 by Definition
4.3(7). So, the same term can also be assigned a : 〈S2〉 which is the same as
a :〈S1〉, and we are done.
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6. Higher-Order Linear Session Typing for Runtime Processes

6.1. Typing System for Runtime
The typing system extends the one for programs given previously, replac-

ing a few rules with more general versions. New formulations are needed for
the integration of typing at the level of session queues, and for ensuring that
the asynchronous calculus is sound.

Queue Types. Due to the presence of labels in session queues, we need to
extend the types to facilitate all buffer components, as follows:

τ ::= U | l

Therefore, every label induces a singleton type identified with the label value.

Session Remainder. Type soundness is established by also typing the queues
created during the execution of a well-typed initial program. We track the
movement of linear functions and channels to and from a queue to ensure
that linearity is preserved, and we check that endpoints continue to have
dual types up to asynchronous subtyping after each use. To analyse the
intermediate steps precisely, we utilise a session remainder S−~τ = S ′ which
subtracts the vector ~τ of the queue types of the values stored in a queue
from the complete session type S of the queue, obtaining a remaining session
S ′. When the remainder S ′ is end, then the session has been completed;
otherwise it is not closed yet. The rules are formalised in Figure 11.

(Empty)

S − ε = S

(Get)
S − ~τ = S ′

?[U ].S − U~τ = S ′

(Put)
S − ~τ = S ′

![U ].S − ~τ =![U ].S ′

(Branch)
Sk − ~τ = S ′ k ∈ I
&[li : Si]i∈I − lk~τ = S ′

(Select)
Si − ~τ = S ′i ∀ i ∈ I

⊕[li : Si]i∈I − ~τ = ⊕[li : S ′i]i∈I

Figure 11: Session Remainder

(Empty) is a base rule. (Get) takes an input prefixed session type ?[U ].S
and subtracts the type U at the head of the queue, then returns the remainder
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S ′ of the rest of the session S minus the tail ~τ of the queue type. (Put)
disregards the output action type of the session and calculates the remainder
S ′ of S−~τ , which is returned prefixed with the original output giving ![U ].~τ .
This is because we are subtracting the input queue types, and therefore the
output is not consumed. (Branch) is similar to (Get), but it only records
the remainder of the k-th branch with respect to a stored label lk. Dually,
(Select) records the remainder on the nested types, similarly to (Put), because
selection is an output action. An example of the use of session remainders
can be found in § 6.3.

Typing System for Terms with Session Queues. We first extend the session
environment as follows:

∆ ::= Σ | ∆, k :: ~τ | ∆, k :: (S, ~τ)

The typing judgement is now of the form:

Γ; Λ; ∆ ` l : l and Γ; Λ; ∆ ` P : T

The first judgement is used for typing any labels appearing in a session
queue. ∆ contains usage information for queues in a term (s :: ~τ), so that
the cumulative result can be compared with the expected session type; for
this we use the pairing (s :: (S, ~τ)) that combines the usage of a channel and
the sequence of types already on its queue. Observe that the lighter notation
(k : ~τ) is ambiguous, since ~τ can be τ ′ = S ′. This is why we use (k :: (S, ~τ))
and (k :: ~τ), respectively.

We define a composition operation � on ∆-environments, used to obtain
the paired usages for channels and queues:

∆1 � ∆2 = {s :: (∆i(s),∆j(s)) | s :S ∈ ∆i, s :: ~τ ∈ ∆j}
∪∆1\dom(∆2) ∪ ∆2\dom(∆1)

The typing rules for runtime are listed in Figure 12. (Label) types a label
in a queue, while (Queue) forms a sequence corresponding to the types of
the values in a queue: we ensure the disjointness of session environments of
values, and apply a weakening of ended session types (Σ0) for closure under
the structure rules. (News) is the main rule for typing the two endpoint
queues of a session. Types S1 and S2 can be given to the queues s and s
when the session remainders S ′1 and S ′2 of S1− ~τ1 and S2− ~τ2 are dual session
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types up to asynchronous subtyping; more precisely, S ′1 must be a subtype
of the dual of S ′2, written S ′1 6c S

′
2. This is equivalent to S ′2 6c S ′1. Since

the session endpoints are compatible, we can restrict s. The combination of
coinductive subtyping with a syntactic duality operator, which is practically
the same as the compatibility relation in [20], has two advantages: first, it
avoids the need for a separate coinductive duality as in [19]; secondly, as is
detailed in [3], a simple syntactic duality does not work with equi-recursive
types, and our solution avoids such problems. (Par) composes processes,
including queues, and records the session usage by � ; this rule subsumes
(Par) for programs. Note that, as this is a runtime typing system, there
are no free variables at the top level. Moreover, queues can only appear at
the top-level, in parallel to the terms that may appear in initial programs,
and never inside functions. Finally, we had to redefine (New) to account for
restriction over queues, i.e., with a ∆-environment.

(Label)

Γ; ∅; ∅ ` l : l

(Queue)

Γ; ∅; Σi ` hi : τi i ∈ 1..n Σ0 = {~s : ~end}
Γ; ∅; (Σ0, ..,Σn)� s :: τ1..τn ` s :h1..hn : �

(News)
Γ; ∅; ∆, s :: (S1, ~τ1), s :: (S2, ~τ2) ` P :� Si − ~τi = S ′i i ∈ {1, 2} S ′1 6c S

′
2

Γ; ∅; ∆ ` (νs)P :�

(New)
Γ, a :〈S〉; Λ; ∆ ` P :�

Γ; Λ; ∆ ` (νa :〈S〉)P :�

(Par)
Γ; Λ1,2; ∆1,2 ` P1,2 :�

Γ; Λ1,Λ2; ∆1 � ∆2 ` P1 | P2 :�

Figure 12: Runtime Typing for Asynchronous HOπ-calculus

6.2. Typing the Mobile Business Protocol
We can now type the hotel booking example in § 2.3, guaranteeing its

type safety. Agency has the following types at a and b.

a : 〈?[string].?[date].⊕ [move : S1 ; cont : S1 ]〉, b : 〈S2〉
with S1 = ![S2].?[double].end and S2 = ⊕[cont : S3 ; move : ![p�q1].S3]
and S3 = ![string].?[double].![ccard].end
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S1 contains higher-order session passing of type S2, and the thunk in S2 has a
linear arrow type. Client and Hotel just have the dual of Agency’s type at
a and the dual of Agency’s type at b, respectively. Note that in Client, the
received session y appears subsequently in the sent code V , which is typed
by (Send) with the side condition k : S3 ∈ Σ2 explained in § 6.

6.3. Typing the Optimised Mobile Business Protocol
Now, using also the runtime typing system, we can type the hotel booking
example of § 2.4, in the presence of asynchronous optimisation for higher-
order mobility. Agent and standard Client can be typed, by using the rules
in Figures 9 and 10, as follows:

SAgent =![int].&[move :?[unit( �].S′Agent , local : S′Agent]

where S′Agent =?[string].?[string].![double].?[ccard].end and Sclient = SAgent

We then type MClient and obtain:

SMClient = ⊕[move :![unit( �].![string].![string].![ccard].?[int].?[double].end]

Applying Definition 4.3 we verify that SMClient 6c SAgent (and SMClient 6c
SClient). Then using typing rules (Conn,ConnDual) we can type both MClient

and Agent with a : 〈SAgent〉 ∈ Γ, after applying (Sub) on the premises of
(ConnDual) typing the body of MClient.

We now demonstrate runtime typing; after three reduction steps of MClient |
Agent we can have this configuration:

(νs)
(
sB {move : s?(code).(run code | . . .), local : . . .}
| s :rtt | s :move · ps!〈ritz〉 . . .q

)
with s as the Agent’s queue. Both queues contain values including the linear
higher-order code sent by MClient (which became 0 after this output). Using
(Queue, Label) from Figure 12, we type s : move · ps!〈ritz〉 . . .q with session
environment

{s : S ′MClient, s :: move · unit( �}

where S ′MClient comes from typing the HO code containing s, and:

S ′MClient =![string].![string].![ccard].?[int].?[double].end

and similarly we type s :rtt with: {s :: int}.
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The Agent s B {move : . . . , local : . . .} is typed with (Bra) under session
environment: {

s : &[move :?[unit( �].S ′Agent , local : S ′Agent]
}

The above session environments can be synthesised using � to obtain:{
s :: (S ′MClient, int),

s :: (&[move :?[unit( �].S ′Agent , local : S ′Agent],move · unit( �)
}

Now we use the rules in Figure 11 to calculate the session remainder of each
queue:

S ′MClient − int = ![string].![string].![ccard].?[double].end

&[move :?[unit( �].S ′Agent , local : S ′Agent] − move · unit( � = S ′Agent

and we have:

![string].![string].![ccard].?[double].end 6c S ′Agent

Finally, we can apply (News) and complete the derivation.

7. Type Soundness and Communication Safety

This section studies the key properties of our typing system. First, we show
that typed processes enjoy subject reduction and communication safety.

We begin by introducing balanced environments which specify the con-
ditions for composing environments of runtime processes. Our definition
extends the one in [19] to accommodate for the presence of buffers, using
session remainders.

Definition 7.1 (Balanced ∆). balanced(∆) holds if for all

{s :: (S1, ~τ1), s :: (S2, ~τ2)} ⊆ ∆

with S1 − ~τ1 = S ′1 and S2 − ~τ2 = S ′2, we have S ′1 6c S ′2.

The definition is based on (News) in the runtime typing system (Fig-
ure 12): intuitively, all subprocesses generated from an initial typable pro-
gram should conform to the balanced condition.

Next, we define an ordering between session environments which ab-
stractly represents an interaction at session channels.
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Definition 7.2 (∆ Ordering). Recall � defined in § 6.1. We define ∆ vs ∆′

as follows:

k :?[U ].S � k :: U~τ vs k : S � k :: ~τ

k :![U ].S � k :: ~τ vs k : S � k :: ~τU

k : &[li : Si]i∈I � k :: lj~τ vs k : Sj � k :: ~τ j ∈ I
k : ⊕[li : Si]i∈I � k :: ~τ vs k : Sj � k :: ~τlj j ∈ I

k : unfoldn(S)� ∆ vs ∆′

k : S � ∆ vs ∆′
∆1 vs ∆2 and ∆� ∆1 defined

∆� ∆1 vs ∆� ∆2

k : Sj � k :: ~τ vs k : S ′j � k :: ~τ ′ for all j ∈ H
k : A〈Sh〉h∈H � k :: ~τ vs k : A〈S ′h〉h∈H � k :: ~τ ′

The first four axioms capture the transfer of types (corresponding to
values) between programs and queues. For example the first axiom captures
how an input session against a non-empty queue will evolve by removing the
prefix and head element, respectively. The output axioms can be understood
by duality. Then we have rules that introduce n-times unfolding (this is
needed due to asynchrony) and arbitrary contexts (∆) which simplify the
other rules. In the last rule, which allows to deal with asynchronous subtypes,
there are two notable points. First, we are only interested in output actions,
and this is why we use the queue k. Second, note that the queue type k :: ~τ ′

is the same for all premises (j ∈ H), since we are performing a common
asynchronous action. In fact, ~τ ′ will be equal to ~τh where h is a label or
value type; this is evident from the output axioms. Note that if ∆1 vs ∆2

and ∆ � ∆1 is defined, then ∆ � ∆2 is defined; and if balanced(∆) and
∆ vs ∆′ then balanced(∆′). Then we have:

Theorem 7.3 (Type Soundness). 1. Suppose Γ; Λ; ∆ ` P : �. Then P ≡
P ′ implies Γ; Λ; ∆ ` P ′ : �.

2. Suppose Γ; ∅; ∆ ` P : T with balanced(∆). Then P −→ P ′ implies
Γ; ∅; ∆′ ` P ′ : T and either ∆ = ∆′ or ∆ vs ∆′.

The proofs can be found in Appendix C. We make use of a number of
supporting lemmas; the actual proof of Type Soundness begins on page 72.

Communication Safety. We now formalise communication-safety (which sub-
sumes the usual type-safety). First, a k-buffer is a queue process k : ~h. A
k-input is a process of the shape k?(x).P or k B {li : Pi}i∈I . A k-output
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is a process k!〈V 〉.P or k C l.P . Then, a k-process is a k-buffer, k-input,
or k-output. Finally, a k-redex is a parallel composition of a k-input and
non-empty k-buffer, or of an k-output and k-buffer.

Definition 7.4 (Error Process). We say P is an error if P ≡ (ν~a)(ν~s)(Q | R)
where Q is one of the following: (a) a |-composition of two k-processes or of
a k-process and a k-process, that does not form a k-redex or a k-input with
an empty k-buffer; (b) a k-redex consisting a k-input and k-buffer such that
Q = k?(x).Q′ | k : lk~h, or Q = kB {li : Pi}i∈I | k :V~h, or Q = kB {li : Pi}i∈I |
k : lk~h with k 6∈ I; (c) a k-process with k or k in ~s but with k not free in R
or Q; (d) a prefixed process or application containing a k-buffer.

The above says that a process is an error if (a) it breaks the linearity of k by
having e.g. two k-inputs in parallel; (b) there is communication-mismatch;
(c) there is no corresponding opponent process for a session; or (d) it encloses
a queue under prefix, thus making it unavailable. As a corollary of Theorem
7.3, we achieve the following general communication-safety theorem:

Theorem 7.5 (Communication Safety). If Γ; ∅; ∆ ` P : � with balanced(∆),
then P never reduces into an error.

Proof. It is enough to consider a one step reduction from a well-typed term.
From Theorem 7.3 we know that the result is well-typed. Therefore it suffices
to prove that a well-typed term cannot be an error. We consider the given
cases. For (a), we may have a composition of two k-processes such as, e.g.,
k : ~h1 | k : ~h2 or k?(x1).P1 | k?(x2).P2. It is clear than no such combination
is typable: we cannot compose by � any environments ∆1 and ∆2 with k on
both, unless if one is a queue typing k :: ~τ and the other is a session typing
k : S. For (b), a communication mismatch is untypable since the session
remainder will be undefined, e.g., ?[U ].S − lk~τ is not defined, and similarly
for &[li : Si]i∈I− lk~τ when k 6∈ I. When the remainder is undefined, the rule
(News) cannot apply, and therefore the term is untypable. For (c), a missing
occurrence of the dual buffer is excluded by (News). In particular, even if a
session on k is ended and so does no occur in communications, the buffer on
k will still exist under the scope of k/k. For (d), a buffer cannot occur in
the body of an abstraction or under a input prefix or a branching, as can be
seen by the use of Σ-environments in the user-level typing rules in Figures 9
and 10.
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Corollary 7.6 (Open Communication Safety). If Γ; Λ; ∆ ` P : � with
balanced(∆), then P never reduces into an error.

Proof. This follows easily from Theorem 7.5, since we can close the linear
interface with abstractions and then apply to linear function arguments, ob-
taining a term of the same type for which safety holds. In particular, Pσ,
with σ a closing substitution for Λ, will never reduce to an error, so the same
is easily shown to hold for P .

8. Related Work

There is a large literature on linear and session types for both the λ-calculus
and the π-calculus. Below we give the most closely related work, dividing
into three parts: one focuses on the linear typing system of the λ-calculus and
the session types for functional programming languages, the next focuses on
asynchronous subtyping systems, and finally the last explains the relationship
between linearity and asynchrony from the aspect of proof theory, following
recent developments. See also [16] for discussions on other type disciplines
of the π-calculus as well as on applications of session types.

8.1. Linear and Session Typing systems for Higher-Order Functions
Our typing system is substructural in the sense that for session environments
Σ we do not allow weakening and contraction, ensuring that a session channel
is recorded as having been used only when it actually occurs in session com-
munication expressions. Similarly no structural transformations can apply
to linear variable environments, ensuring that the occurrence of a variable
manifests that it has indeed been used exactly once. The ways in which
our typing system enforces linearity can be seen as an amalgamation of the
two approaches in [53], retaining the simplicity of declarative systems, and
the decidability of algorithmic ones. Walker’s work [53] provides a good ex-
position to substructural typing (in which linear and affine usages can be
seen as special cases). Note that in our system there is no need to enforce
linear usage for other than functional types. Applying the inference tech-
niques of [17, 15] and [51], with the algorithmic subtyping of [19], it should
be possible to construct a type inference system.

Session types in functional languages have been studied in various works.
In the first study [52], the authors define a concurrent multi-threaded func-
tional language with sessions. Their language supports sending of channels
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and higher-order values, branching and selection, recursive sessions and chan-
nel sharing. It has an explicit multi-threading primitive (fork) and explicit
stores. The paper [20] extends the previous language to a variant of ses-
sions where message sending is non-blocking. This is handled by explicitly
storing an entry for the two endpoint channels in a buffer. Its functional-
ity is the same as our use of two session channels for distinguishing the two
endpoints (similarly to [19]). They simplify their previous type judgement
which required input and output environments [52] by integrating linear typ-
ing with a split operator, which is more directly related to the original
non-deterministic typing of [53]. While a precise typability comparison is
difficult due to our additional primitives, their work also shows a use of lin-
ear types for functional languages with sessions.

One of the active areas in the functional setting is the integration of
session types into the lazy functional language Haskell [39, 45, 27]. Incor-
porating primitives for session interaction into Haskell requires to define an
appropriate IO-monad, which is also suitable for solving aliasing problems.
Instead of extending the type system of an existing language and adding
linear types like our work and [52, 20, 6], the work [39, 45] encode sessions
using the features of Haskell’s type system. In general, the encoding ap-
proach in [39, 45] generates more cumbersome types, but can take advantage
of Haskell’s type inference (them in most cases). The work [27] establishes a
more advanced session type inference technique. An ML-style polymorphism
based on [20] is also investigated in [6].

Also, the work [10] uses (the synchronous part of) our typing system
(published in [35]) to encode session types in linear behavioural types in
the HOπ-calculus. This demonstrates that the substructural features of our
typing system makes it easy to translate session types to other structures,
mechanically.

Finally, the work [49] presents an alternative session system for higher-
order processes, based on a logical interpretation integrated with a functional
language. This system enjoys stronger properties in terms of progress, so that
processes do not get deadlocks, but is slightly more complex due to the heavy
use of monads. Moreover, it does not make use of any form of asynchronous
subtyping.

8.2. Asynchronous Session Typing and Subtyping
Asynchronous subtyping was first studied in [37] for multiparty session types [25];
however, this work does not support neither higher-order sessions (delega-
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tions) nor code mobility (higher-order functions). Both of these features pro-
vide powerful abstractions for structured distributed computing; delegation
is the key primitive in our implementation of session types in Java [26] and
web service protocols [23], to which we can now apply our theory for flexi-
ble optimisation. The proof of the transitivity in this work requires a more
complex construction of the transitive closure trc(<1,<2) (Definition B.10)
than the one in [37] due to the higher-order constructs. In spite of the rich-
ness of the type structures, we proposed a more compact runtime typing and
proved communication safety in the presence of higher-order code, which is
not presented in [37]. Moreover, our new typing system extends naturally the
synchronous account of the linear typing system published in [35], demon-
strating a smooth integration of two kinds of type-directed optimisation.

The coinductive subtyping of recursive session types was first studied
in [19], adapting standard methods from IO-subtyping in the π-calculus [44].
The subtyping system of [19] does not provide any form of asynchronous
permutation, thus does not need the nested n-times unfolding (Definition
4.1). Moreover, our transitivity proof is significantly more involved than
in [19] due to the incorporation with n-time unfolding, permutation, and
higher-order functions.

Our treatment of runtime typing, specifically our method for typing ses-
sion queues and the use of session remainders, is more compact than previous
asynchronous session works (e.g. [25, 4]) where they use the method of rolling-
back messages – the head type of a queue typing moves to the prefix of the
session type of a process using the queue, and then compatibility is checked
on the constructed types. Our method is simpler, as we remove type elements
appearing in a queue from its typing, and also more flexible, as it naturally
extends to asynchronous contexts. Our queue typing is more similar to that
in [20], where smaller types are obtained after matching with buffer values.
However, our method works with queue types rather than with values di-
rectly, which allowed it to be extended smoothly to handle asynchronous
optimisation, which is not treated in [20]. For example, we allow a type con-
sisting of an output followed by an input action to be reduced with a type
corresponding to the input, leaving the output prefix intact. Moreover, using
a more delicate composition between values and queue typing, our system
enables linear mobile code to be stored in the queues.

An analysis of asynchronous session action permutations, encompassing
an asynchronous “acceptance” relation which accommodates for output ac-
tions performed in advance, appears in an unpublished manuscript [40]. The
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authors suggest that their algorithm is terminating. However, if their sys-
tem admits µt.![U1].t as a subtype of µt.![U1].?[U2].t, which as we show on
page 24 induces an infinite simulation, then it is unclear how it avoids diver-
gence without any special provision.

Finally, a notion of asynchronous context and a definition of asynchronous
duality that resembles our subtyping (combined with duality) appears in [5].
However, this notion is only developed in order to prove type soundness and
it is not integrated with the typing system which was mentioned as an inter-
esting future work. It is developed for finite sessions that, additionally, do
not support delegation (name passing). Our work develops such a subtyp-
ing for a much more expressive calculus supporting name and code mobility,
and also in the context of recursive session types. These features require
co-inductive methods that really bring to the surface a number of challenges
such as those arising from infinite simulations.

The recent work [9] studies a notion of preciseness in session subtyp-
ing, including an adaptation of our notion of asynchronous subtyping. As
we mentioned in Section 4.2, the subtyping of [9] avoids so called “orphan”
messages, i.e., those that are never received from a queue, by restricting the
subtyping relation to contain a finite amount of branchings (in our case this
would also include inputs) before an output can be fetched from inside an
asynchronous context. In simple terms, they do not allow the accumulation
of messages which follows from missing inputs. We believe a practical appli-
cation of asynchronous subtyping will make use of both approaches, ours and
that of [9]: for many kinds of values that do not require linear constraints,
messages can safely be left on a queue and later garbage collected; for mes-
sages containing linear values, a restriction might be needed such as the one
in [9] or the one in [32, p. 181] or a buffer bound as in [20].

As a general remark, note that our choice to use µ-types instead of (in-
finite) regular trees serves better our aim of informing programming tech-
nology, and given the restrictions, notably that of contractiveness, the two
notions are equivalent [18, 2]. Actually, the coinductive treatment would
not differ much, except in notational aspects, since we would have to fetch
output actions from deep elements of the tree representation as we do with
asynchronous contexts.

8.3. Linearity and Asynchrony from the Proof Theoretical Perspective
A typical use of linearity in processes is to simply require that linear

channels are used exactly once, which differs than sessions-based linearity
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where channels are used once “at any moment” and can be reused in order
to complete a protocol. In that sense, linearity in sessions is about avoiding
race conditions on channels, but the two notions can be interchanged as seen
by recent works [22].

There is, however, a deeper notion of linearity that arises from propositions-
as-types interpretations, starting from [1]. Recently, the work [7] gave the
first such correspondence for sessions types, matching session typed processes
to Intuitionistic Linear Logic proofs. This kind of interpretation becomes
more relevant for asynchrony once the constraints of sequentiality (arising
from sequent proofs) are relaxed, as has been done in [14]2 where logical
sessions are obtained for asynchronous π-calculus, and even more in [33]
where logical sessions based on Proof Nets are obtained for a Solos [29] cal-
culus. Indeed, once we eliminate many of the prefixes, the need to perform
asynchronous subtyping may seem redundant, however this is not the case:
in distributed computing communications are implemented using sockets or
channels of some form, so our buffered model is in fact more realistic. In
the case of [14], our subtyping would allow output actions hidden under an
input prefix to be extracted, which corresponds to valid transformations in
Linear proofs. For example, we would allow B ⊗ (A( C) to be a subtype
of A( (B ⊗ C), under certain conditions.

9. Conclusion

We formalise for the first time session typing for a process language that
allows not only data but also runnable code to be the subject of structured
type-safe communications. The ability to exchange code is fundamental in
concurrent and distributed systems where programs cannot be fully fixed ab
initio and dynamicity is a prerequisite. We then relax the strict compatibility
requirements that govern pairs of interacting processes to allow certain classes
of message-passing actions to be permuted, offering not only greater flexibil-
ity in composing programs, but also guidance toward type-safe optimisations.
Our session typing system for the HOπ-calculus can serve as a theoretical
foundation for process and functional languages, and our asynchronous sub-
typing has been already implemented in order to allow message overlapping
in message passing parallel algorithms in a C language with sessions [41].

2Note that, as explained in [33], this work does not enjoy Subject Reduction, but this
can be fixed easily.
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The first author’s thesis also demonstrates that the theory developed in this
article is smoothly extensible to object-orientation [32]. Our future work
includes a type-preserving fully abstract encoding of HOSπ into the session
π-calculus based on a session-based asynchronous bisimulation [28] or be-
havioural equivalences [42]; a development of a decidable algorithm for the
asynchronous subtyping relation along the lines of [19]; extensions to multi-
party session types [4, 25]; and an incorporation with actor-based languages
for concurrency, following the Erlang-based development in [34]. In summary,
an automatic optimisation that preserves the intended semantics and does
not violate type-safety is interesting, both theoretically and practically, and
in this work we have established a solid theory to support this development.
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In Figure A.13, we list the sets of free names and variables of HOSπ.
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Term fv fn

x {x} ∅
a ∅ {a}
l / () / 0 ∅ ∅
s ∅ {s}
s ∅ {s}
λx.P fv(P ) \ {x} fn(P )
µx.λy.P fv(P ) \ {x, y} fn(P )
u(x).P / u(x).P fv(u) ∪ (fv(P ) \ {x}) fn(u) ∪ fn(P )
k?(x).P fv(k) ∪ (fv(P ) \ {x}) fn(k) ∪ fn(P )
k!〈V 〉.P fv(k) ∪ fv(V ) ∪ fv(P ) fn(k) ∪ fn(V ) ∪ fn(P )
k B {l1 :P1, . . . , ln :Pn} fv(k) ∪ fv(P1) ∪ . . . ∪ fv(Pn) fn(k) ∪ fn(P1) ∪ . . . ∪ fn(Pn)
k C l.P fv(k) ∪ fv(P ) fn(k) ∪ fn(P )
P |Q / PQ fv(P ) ∪ fv(Q) fn(P ) ∪ fn(Q)
(νa : 〈S〉)P fv(P ) fn(P ) \ {a}
(νs)P fv(P ) fn(P ) \ {s, s}
k :~h ∅ fn(k) ∪ fn(~h)

Figure A.13: Free Variables and Free Names
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B. Proofs on Asynchronous Subtyping

This appendix gives the proofs on the properties of 6c (Theorem 4.4).
The outline is given in the last paragraph of § 4.3.

Lemma B.1. If S1 6c S2 then unfoldn(S1) 6c S2.

Proof. Let < be a type simulation such that S1 < S2. Let

Unl (<) =
⋃
i∈1..n

{
(unfoldi(S ′1), S

′
2) | (S ′1, S ′2) ∈ <

}
∪ <

Clearly (unfoldn(S1), S2) ∈ Unl (<), but is has to be shown that Unl (<) is a
type simulation. For this we need to demonstrate that for any (T1, T2) ∈
Unl (<) the rules of simulation (Definition 4.3) hold. Since < ⊆ Unl (<) and
< is a simulation, we only need to examine the cases for (unfoldi(S ′1), S

′
2) ∈

Unl (<) \ <, that is, for the new elements for which (S ′1, S
′
2) ∈ < holds by our

construction of Unl (<).
In the following we write 6(11)

c to mean case (11) of Definition 4.3.

Case unfoldi(S ′1) = end. Then S ′1 = µt1 . . . µtz.end for 0 ≤ z ≤ i. We have,
by assumption, that (S ′1, S

′
2) ∈ <, therefore after applying 6(11)

c z times we
get (end, S ′2) ∈ <, and by the rules of simulation unfoldm(S ′2) = end, for some
m, as required.

Case unfoldi(S ′1) =![U1].S10. W.l.o.g let S ′1 = µt1 . . . µtz.![U1].S
′
10 with

0 ≤ z ≤ i. We have (S ′1, S
′
2) ∈ < and after z uses of 6(11)

c we obtain
(unfoldz(S ′1), S

′
2) ∈ < which can be written, based on the shape of S ′1, as

(![U1].S
′′
10, S

′
2) ∈ <. The type S ′′10 is derived from S ′10 after the type variable

substitutions induced by the z unfoldings on S ′1. By the rules of simula-
tion, from (![U1].S

′′
10, S

′
2) ∈ < we obtain unfoldm(S ′2) = A〈![U2].S2h〉h∈H and

(U2, U1) ∈ < and (S ′′10,A〈S2h〉h∈H) ∈ <. From the shape of S ′1 given previ-
ously we have that unfoldi(S ′1) =![U1].unfoldi−z(S ′′10) and by our assumptions
S10 = unfoldi−z(S ′′10). By the construction of Unl (<) and (S ′′10,A〈S2h〉h∈H) ∈
< we have that (unfoldi−z(S ′′10),A〈S2h〉h∈H) ∈ Unl (<). Therefore we have
(S10,A〈S2h〉h∈H) ∈ Unl (<). From the definition of Unl (<) which includes <
the above provide us with (U2, U1) ∈ Unl (<) and (S10,A〈S2h〉h∈H) ∈ Unl (<),
as required.

Case unfoldi(S ′1) = µt1 . . . µtz.S10. Then without loss of generality S ′1 =
µt′1 . . . µt

′
i.µt1 . . . µtz.S

′
10. The type S10 is derived from S ′10 after the type
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variable substitutions induced by the i unfoldings on S ′1. Since (S ′1, S
′
2) ∈ <,

after i applications of 6(11)
c we obtain (unfoldi(S ′1), S

′
2) ∈ < and hence

(unfold1(unfoldi(S ′1)), S
′
2) ∈ < which is the required result since < ⊆ Unl (<).

Other cases are similar.

Lemma B.2. If S1 6c S2 then S1 6c unfoldn(S2).

Proof. Let < be a type simulation such that S1 < S2. Let

Unr (<) =
⋃
i∈1..n

{
(S ′1, unfoldi(S ′2)) | (S ′1, S ′2) ∈ <

}
∪ <

The proof follows a pattern similar to the previous lemma. Clearly we have
(S1, unfoldn(S2)) ∈ Unr (<), but is has to be shown that Unr (<) is a type
simulation. For this we need to demonstrate that for any (T1, T2) ∈ Unr (<)
the rules of simulation (Definition 4.3) hold. Since < ⊆ Unr (<) and < is a
simulation, we only need to examine the cases for (S1, unfoldm(S2)) ∈ Unr (<)\
< with m ≤ n, that is, for the new elements for which (S1, S2) ∈ < holds by
the construction of Unr (<).

Interesting cases are:

Case S1 = end. Then (S1, S20) ∈ < and S2 = unfoldm(S20) and unfoldz(S20) =
end. If z ≤ m then unfoldm(S20) = end as required. If z > m then
unfoldz−m(S2) = end as required.

Case S1 =![U1].S
′
1. Then (S1, S20) ∈ < and S2 = unfoldm(S20) and unfoldz(S20) =

A〈![U2].S2h〉h∈H and (U2, U1) ∈ < and (S ′1,A〈S2h〉h∈H) ∈ <.
If z ≤ m then, using the definition of unfold

S2 = unfoldm−z(A〈![U2].S2h〉h∈H) = A〈![U2].unfoldm−z(S2h)〉h∈H

We have (U2, U1) ∈ <, then we need (S ′1,A〈unfoldm−z(S2h)〉h∈H) ∈ Unr (<).
From (S ′1,A〈S2h〉h∈H) ∈ < we obtain (S ′1, unfoldm−z(A〈S2h〉h∈H)) ∈ Unr (<),
and then from the definition of unfold we obtain unfoldm−z(A〈S2h〉h∈H) =
A〈unfoldm−z(S2h)〉h∈H . If z > m then unfoldz−m(S2) = A〈![U2].S2h〉h∈H and
the supporting elements are in <, as required.

Other cases are similar.
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Definition B.3 (Unfolding Extension). Given a simulation <, the un-
folding extension of < is defined as follows:

Un(<) = Unl (<) ∪ Unr (<)

Proposition B.1. If < ⊆6c then Un(<) ⊆6c. That is, for any simulation
<, the unfolding extension Un(<) is a type simulation.

Proof. Trivial as Un(<) is defined as the union of two simulations.
We now define the single-step permutation transformations for top-level

actions, which enable us to obtain more asynchronous subtypes, as this is
needed further on when, given a simulation, we obtain more asynchronous
simulations utilising single and multi-step permutations. There are two com-
ponents, permutation contexts C and permutation rules�, defined as follows:

Definition B.4 (Single-step Permutation).
Permutation Contexts

C ::= ?[U ].〈·〉h∈H | &[li : 〈·〉h∈H ]i∈I

Permutation Rules

S � S

C〈![U ].Sh〉h∈H � ![U ].C〈Sh〉h∈H

C〈⊕[li : Sih]i∈Ih〉h∈H � ⊕[li : C〈Sih〉h∈H ]i∈I ∀h ∈ H . I ⊆ Ih

Definition B.5 (Contextual Extension). Given a simulation <, the con-
textual extension of < is defined as follows:

CE(<) = { (?[U1].S1, ?[U2].S2) | (U1, U2) ∈ < ∧ (S1, S2) ∈ <}

∪ { (&[li : S1i]i∈I ,&[lj : S2j]j∈J) | J ⊆ I ∧ ∀j ∈ J . (S1j, S2j) ∈ <}

∪ <

Lemma B.6. If < ⊆6c then CE(<) ⊆6c. That is, for any simulation <, the
contextual extension CE(<) is a type simulation.
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Proof. Trivial since the generated pairs in CE(<) are exactly those justified
by the conditions in Definition 4.3, cases (8) and (10), with the required
assumptions provided in <. We do not need to examine the < subcomponent
as it is a simulation by assumption.

Next we define the asynchronous extension of a simulation, with degree n.
The degree represents the number of single-step permutations, applied suc-
cessively to all the components of the given simulation, up to asynchronous
contexts A.

Definition B.7 (Asynchronous Extension). Given a simulation <, the
asynchronous extension of < with degree n is defined as follows:

α0(<) = <

αn(<) = CE(Uω(αn−1(<)))

∪{ (A〈S ′1h〉h∈H , S2) | (A〈S1h〉h∈H , S2) ∈ αn−1(<)
∧ ∀h ∈ H .S1h � S ′1h } (n ≥ 1 )

The notation Uω(αn−1(<)) stands for the union of all Um(αn−1(<)) such
that m ∈ N.

Lemma B.8. If < ⊆6c then αn(<) ⊆6c. That is, for any simulation < and
degree n ∈ N, the asynchronous extension αn(<) is a type simulation.

Proof. We proceed by induction on the degree n. The base case of n = 0
holds because < is a simulation by assumption. We then prove the inductive
case for any n ≥ 1.

By the inductive hypothesis αn−1(<) ⊆6c, then by Proposition B.1 we
have Uω(αn−1(<)) ⊆6c, and by Lemma B.6 we obtain CE(Uω(αn−1(<))) ⊆6c.
Therefore, it is not necessary to examine pairs in this subset of αn(<). Then,
it remains to examine an arbitrary pair (A〈S ′1k〉k∈K , S2) ∈ αn(<) such that
(A〈S1k〉k∈K , S2) ∈ αn−1(<) with ∀ k ∈ K .S1k � S ′1k. We proceed by taking
cases on the shape of the context A.

Case A = 〈·〉k∈K . Then let S1 = A〈S1k〉k∈K , and S ′1 = A〈S ′1k〉k∈K . We have
S1 � S ′1, and proceed by examination of the permutation applied.

Subcase S1 = S ′1. Trivial.

Subcase S1 = C〈![U ].S1k〉k∈K and S ′1 =![U ].C〈S1k〉k∈K . We proceed with
cases on C.
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If C =?[U1].〈·〉k∈K , then

S1 = C〈![U ].S1k〉k∈K =?[U1].![U ].S1k

and
S ′1 =![U ].C〈S1k〉k∈K =![U ].?[U1].S1k

(S1, S2) ∈ αn−1(<) ⇒ unfoldn(S2) =?[U2].S
′
2

∧ (U1, U2) ∈ αn−1(<)
∧ (![U ].S1k, S

′
2) ∈ αn−1(<)

(![U ].S1k, S
′
2) ∈ αn−1(<) ⇒ unfoldm(S ′2) = A1〈![U ′].S2h〉h∈H

∧ (U ′, U) ∈ αn−1(<)
∧ (S1k,A1〈S2h〉h∈H) ∈ αn−1(<)

From the definition of n-times unfolding we obtain

unfoldn+m(S2) =?[U2].A1〈![U ′].S2h〉h∈H = A2〈![U ′].S2h〉h∈H

with
A2 =?[U2].A1

Now we proceed to justify the inclusion (S ′1, S2) ∈ αn(<). Then we have
(![U ].?[U1].S1k, S2) ∈ αn(<). Also unfoldn+m(S2) = A2〈![U ′].S2h〉h∈H with
(U ′, U) ∈ αn−1(<)(⊆ αn(<)). We need to show that (?[U1].S1k,A2〈S2h〉h∈H) ∈
αn(<) which can be written (?[U1].S1k, ?[U2].A1〈S2h〉h∈H) ∈ αn(<). We
have (U1, U2) ∈ αn−1(<) and (S1k,A1〈S2h〉h∈H) ∈ αn−1(<), hence we have
(?[U1].S1k,A2〈S2h〉h∈H) ∈ CE(αn−1(<)) ⊆ αn(<) as required.

If C = &[li : 〈·〉k∈K ]i∈I , then

S1 = C〈![U ].S1k〉k∈K = &[li :![U ].S1i]i∈I

and
S ′1 =![U ].C〈S1k〉k∈K =![U ].&[li : S1i]i∈I

(S1, S2) ∈ αn−1(<) ⇒ unfoldn(S2) = &[lj : S2j]j∈J
∧ J ⊆ I
∧ ∀j ∈ J . (![U ].S1j, S2j) ∈ αn−1(<)
⇒ ∀j ∈ J . unfoldmj(S2j) = Aj〈![U ′].S ′2jh〉h∈Hj

∧ (U ′, U) ∈ αn−1(<)
∧ ∀j ∈ J . (S1j,Aj〈S ′2jh〉h∈Hj) ∈ αn−1(<)

57



Let mmax = maxj∈J(mj). From the unfolding construction of Uω(αn−1(<))
we obtain

∀j ∈ J . (S1j, unfoldmmax−mj(Aj〈S ′2jh〉h∈Hj)) ∈ Uω(αn−1(<))

From the definition of n-times unfolding we obtain

unfoldn+mmax(S2) = &[lj : unfoldmmax−mj(Aj〈![U ′].S ′2jh〉h∈Hj)]j∈J
= A′〈![U ′].S ′2jh〉h∈H

with

A′ = &[lj : unfoldmmax−mj(Aj)]j∈J and H = ]j∈J (Hj)

Now we proceed to justify the inclusion (![U ].&[li : S1i]i∈I , S2) ∈ αn(<).
We have unfoldn+mmax(S2) = A′〈![U ′].S ′2jh〉h∈H , and (U ′, U) ∈ αn−1(<). We
then need to show that (&[li : S1i]i∈I ,A′〈S ′2jh〉h∈H) ∈ αn(<). Since J ⊆ I

and ∀j ∈ J . (S1j, unfoldmmax−mj(Aj〈S ′2jh〉h∈H)) ∈ Uω(αn−1(<)), we have that
(&[li : S1i]i∈I ,&[lj : unfoldmmax−mj(Aj〈S ′2jh〉h∈H)]j∈J) ∈ CE(Uω(αn−1(<))), as
required.

Subcase S1 = C〈⊕[li : S1ik]i∈Ik〉k∈K and S ′1 = ⊕[li : C〈S1ik〉k∈K ]i∈I with ∀ k ∈
K . I ⊆ Ik. We proceed with cases on C.

If C =?[U1].〈·〉k∈K , then

S1 = C〈⊕[li : S1ik]i∈Ik〉k∈K =?[U1].⊕ [li : S1i]i∈I

and
S ′1 = ⊕[li : C〈S1ik〉k∈K ]i∈I = ⊕[li :?[U1].S1i]i∈I

(S1, S2) ∈ αn−1(<) ⇒ unfoldn(S2) =?[U2].S
′
2

∧ (U1, U2) ∈ αn−1(<)
∧ (⊕[li : S1i]i∈I , S

′
2) ∈ αn−1(<)

(⊕[li : S1i]i∈I , S
′
2) ∈ αn−1(<) ⇒ unfoldm(S ′2) = A1〈⊕[lj : S2jh]j∈Jh〉h∈H

∧ ∀h ∈ H . I ⊆ Jh
∧ ∀i ∈ I . (S1i,A1〈S2ih〉h∈H) ∈ αn−1(<)

From the definition of n-times unfolding we obtain

unfoldn+m(S2) =?[U2].A1〈⊕[lj : S2jh]j∈Jh〉h∈H = A2〈⊕[lj : S2jh]j∈Jh〉h∈H
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with
A2 =?[U2].A1

Now we proceed to justify the inclusion (S ′1, S2) ∈ αn(<). We have (⊕[li :
?[U1].S1i]i∈I , S2) ∈ αn(<). Also unfoldn+m(S2) = A2〈⊕[lj : S2jh]j∈Jh〉h∈H with
∀h ∈ H . I ⊆ Jh. We then need to show that ∀i ∈ I . (?[U1].S1i,A2〈S2ih〉h∈H) ∈
αn(<) which can be written (?[U1].S1i, ?[U2].A1〈S2ih〉h∈H) ∈ αn(<). We
have (U1, U2) ∈ αn−1(<) and (S1i,A1〈S2ih〉h∈H) ∈ αn−1(<), hence we have
(?[U1].S1i,A2〈S2ih〉h∈H) ∈ CE(αn−1(<)) as required.

If C = &[li : 〈·〉k∈K ]i∈I , then

S1 = C〈⊕[li : S1ik]i∈Ik〉k∈K = &[l′j : ⊕[li : S1ij]i∈Ij ]j∈J

and

S ′1 = ⊕[li : C〈S1ik〉k∈K ]i∈I = ⊕[li : &[l′j : S1ij]j∈J ]i∈I ∀j ∈ J . I ⊆ Ij

(S1, S2) ∈ αn−1(<) ⇒ unfoldn(S2) = &[l′z : S2z]z∈Z
∧ Z ⊆ J
∧ ∀z ∈ Z . (⊕[li : S1iz]i∈Iz , S2z) ∈ αn−1(<)
⇒ ∀z ∈ z . unfoldmz(S2z) = Az〈⊕[lj : S2zjh]j∈Jh〉h∈Hz

∧ ∀z ∈ z . ∀h ∈ Hz . Iz ⊆ Jh
∧ ∀z ∈ z . ∀i ∈ Iz . (S1iz,Az〈S2zih〉h∈Hz) ∈ αn−1(<)

Letmmax = maxz∈Z(mz). Then from the unfolding construction of Uω(αn−1(<))
we obtain

∀z ∈ Z . ∀i ∈ Iz . (S1iz, unfoldmmax−mz(Az〈S2zih〉h∈Hz)) ∈ Uω(αn−1(<))

From the definition of n-times unfolding we obtain

unfoldn+mmax(S2) = &[l′z : Az〈⊕[lj : S2zjh]j∈Jh〉h∈Hz ]z∈Z
= A′〈⊕[lj : S2zjh]j∈Jh〉h∈H

with

A′ = &[l′z : unfoldmmax−mz(Az)]z∈Z and H = ]z∈Z (Hz)

Now we proceed to justify the inclusion (⊕[li : &[l′j : S1ij]j∈J ]i∈I , S2) ∈
αn(<). We have unfoldn+mmax(S2) = A′〈⊕[lj : S2zjh]j∈Jh〉h∈H and from I ⊆
Iz∈Z⊆J ⊆ Jh∈Hz we obtain ∀h ∈ H . I ⊆ Jh. We then need to show that
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∀i ∈ I . (&[l′j : S1ij]j∈J ,&[l′z : unfoldn+mmax(Az〈S2zih〉h∈Hz)]z∈Z) ∈ αn(<).
These pairs are in CE(Uω(αn−1(<))) by construction, as required.

Case A =?[U ].A′. From the shape of A, we have (?[U ].A′〈S1k〉k∈K , S2) ∈
αn−1(<). By the rules of simulation, unfoldm(S2) =?[U ′].S ′2 and (U,U ′) ∈
αn−1(<) and (A′〈S1k〉k∈K , S ′2) ∈ αn−1(<). By the construction of αn(<)
we have (A′〈S ′1k〉k∈K , S ′2) ∈ αn(<). It is now straightforward to show that
(?[U ].A′〈S ′1k〉k∈K , S2) is justified by the rules of simulation and the above
hypotheses.

Case A = &[li : Ai]i∈I . From the shape of A, (&[li : Ai〈S1k〉k∈K ]i∈I , S2) ∈
αn−1(<). By the rules of simulation, unfoldm(S2) = &[lj : S2j]j∈J and J ⊆ I
and ∀ j ∈ J . (Aj〈S1k〉k∈K , S2j) ∈ αn−1(<). By the construction of αn(<) we
have ∀ j ∈ J . (Aj〈S ′1k〉k∈K , S2j) ∈ αn(<). As before it is now trivial to justify
(&[li : Ai〈S ′1k〉k∈K ]i∈I , S2) ∈ αn(<).

Corollary B.9 (Multi-step Permutation).

1. If (A〈![U1].S1k〉k∈K , S2) ∈ αω(<) then (![U1].A〈S1k〉k∈K , S2) ∈ αω(<)

2. If (A〈⊕[li : S1ih]i∈Ih〉h∈H , S2) ∈ αω(<) and ∀h ∈ H . I ⊆ Ih, then
(⊕[li : A〈S1ih〉h∈H ]i∈I , S2) ∈ αω(<).

As before, the notation αω(<) stands for the union of all αn(<) with
n ∈ N.

Proof. Every context A can be written as a (possibly empty) nested struc-
ture of C contexts, such that A = C〈Ch〈Chk〈. . .〉...〉h∈H〉k∈K . Every level of
asynchronous permutation in αω(<) generates pairs by applying a trans-
formation on the innermost C contexts of all matching types; in this way
it reduces the depth of the innermost contexts for the generated type pairs,
which are matched at the next level. At every level, the penultimate contexts
become last. By induction on the maximum depth of the nested C-context
representation of any A, we can obtain the result formally.

Proposition B.2. If (S1, S2) ∈ αω(<) then (unfoldn(S1), S2) ∈ αω(<)

Proof. Easy to obtain: since � allows the identity permutation, then for all
m, αm(<) will include CE(Uω(αm−1(<))) ⊇ Uω(αm−1(<)) even when there are
no more effective permutations to apply on any type, and up to all contexts.
Suppose (S1, S2) ∈ αz(<), take m = z + n + 1, and we obtain the result
(unfoldn(S1), S2) ∈ αm(<).
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Transitivity Connection. Next is the main definition of this section, the tran-
sitivity connection of two relations. It is defined as the relational composition
(taking the union of both directions, needed due to the presence of contravari-
ant components) of the asynchronous extensions of the given simulations,
respectively. We then prove that the transitivity connection (of simulations)
is a simulation, which is, effectively, a proof of the transitivity of 6c.

Definition B.10 (Transitivity Connection). For type simulations <1 and
<2, the transitivity connection trc(<1,<2) is defined as follows:

trc(<1,<2) = αω(<1) · αω(<2) ∪ αω(<2) · αω(<1)

Lemma B.11. If <i∈{1,2} ⊆6c then trc(<1,<2) ⊆6c. That is, for any
two simulations <1 and <2, the transitivity connection trc(<1,<2) is a type
simulation.

Proof. We examine an arbitrary (T1, T3) ∈ αω(<1) · αω(<2) ⊆ trc(<1,<2),
taking cases on the shape of T1. The remaining cases, for membership in
αω(<2) · αω(<1), are symmetric.

Case T1 =![U1].S1. Then (T1, T2) ∈ αω(<1) and (T2, T3) ∈ αω(<2).

(![U1].S1, T2) ∈ αω(<1) ⇒ unfoldn(T2) = A1〈![U2].S2h〉h∈H
∧ (U2, U1) ∈ αω(<1)
∧ (S1,A1〈S2h〉h∈H) ∈ αω(<1)

(T2, T3) ∈ αω(<2) ⇒ (unfoldn(T2), T3) ∈ αω(<2)
⇔ (A1〈![U2].S2h〉h∈H , T3) ∈ αω(<2)

Corollary B.9 ⇒ (![U2].A1〈S2h〉h∈H , T3) ∈ αω(<2)
⇒ unfoldm(T3) = A2〈![U3].S3k〉k∈K
∧ (U3, U2) ∈ αω(<2)
∧ (A1〈S2h〉h∈H ,A2〈S3k〉k∈K) ∈ αω(<2)

Ui∈{1,2} = S ′i ⇒ (U3, U1) = (U3, U1) ∈ αω(<2) · αω(<1)
∧ (S1,A2〈S3k〉k∈K) ∈ αω(<1) · αω(<2)

Ui∈{1,2} 6= S ⇒ (U3, U1) = (U1, U3) ∈ αω(<1) · αω(<2)
∧ (S1,A2〈S3k〉k∈K) ∈ αω(<1) · αω(<2)
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Hence (T1, T3) is justified in trc(<1,<2).

Case T1 =?[U1].S1. Then (T1, T2) ∈ αω(<1) and (T2, T3) ∈ αω(<2).

(?[U1].S1, T2) ∈ αω(<1) ⇒ unfoldn(T2) =?[U2].S2

∧ (U1, U2) ∈ αω(<1)
∧ (S1, S2) ∈ αω(<1)

(T2, T3) ∈ αω(<2) ⇒ (unfoldn(T2), T3) ∈ αω(<2)
⇔ (?[U2].S2, T3) ∈ αω(<2)
⇒ unfoldm(T3) =?[U3].S3

∧ (U2, U3) ∈ αω(<2)
∧ (S2, S3) ∈ αω(<2)

Ui∈{1,2} = S ′i ⇒ (U1, U3) = (U1, U3) ∈ αω(<1) · αω(<2)
∧ (S1, S3) ∈ αω(<1) · αω(<2)

Ui∈{1,2} 6= S ⇒ (U1, U3) = (U3, U1) ∈ αω(<2) · αω(<1)
∧ (S1, S3) ∈ αω(<1) · αω(<2)

Hence, as before, (T1, T3) is justified in trc(<1,<2).

Case T1 = ⊕[li : S1i]i∈I . Then (T1, T2) ∈ αω(<1) and (T2, T3) ∈ αω(<2).

(⊕[li : S1i]i∈I , T2) ∈ αω(<1) ⇒ unfoldn(T2) = A1〈⊕[lj : S2jh]j∈Jh〉h∈H
∧ ∀h ∈ H . I ⊆ Jh
∧ ∀ i ∈ I . (S1i,A1〈S2ih〉h∈H) ∈ αω(<1)

(T2, T3) ∈ αω(<2) ⇒ (unfoldn(T2), T3) ∈ αω(<2)
⇔ (A1〈⊕[lj : S2jh]j∈Jh〉h∈H , T3) ∈ αω(<2)

Corollary B.9 with I ⊆ Jh∈H ⇒ (⊕[li : A1〈S2ih〉h∈H ]i∈I , T3) ∈ αω(<2)
⇒ unfoldm(T3) = A2〈⊕[lz : S2zk]z∈Zk

〉k∈K
∧ ∀ k ∈ K . I ⊆ Zk
∧ ∀ i ∈ I . (A1〈S2ih〉h∈H ,A2〈S3ik〉k∈K) ∈ αω(<2)
⇒ ∀ i ∈ I . (S1i,A2〈S3ik〉k∈K) ∈ αω(<1) · αω(<2)

Hence (T1, T3) is justified in trc(<1,<2).
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Case T1 = µt.S1. Then (T1, T2) ∈ αω(<1) and (T2, T3) ∈ αω(<2).

(µt.S1, T2) ∈ αω(<1) ⇒ (unfold1(µt.S1), T2) ∈ αω(<1)
⇒ (unfold1(µt.S1), T3) ∈ αω(<1) · αω(<2)

Thus, (T1, T3) is justified in trc(<1,<2).
Other cases are similar, and in fact simpler, because they make no use of

asynchronous contexts and permutations.

Proof of Theorem 4.4. For reflexivity it is easy to prove {(T, T ) |T ∈ T } ⊆6c.
For transitivity, we have that whenever (T1, T2) ∈ <1 and (T2, T3) ∈ <2, then
(T1, T3) ∈ trc(<1,<2), and trc(<1,<2) ⊆6c by Lemma B.11.

C. Proofs of Type Soundness

We proceed to show that typed processes enjoy type soundness and type
safety. We begin with a number of auxiliary properties, and then prove the
Substitution Lemma (page 65).

Lemma C.1 (Closed Judgement). If Γ; Λ; Σ ` P : T and x ∈ fv(P ) then
x ∈ dom(Γ) ∪ dom(Λ) ∪ dom(Σ).

Proof. By induction on the typing derivation for P . The interesting cases are
the axioms which form the leaves of a derivation. If the last rule is (Shared),
(LVar), or (Session), then P = x and x appears in one of typing environments,
depending on which axiom was applied. The other cases are easy to obtain
using the inductive hypothesis.

We have the standard weakening and strengthening for Γ, but not for Λ
and Σ.

Lemma C.2 (Γ-Weakening). If Γ; Λ; Σ ` P : T and x 6∈ dom(Γ,Λ,Σ) then
Γ, x :U ; Λ; Σ ` P : T .

Lemma C.3 (Γ-Strengthening). If Γ, x : U ; Λ; Σ ` P : T and x 6∈ fv(P )
then Γ; Λ; Σ ` P : T .

The typing rule (Close) can be used to introduce arbitrary, but ended,
hypotheses to the session environment. This is a form of weakening, albeit
restricted, and we introduce the following lemma so that we can strengthen
the hypotheses by removing any one introduced by (Close). This lemma is
used in the proof of Structural Congruence.
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Lemma C.4 (Σ-Strengthening). If Γ; Λ; Σ, k : end ` P : T and k 6∈ fn(P )
then Γ; Λ; Σ ` P : T .

Proof. By induction on the typing derivation for P .

Lemma C.5 (Linear Variable Occurrence). If Γ; Λ, x :U ( T ; Σ ` P : T
then x ∈ fv(P ).

Proof. By induction on the typing derivation for P . Most cases are straight-
forward, using the inductive hypothesis. The interesting case is for (LVar),
where P = x, proving the occurrence of the linear variable.

Lemma C.6 (Endpoint Occurrence). If Γ; Λ; Σ, x :S ` P : T and S 6= end
then x ∈ fv(P ).

Proof. By induction on the typing derivation for P . Most cases are straight-
forward, using the inductive hypothesis. The interesting case is for (Session),
where P = x, proving the occurrence of the endpoint. The sidecondition
S 6= end serves to exclude the cases where x appears in the session environ-
ment by introduction through (Close).

Lemma C.7 (Ended Session). If Γ; Λ; Σ, x :S ` P : T and x 6∈ fv(P ) then
S = end.

Proof. By induction on the typing derivation for P . Most cases are straight-
forward, using the inductive hypothesis. The interesting case is when the
last rule applied was (Close), which does not require x to be free in the term,
and also implies that S = end.

Lemma C.8 (Linear Unique Occurrence). If Γ; Λ, x :U ( T ; Σ ` P : T ,
and P = Q1 ·Q2 or P = Q1 |Q2 or P = k!〈Q1〉.Q2 (in the last case Q1 = V ),
then x 6∈ fv(Qi) for i = 1 or i = 2.

Proof. We proceed by induction on the typing derivation for P . Note that we
have x ∈ fv(P ) by Lemma C.5. Suppose x ∈ fv(Q1). Assume Λ, x :U ( T ≡
Λ1,Λ2 and Σ ≡ Σ1,Σ2. Let Γ; Λ1; Σ1 ` Q1 : T1 (1) and Γ; Λ2; Σ2 ` Q2 : T2
from the I.H. on the premises of the last rule applied; this was either (App)
or (Par) or (Send). From Lemma C.1 we know that since x is free in Q1 it
appears in one of the typing environments of (1), and in particular Λ1 since
by the well-formedness of the assumed judgement for P it cannot appear in
Γ or Σ1 ⊆ Σ when it appears in Λ, x :U ( T . Now assume additionally that
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x ∈ fv(Q2). Then by Lemma C.1 we have that x ∈ dom(Γ,Λ2,Σ2) which is
a contradiction since by the well-formedness of the judgement for P we have
that x cannot appear in Γ or Λ2 ⊆ Λ or Σ2 ⊆ Σ. Hence x 6∈ fv(Q2). The
case for x 6∈ fv(Q1) is symmetric.

Lemma C.9 (Endpoint Unique Occurrence). If Γ; Λ; Σ, x : S ` P : T ,
and P = Q1 ·Q2 or P = Q1 |Q2 or P = k!〈Q1〉.Q2 (in the last case Q1 = V ),
then x 6∈ fv(Qi) for i = 1 or i = 2.

Proof. The proof is by induction on the typing derivation, and follows the
same pattern as in Lemma C.8. When x 6∈ fv(P ), which is a possibility
due to (Close), the result is immediate. When x ∈ fv(P ) we proceed as in
Lemma C.8.

The Substitution Lemma which follows is mostly standard, noting that
we only need to define substitution for terms that do not contain runtime
elements, i.e., we do not need to consider queues.

Lemma C.10 (Substitution Lemma).

1. Suppose Γ, x : U ; Λ; Σ ` P : T and Γ; ∅; ∅ ` V : U . Then Γ; Λ,Σ `
P{V/x} : T .

2. Assume Γ; Λ1, x :U ( T ′; Σ1 ` P : T and Γ; Λ2; Σ2 ` V : U ( T ′ with
Λ1,Λ2 and Σ1,Σ2 defined. Then Γ; Λ1,Λ2; Σ1,Σ2 ` P{V/x} : T .

3. Suppose Γ; Λ; Σ, x : S ` P : T and k 6∈ dom(Γ,Λ,Σ). Then Γ; Λ; Σ, k :
S ` P{k/x} : T .

Proof The proof is by induction on the last rule applied in the typing
derivation for P . In Part (1) we do not state cases where substitution has no
effect, as these can be shown trivially from the assumptions with strength-
ening on the hypothesis for x in Γ, x : U . In Part (2), we assume that
substitution is only applied when x ∈ fv(P ), which is correct since in any
judgement, x ∈ dom(Λ) implies that x occurs in the term (see Lemma C.5).
For Part (3) we cannot assume that x ∈ fv(P ), since usages of the shape
x : end can be obtained using (Close) even when x is not free in the term.

Part (1)
Case (Shared) P = x T = U Λ = Σ = ∅

65



We have P{V/x} = V by the hypotheses, then T = U and Λ = Σ = ∅. Then
we use Γ; ∅; ∅ ` V : U to obtain the required judgement Γ; Λ,Σ ` P{V/x} : T .

Case (LVar) P = x is excluded because x ∈ dom(Λ) implies x 6∈ dom(Γ) by
the well-formedness of the judgement for P . This case is proved in Part (2).

Case (Session) P = x is excluded because x ∈ dom(Σ) implies x 6∈ dom(Γ)
by the well-formedness of the judgement for P . This case is proved in Part
(3).

Case (Sub) Trivial to show using the I.H. on the premise followed by an
application of (Sub).

Case (Promotion, Dereliction) Easy to show using the I.H. on the premise
followed by an application of the same rule.

Case (Abs) P = λ(z : U1).Q z 6= x T = U1( T1

From the I.H. on the premises we have (Γ, x :U ; Λ; Σ) # z :U1 ` Q{V/x} : T1
(1). With an application of (Abs) on (1), binding variable z, we obtain
Γ, x :U ; Λ; Σ ` λ(z : U1).Q{V/x} : T (2). Now, since by the substitution we
have that x 6∈ fv(λ(z : U1).Q{V/x}), we use strengthening on (2) to remove
the hypothesis for x and obtain the required judgement.

Case (Rec) very similar to the case for (Abs).

Case (App) P = Q1 ·Q2 Λ = Λ1,Λ2 Σ = Σ1,Σ2

From the premises we obtain Γ, x :U ; Λi; Σi ` Qi{V/x} : Ti with T1 = U ′ (
T or T1 = U ′ → T and T2 = U ′. We then apply (App) with the above
judgements in the premises, and obtain the result. Strengthening to remove
the hypothesis for x (which is not free in the resulting term) is the last step.

Case (Nil) , (New), (News) are all straightforward to obtain from the premises
using the I.H. followed by an application of the respective rule. Removing the
hypothesis for x is used as before to obtain the desired shared environment
for the final judgement.

Case (Conn) P = u(z).Q z 6= x T = �
We take the following cases:
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1. Suppose u = x. Then we have Γ, x : U ; Λ; Σ ` x(z).Q : � (1). Also
V = u′ and from the assumptions Γ; ∅; ∅ ` u′ : U (2) with U = 〈S〉.
We have P{V/x} = u′(z).Q{V/x}. From (1) we obtain the premise
Γ, x : U ; Λ; Σ, z : S ` Q : � (3). Applying the I.H. on (3) we get
Γ; Λ; Σ, z :S ` Q{V/x} : � (4). We now apply (Conn) with (2) and (4)
to obtain Γ; Λ; Σ ` u′(z).Q{V/x} : � as required.

2. Suppose u 6= x. Then P{V/x} = u(z).Q{V/x}. From the assumption for
P we obtain the premise Γ, x :U ; Λ; Σ ` u : 〈S〉 (5). Then since x 6= u
we can strengthen the hypotheses and obtain Γ; Λ; Σ ` u : 〈S〉 (6). We
obtain (4) as before, and apply (Conn) using (4) and (6) to obtain the
required judgement.

Case (ConnDual) is very similar to (Conn).

Case (Recv) , very similar to (Abs).

Case (Send) is similar to (App).

Case (Par) is straightforward to obtain using the I.H. on the premises
followed by an application of (Par).

Case (Close) is straightforward to obtain using the I.H. on the premises
followed by an application of (Close).

Case (Bra) , (Sel) is easy to prove using the I.H. on the premises. Note that
k 6= x by the assumptions since x is assigned a shared type.

Part (2)

Case (Shared) P = x is excluded because x appears in the linear func-
tion environment and therefore cannot also be in the shared environment as
required by (Shared).

Case (LVar) P = x T = U ( T ′ Λ1 = ∅ Σ1 = ∅
From the assumed judgement for P (note that Λ1 = ∅ and Σ1 = ∅) we have
Γ; {x :U ( T ′} ; ∅ ` x : T . Then from the assumed judgement for V we have
Γ; Λ2; Σ2 ` V : U ( T ′ and since P{V/x} = V and Λ1 = Σ1 = ∅, this is the
required typing judgement.
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Case (Session) P = k = x is excluded because x appears in the linear
function environment and therefore cannot also be in the session environment
as required by (Session), by well-formedness.

Case (Sub) As in Part (1), trivial to show using the I.H. on the premise
followed by an application of (Sub).

Case (Abs) P = λ(z : U1).Q z 6= x T = U1( T1
From the I.H. on the premises of the judgement for P we have (with the hy-
pothesis for x now removed from the linear environment) (Γ; Λ1,Λ2; Σ1,Σ2) #
z :U1 ` Q{V/x} : T1 (1). With an application of (Abs) on (1), binding variable
z, we obtain Γ; Λ1,Λ2; Σ1,Σ2 ` λ(z : U1).Q{V/x} : T as required.

Case (Rec) similar to the case for (Abs).

Case (App) P = Q1 ·Q2 Σ1 = Σ11,Σ12 Λ1, x :U ( T ′ = Λ11,Λ12

From the assumption Γ; Λ1, x :U ( T ′; Σ1 ` P : T (1) and Lemma C.5 we
have that x ∈ fv(P ). Using P = Q1 ·Q2 with Lemma C.8 on the assumption
we also have that x 6∈ fv(Qi) for some i ∈ {1, 2}. We can therefore take two
cases:

1. Take x ∈ fv(Q1) and x 6∈ fv(Q2). Then P{V/x} = Q1{V/x} · Q2. The
last rule applied (modulo (Sub)) is (App). By the I.H. on the premise
Γ; Λ′11, x :U ( T ′; Σ11 ` Q1 : T1 of (1), where T1 is U1( T or U1 → T ,
we obtain Γ; Λ′11,Λ2; Σ11,Σ2 ` Q1{V/x} : T1 (2). The other premise
of (1) is Γ; Λ12; Σ12 ` Q2 : U1 (3). Now we can apply (App) with (2)
and (3) as premises. We thus obtain the required judgement.

2. The case x ∈ fv(Q2) and x 6∈ fv(Q1) is symmetric. One note is that if
U1 is an→-type, then by (Promotion) we have that Λ12 = Σ12 = ∅, and
x 6∈ dom(Γ) by WF of the assumption, hence in that case we have a
contradiction since it must hold that x 6∈ fv(Q2) by Lemma C.1. This
verifies our intuition that if a linear variable x appears in Q2, then Q2

cannot be typed with a shared function type.

Case (Nil) , (New), (News) are straightforward using the I.H.

Case (Conn) , (ConnDual) follow a similar pattern to the same cases in Part
(1). The proof is slightly simpler since we have that if P = u(x).Q then since
x is a linear function variable u 6= x.
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Case (Recv) very similar to (Abs).

Case (Send) is similar to (App).

Case (Par) is straightforward to obtain, as before, using the I.H. on the
premises followed by an application of (Par).

Case (Close) is straightforward as in the previous part.

Case (Bra) , (Sel) is easy to prove using the I.H. on the premises. Note that
k 6= x by the assumptions since x is assigned a linear type.

Part (3)
Most cases are straightforward as before. For the case (App), (Par), the

proof is similar to the other parts but makes use of Lemma C.9 (instead of
Lemma C.8).

Case (Recv) P = k′?(z).Q T = �
We have Γ; Λ; Σ, x :S ` k′?(z).Q : �. Then we take cases on k′.

1. k′ = x. Then P{k/x} = k?(z).Q{k/x} and S =?[U ].S ′. From the
premises of (Recv) we obtain (Γ; Λ; Σ, x :S ′) # z :U ` Q : �. By the I.H.
we have (Γ; Λ; Σ, k :S ′) # z :U ` Q{k/x} : �. Then with an application
of (Recv) we obtain Γ; Λ; Σ, k :?[U ].S ′ ` k?(z).Q{k/x} : � as required.

2. k′ 6= x. Then P{k/x} = k′?(z).Q{k/x} and Σ = Σ′, k′ :?[U ].S ′. As before
by the premises (Γ; Λ; Σ′, k′ : S ′, x : S) # z : U ` Q : �. By the I.H.
(Γ; Λ; Σ′, k′ :S ′, k :S) # z :U ` Q{k/x} : �. Then with an application of
(Recv) we obtain Γ; Λ; Σ, k :S ` k′?(z).Q{k/x} : � as required.

Case (Send) P = k′!〈V 〉.Q T = � Σ, x : S = (Σ1,Σ2) \ {k′ : S ′} , k′ :![U ].S ′

Λ = Λ1,Λ2

From the premises of (Send) we have:

Γ; Λ1; Σ1 ` Q : � (1)
Γ; Λ2; Σ2 ` V : U (2)
k′ :S ′ ∈ Σi i = 1 or i = 2 (3)

Then we perform case analysis on k′:

1. Suppose k′ = x. Then S =![U ].S ′. We now look at the occurrence of x
in the session environments:
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(a) Let x :S ′ ∈ Σ1, then Σ1 = Σ′1, x : S ′ and P{k/x} = k!〈V 〉.Q{k/x}.
Using the I.H. on (1) we obtain Γ; Λ1; Σ′1, k :S ′ ` Q{k/x} : � (3).
Then we apply (Send) with (3) and (2), with the sideconditions
clearly satisfied from the assumptions, to obtain Γ; Λ; Σ′1,Σ2, k :
![U ].S ′ ` k!〈V 〉.Q{k/x} : � as required.

(b) Let x :S ′ ∈ Σ2, then Σ2 = Σ′2, x : S ′ and P{k/x} = k!〈V {k/x}〉.Q.
From the I.H. on (2) we have Γ; Λ2; Σ′2, k : S ′ ` V {k/x} : U (4).
In this case we have U 6= U ′ → T ′ otherwise Σ2 would be the
empty set. We now apply (Send) with (1) and (4) to obtain
Γ; Λ; Σ1,Σ

′
2, k :![U ].S ′ ` k!〈V {k/x}〉.Q : � as required.

2. Suppose k′ 6= x. As above we look at the occurrence of x in the session
environments. Since k′ 6= x we have two cases:
(a) Let x :S ∈ Σ1, then Σ1 = Σ′1, x : S and P{k/x} = k′!〈V 〉.Q{k/x}.

By the I.H. on (1), Γ; Λ1; Σ′1, k : S ` Q{k/x} : � (5). We apply
(Send) as before with (5) and (2), the sideconditions are satisfied
(we do not check where k′ occurs in the session environments Σ′1
and Σ2 as the sidecondition is met by the assumptions), and obtain
Γ; Λ; (Σ′1,Σ2, k : S) \ {k′ :S ′} , k′ :![U ].S ′ ` k′!〈V 〉.Q{k/x} : � as
required.

(b) Let x :S ∈ Σ2, then Σ2 = Σ′2, x : S and P{k/x} = k′!〈V {k/x}〉.Q.
Using the same sequence of steps as before we obtain the result.

Case (Close)
Suppose (Close) was applied for some k′. Then the premise obtained is:

Γ; Λ; (Σ, x :S) \ {k′ :end} ` P : T (1)

We now distinguish two cases:

1. x = k′. Then S = end. Also, x 6∈ dom(Γ,Λ,Σ) by the well-formedness
of (1). By Lemma C.1 x ∈ fv(P ) implies x ∈ dom(Γ,Λ,Σ) thus we
have x 6∈ fv(P ). Then P{k/x} = P . From (1) we obtain:

Γ; Λ; Σ ` P : T (2)

We have k 6∈ dom(Γ,Λ,Σ) by assumption, and we can apply (Close) to
obtain:

Γ; Λ; Σ, k :end ` P : T

which is the desired result, since S = end and P{k/x} = P .

70



2. x 6= k′. Then from (1) we obtain:

Γ; Λ; (Σ \ {k′ :end}), x :S ` P : T (4)

By the I.H. on (4) we have:

Γ; Λ; (Σ \ {k′ :end}), k :S ` P{k/x} : T (5)

We now consider two cases:
(a) k′ :end ∈ Σ. Then with an application of (Close) on (5) we obtain:

Γ; Λ; Σ, k :S ` P{k/x} : T

as required.
(b) k′ : end 6∈ Σ. Then Σ \ {k′ :end} = Σ and the result is immediate

from (5).

The remaining session cases are straightforward.

Lemma C.11 (Shared Value Judgement). If Γ; Λ; Σ ` V : U and U ∈
{unit, 〈S〉} then Λ = Σ = ∅.

Proof. Straightforward to show by induction on the typing derivation. There
are two cases to consider: if U = unit then by (Unit) the result is immediate;
if U = 〈S〉 then by (Shared) the result follows. No other typing rule need to
be considered for this type of value.

Lemma C.12. If Σ1,Σ2 defined and Σ′1 6c Σ1 and Σ′2 6c Σ2 then Σ′1,Σ
′
2

defined and Σ′1,Σ
′
2 6c Σ1,Σ2.

Proof. Trivial by the definition of 6c on environments and the fact that it
does not change the domain of an environment.

Lemma C.13. If Γ; Λ, x : U ; Σ ` P :T then x is free in P .

Proof. Since there is no weakening for the Λ environment, the only way to
introduce x in Λ, x : U is by applying the axiom (LVar) with subject x. But
whenever a linear variable is bound, it is removed from the linear set of the
conclusion; see (Abs) and (Rec). Hence x appears in P and is not bound.

Lemma C.14. If Γ; Λ; Σ, k : S ` P :T and k is not free in P then S = end.
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Proof. Since there is no weakening for the Σ environment, and k is not free
in P , the only way to introduce a mapping for k in Σ, k : S is by applying
the axiom (Nil). But then S = end.

Lemma C.15 (Environment Properties). 1. If ∆ � k :: ~τ1 defined
then ∆� k :: ~τ2 defined for any ~τ1 and ~τ2.

2. If ∆� k : S1 defined then ∆� k : S2 defined for any S1 and S2.
3. If ∆,∆′ defined then ∆� ∆′ defined and ∆,∆′ = ∆� ∆′.
4. ∆� ∆′ = ∆′ � ∆ and (∆1 � ∆2)� ∆3 = ∆1 � (∆2 � ∆3).
5. If ∆1 � ∆2 defined and ∆2 vs ∆3 then ∆1 � ∆3 defined.
6. If balanced(∆) and ∆ vs ∆′ then balanced(∆′).

Proof. Straightforward from the definitions of balanced(∆), � and vs.

Lemma C.16. If Γ; Λ; Σ� ∆ ` P : T and Σ 6c Σ′ then Γ; Λ; Σ′� ∆ ` P : T

Proof. Outline: For each k : S ∈ Σ with k : S ′ ∈ Σ′, and with P ≡ (ν~a :
~〈S〉)(ν~s)(P1 | . . . | Pn), we take cases on the free occurrence of k in some
Pi. If Pi is not a queue process then by (Sub) we obtain k :S ′ in the session
environment of the subderivation for Pi. If Pi is a queue process then it is
typed using (Queue) and we can apply (Sub) as before on the premises. Then
using (New), (NewS) and (Par) we obtain the required judgement.

Lemma C.17 (Queue Subsumption). If Γ; Λ; ∆ � k :: ~τ1U1~τ2 ` P : T
and U1 6c U2 then Γ; Λ; ∆� k :: ~τ1U2~τ2 ` P : T

Proof. We can easily show by induction that there is an application of (Queue)
in the derivation. In the premises of this instance of (Queue) we can apply
(Sub) on the typing judgement of the value that corresponds to the U1 typing,
then re-apply (Queue) using the new premise with U2.

Proof of Theorem 7.3 (Type Soundness).
Part (1). Subject congruence is standard, except for the case of garbage
collection. The latter is easy: first use the restricted weakening environment
Σ0 of rule (Queue) to obtain, after � -composition, the balanced usage pairs
(end, ε) for the dual ended queues; then by (News) the ended session can be
restricted.
Part (2). For this part we proceed as standard by taking cases on the last
reduction rule applied. For all cases we assume:

Γ; ∅; ∆ ` P : T (?) balanced(∆) P −→ P ′
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Case (beta) P = (λ(x :U).Q)V P ′ = Q{V/x}

From (?) we have that the judgement for P has as last rule(s) a (possibly
empty) sequence of applications of (Sub), and then (App). We then have by
the judgement (?) before (Sub) and the premises of (App) that:

Γ; ∅; Σ1,Σ2 ` P : T ′ (1) Γ; ∅; Σ1 ` λ(x :U).Q : U ( T ′ (2)

Γ; ∅; Σ2 ` V : U (3) Σ1,Σ2 6c ∆ (4) T ′ 6c T (5)

By (Lift), if U = U0 → T0 then Σ2 = ∅ (6)

To obtain (2) we have, after a possibly empty sequence of (Sub), an ap-
plication of (Abs) with:

(Γ; Λ; Σ′1) # x :U ` Q : T ′′ (7) T ′′ 6c T
′ (8) Σ′1 6c Σ1 (9)

By Lemma C.12, (4) and (9) and since Σ1,Σ2 is defined we have that
Σ′1,Σ2 is defined and:

Σ′1,Σ2 6c Σ1,Σ2 (10)

We now proceed with case analysis on the type U , separating the cases
into shared, linear function, and session types. In each case we determine if
the (environment) conditions are met for the Substitution Lemma to apply.
Then the result follows easily.

(a) U ∈ {unit, 〈S〉, U0 → T0}. Then (7) is of the shape Γ, x :U ; ∅; Σ′1 ` Q :
T ′′. By (7) and (3) and by Lemma C.11 and (6) we can assert that
Σ2 = ∅, and therefore Σ′1 6c Σ1 6c ∆. Then, using Lemma C.10(1)
with (7) and (3), we obtain:

Γ; ∅; Σ′1 ` Q{V/x} : T ′′ (11)

Finally using (Sub) with (10) and (4) for the session environment and
(8) and (5) for the result type, we obtain:

Γ; ∅; ∆ ` Q{V/x} : T

(b) U = U0( T0. Then (7) is of the shape Γ; {x :U} ; Σ′1 ` Q : T ′′.

Then, using Lemma C.10(1) with (7) and (3), we obtain:

Γ; ∅; Σ′1,Σ2 ` Q{V/x} : T ′ (12)
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The environment Σ′1,Σ2 is defined; see (10). Using (Sub) as before,
noting as in the previous case that Σ′1,Σ2 6c Σ1,Σ2 6c ∆, we obtain:

Γ; ∅; ∆ ` Q{V/x} : T

(c) U = S. Then V = s or V = s. Without loss of generality we fix the
proof to use s. From (3), and (2) with (Abs), following similar steps as
before, we obtain:

Γ; ∅; Σ2 ` s : S (13) Γ; ∅; Σ′1, x : S ` Q : T ′′ (14)

From Lemma C.10(2) with (13) and (14) we obtain:

Γ; ∅; Σ′1, s : S ` Q{V/x} : T ′′ (15)

We have that {s : S} 6c Σ2, then using also (9) with Lemma C.12 as
before we obtain Σ′1, s : S 6c Σ1,Σ2. Then using (4) and (8) and (5)
with (Sub) on (15) we obtain

Γ; ∅; ∆ ` Q{V/x} : T

Case (send) P = s!〈V 〉.Q | s :~h P ′ = Q | s :~h · V

As before we fix the output to use s and the input to use s. The last rule
applied was (Par) for runtime. From this we have:

Γ; ∅; Σ1 ` s!〈V 〉.Q : � (1) Γ; ∅; Σ2 � s :: ~τ ` s :~h : � (2)

∆ = Σ1 � Σ2 � s :: ~τ (3)

After a possible application of (Sub) on (1), by (Send) and its premises:

Γ; ∅; Σ′1 ` s!〈V 〉.Q : � (4) Σ′1 = (Σ11,Σ12) \ {s :S} , s :![U ].S (5)

Γ; ∅; Σ11 ` Q : � (6) Γ; ∅; Σ12 ` V : U (7) s :S ∈ Σ1i i ∈ 1, 2 (8)

if U = U1 → T1 then Σ12 = ∅ (9) Σ′1 6c Σ1 (10)

Using (8) with Σ11,Σ12 = Σ′11,Σ
′
12, s :S, we get, using (3), (10) and Lemma C.16:

Σ′1 � Σ2 � s :: ~τ is defined
(Σ11,Σ12) \ {s :S} , s :![U ].S � Σ2 � s :: ~τ is defined
(Σ′11,Σ

′
12, s :S) \ {s :S} , s :![U ].S � Σ2 � s :: ~τ is defined

(Σ′11,Σ
′
12, s :![U ].S)� Σ2 � s :: ~τ is defined
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Then using Lemma C.15(3) on the above, followed by Lemma C.15(1–2), we
obtain:

Σ′11 � Σ′12 � s :S � Σ2 � s :: ~τU is defined (11)

In (2) the last rule applied was (Queue) and combining the premises and
adding (7) we obtain, by a new application of (Queue) (noting also (9) which
is needed):

Γ; ∅; Σ2 � s :: ~τU ` s :~h · V : � (12)

where the session environment is defined by (11). Then using (6), (12), and
(Par), we obtain:

Γ; ∅; Σ11 � Σ2 � Σ12 � s :: ~τU ` P ′ : � (13)

By Lemma C.15(3) we have:

Σ11 � Σ12 = Σ11,Σ12 = Σ′11,Σ
′
12, s :S = Σ′11 � Σ′12 � s :S

and (13) becomes:

Γ; ∅; Σ′11 � Σ′12 � s :S � Σ2 � s :: ~τU ` P ′ : � (14)

By Lemma C.16 since Σ′11 � Σ′12 6c Σ1 \ s, we have from (14) that:

Γ; ∅; (Σ1 \ s)� s :S � Σ2 � s :: ~τU ` P ′ : � (15)

From (10) we have s :![U ].S ∈ Σ′1 and by (5) there is s :S ′ ∈ Σ1 with ![U ].S 6c
S ′. By the definition of simulation unfoldn(S ′) = A〈![U ′].S ′h〉h∈H and U 6c U ′
and S 6c A〈S ′h〉h∈H . Finally using Lemma C.16 and Lemma C.17 on (15)
we can obtain:

Γ; ∅; ∆′ ` P ′ : �

where ∆′ = (Σ1\s)� s :A〈S ′h〉h∈H� Σ2� s :: ~τU ′ and it holds that ∆ vs ∆′.
Case (recv) is very similar to (beta); the rest are easy to obtain.
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