
Session-Based Communication Optimisation for
Higher-Order Mobile Processes?

Dimitris Mostrous and Nobuko Yoshida

Department of Computing, Imperial College London

Abstract. In this paper we solve an open problem posed in our previous work on
asynchronous subtyping [12], extending the method to higher-order session com-
munication and functions. Our system provides two complementary methods for
communication code optimisation, mobile code and asynchronous permutation of
session actions, within processes that utilise structured, typed communications.
In order to prove transitivity of our coinductive subtyping relation, we uniformly
deal with type-manifested asynchrony, linear functional types, and contravariant
components in higher-order communications. For the runtime system we propose
a new compact formulation that takes into account stored higher-order values with
open sessions, as well as asynchronous commutativity. In spite of the enriched
type structures, we construct an algorithmic subtyping system, which is sound
and complete with respect to the coinductive subtyping relation. The paper also
demonstrates the expressiveness of our typing system with an e-commerce exam-
ple, where optimised processes can interact respecting the expected sessions.

1 Introduction

Sessions [7, 16] have emerged as a tractable and expressive theoretical substrate, which
offers direct language and protocol support [9, 17, 18] for high-level, type-safe and uni-
form abstraction for a wide range of communication patterns. Session types enable static
validation assuring both type and communication-safety — not only is the value of each
message correctly typed, but the sequence of messages are sent and received accord-
ing to the scenario specified by the session type, precluding communication mismatch.
Session primitives can be smoothly integrated with traditional subtyping of object and
functional languages, to obtain a more flexible behavioural composition [5]. Our re-
cent work [12] developed a new subtyping, asynchronous subtyping, that characterises
compatibility between classes of permutations of communications within asynchronous
protocols, offering much greater flexibility. However, an open problem remained: how
to uniformly introduce communication optimisations in the presence of code mobility
[11], incorporating higher-order sessions and functions into the asynchronous subtyp-
ing [12, § 6]. This is the question we address in this paper.

Higher-Order Processes with Asynchronous Sessions. We develop a session typ-
ing system for the Higher-order π-calculus [15], an amalgamation of call-by-value λ-
calculus and π-calculus, extending [11]. Code mobility is facilitated by sending not just

? The work is supported by EPSRC GR/T03208, GR/T03215 and IST2005-015905 MOBIUS.

2 Dimitris Mostrous and Nobuko Yoshida

ground values and channels, but also abstracted processes that can be received and ac-
tivated locally, reducing the number of transmissions of remote messages. The simplest
code mobility operations are sending a thunked process pPq via channel s (denoted as
s!〈pPq〉), and receiving and running it by applying the unit (denoted as s?(x).x()). In
our calculus, communications are always within a session, established when accept and
receive processes synchronise on a shared channel:

a(x).x!〈5〉.x!〈true〉.x?(y).(y() | R) | a(x).x?(z1).x?(z2).x!〈pPq〉

resulting in a fresh session, consisting two channels s and s, each private to one of the
two processes, and their associated queues initialised to be empty:

(ν s)(s!〈5〉.s!〈true〉.s?(y).(y() | R) | s?(z1).s?(z2).s!〈pPq〉 | s :ε | s :ε)

To avoid conflicts, an output on a channel s (resp. s) places the value on the dual queue s
(resp. s), while an input on s reads from s (resp. for s). Thus, after two steps the outputs
of 5 and true are placed on queue s as follows:

(ν s)(s?(y).(y() | R) | s?(z1).s?(z2).s!〈pPq〉 | s :ε | s :5 ·true)

and in two more steps the right process receives and reduces to s!〈pPq{5/z1}{true/z2}〉.
Similarly the next step transmits the thunked process, and R can interact with P locally.
The session type of s, S =?[nat].?[bool].![H] (where H is the type of pPq), guarantees
that values are received following the order specified by S.

Asynchronous Communication Optimisation with Code Mobility Suppose the size
of P is very large and it does not contain z1 and z2. Then the right process might
wish to start transmission of P to s : ε concurrently without waiting for the deliv-
ery of 5 and true, since the sending is non-blocking. Thus we send pPq ahead as in
s!〈pPq〉.s?(z1).s?(z2).0. The interaction with the left process is safe as the outputs are
ordered in an exact complementary way. However the optimised code is not compos-
able with the other party by the original session system [16] since it cannot be assigned
S. To make this optimisation valid, we proposed the asynchronous subtyping in [12] by
which we can refine a protocol to maximise asynchrony without violating the session.
For example, in the above case, S′ =![H].?[nat].?[bool] is an asynchronous subtype of
S, hence the resulting optimisation is typable.

The idea of this subtyping is intuitive and the combination of two kinds of optimi-
sations is vital for typing many practical protocols [17, 18] and parallel algorithms [13],
but it requires subtle formal formulations due to the presence of higher-order code. The
linear functional typing developed in [11] permits to send a value that contains free ses-
sion channels: for example, not only message s!〈ps′?(x).s′!〈x〉q〉 (for s!〈pPq〉), but also
one which contains its own session s!〈ps?(x).s!〈x〉q〉 is typable (if R conforms with the
dual session like R = s!〈7〉.s?(z).0). The first message can go ahead correctly, but the
permutation of the second message (as s!〈pPq〉) violates safety since the input action
s?(x) will appear in parallel with s?(z1).s?(z2), creating a race condition, as seen in:

(ν s)(s?(x).s!〈x〉 | R | s?(z1).s?(z2).0 | s :ε | s :5 ·true)

Session-Based Communication Optimisation for Higher-Order Mobile Processes 3

(Identifiers) u,v,w ::= x,y,z variables
| a,b,c shared channels

k ::= x,y,z variables
| s,s session channels

(Terms)
P,Q,R ::= V value

| u(x).P server
| u(x).P client
| k?(x).P input
| k!〈V 〉.P output
| k �{l1 :P1, . . . , ln :Pn} branching
| k � l.P selection
| P |Q parallel
| (ν a : 〈S〉)P restriction
| (ν s)P restriction
| PQ application
| 0 nil process
| s :~h queue

(Values)
V ::= u,v,w shared
| k linear
| () unit
| λ(x :U).P abstraction
| µ(x :U → T).λ(y :U).P recursion

(Message Values)

h ::= l label
| V

(Abbreviations)

pPq
def= λ(x :unit).P (x 6∈ fv(P)) thunk

run def= λx.(x()) run

Fig. 1. Syntax

This paper shows that the combination of two optimisations is indeed possible by
establishing soundness and communication-safety, subsuming the original typability
from [11]. The technical challenge is to prove the transitivity of the asynchronous sub-
typing integrated with higher-order (linear) function types and session-delegation, since
the types now appear in arbitrary contravariant positions [12]. Another challenge is to
formulate a runtime typing system which handles both stored higher-order code with
open sessions and the asynchronous subtyping. We demonstrate all facilities of type-
preserving optimisations proposed in this paper by using an e-commerce scenario. A
full version, containing omitted definitions and proofs, is available from [1].

2 The Higher-Order π-Calculus with Asynchronous Sessions

2.1 Syntax and Reduction

The calculus is given in Fig. 1, based on the π-calculus augmented with asynchronous
session primitives and the call-by-value λ-calculus. Except for recursion and message
queues for asynchronous communications [8], all constructs are from the synchronous
Higher-Order calculus with sessions [11]. A session is initiated over a shared chan-
nel and communications belonging to a session are performed via two fresh end-point
channels specific to that session, called session channels or queue endpoint channels,
used to distinguish the two end points, taking a similar approach to [5, 20]. The dual
of a queue endpoint s is denoted by s , and represents the other endpoint of the same
session. The operation is self-inverse hence s = s. We write ~V for a potentially empty
vector V1...Vn. Types, given later, are denoted by U , T and 〈S〉, but type annotations are
often omitted.

For values, we have shared and linear identifiers, unit, abstraction and recursion.
For terms, we have prefixes for declaring session connections, u(x).P for servers and

4 Dimitris Mostrous and Nobuko Yoshida

(beta) (λx.P)V −→ P{V/x} (rec) (µy.λx.P)V −→ P{V/x}{µy.λx.P/y}
(send) s!〈V 〉.P | s :~h −→ P | s :~h ·V (get) s?(x).P | s :V ·~h −→ P{V/x} | s :~h

(sel) s� l.P | s :~h −→ P | s :~h · l (bra) s�{l1 :P1, . . . , ln :Pn} | s : lm ·~h −→ Pm | s :~h
(1≤ m≤ n)

(conn) a(x).P | a(z).Q −→ (ν s)(P{s/x} | Q{s/z} | s :ε | s :ε) s,s fresh

(app-l) P−→ P′
PQ−→ P′Q

(app-r) Q−→ Q′

V Q−→V Q′
(par) P−→ P′

P |Q−→ P′ |Q

(resc) P−→ P′
(ν a)P−→ (ν a)P′

(ress) P−→ P′
(ν s)P−→ (ν s)P′

(str) P≡ P′ −→ Q′ ≡ Q
P−→ Q

Fig. 2. Reduction

u(x).P for clients. Session communications are performed using the next four primi-
tives: input k?(x).P, output k!〈V 〉.P, branching k �{l1 :P1, . . . , ln :Pn} (often written as
k � {li : Pi}i∈I with index set I) which offers alternative interaction patterns, and se-
lection k � l.P which chooses an available branch. (ν a : 〈S〉)P restricts (and binds) a
channel a to the scope of P. Similarly, (ν s)P binds s and s, making them private to
P. s :~h is a message queue, also called buffer, representing ordered messages in transit
with destination s (which may be considered as a network pipe in a TCP-like transport).
Queues and session restrictions appear only at runtime. A program is a process which
does not contain runtime terms. Other primitives are standard. We often omit 0.

The bindings are induced by (ν a : 〈S〉)P, (ν s)P, u(x).P, u(x).P, λx.P and µy.λx.P.
The derived notions of bound and free identifiers, alpha equivalence and substitution
are standard. We write fv(P)/fn(P) for the set of free variables/channels, respectively.

By using recursion, we can represent infinite behaviours of processes such as, e.g.
the definition agent def or !u(y).P in [7, 10, 11, 20]. For example the replication !u(y).P
in [11] can be defined as u(x).(µy.λz.(P | z(x).yz))u with x 6∈ fv(P).

The single-step call-by-value reduction relation, denoted −→, is a binary relation
from closed terms to closed terms, defined by the rules in Fig. 2. The rules are from
those of the HOπ-calculus [11] combined with asynchronous session communications
from [8]. Rule (conn) establishes a new session between server and client via shared
name u, generating two fresh session channels and the associated two empty queues (ε
denotes the empty string). Rules (send) and (sel) respectively enqueue a value and a la-
bel at the tail of the queue for a dual endpoint s. Rules (get) and (bra) dequeue, from the
head of the queue, a value or label. (get) substitutes value V for x in P, while (bra) se-
lects the corresponding m-branch. Since (conn) provides a queue for each channel, these
rules say that a sending action is never blocked (asynchrony) and that two messages
from the same sender to the same channel arrive in the sending order (order preserva-
tion). Other rules are standard. A session channel s and s can be sent and received (when
V = k), with which various protocols are expressed, allowing complex nested and pri-
vate structured communications. This interaction is called higher-order session passing

Session-Based Communication Optimisation for Higher-Order Mobile Processes 5

(delegation). We use the standard structure rules [10]≡ such as (νs)P |Q≡ (νs)(P |Q)
if s,s 6∈ fn(Q) (see [11]). “�” denote the multi-step reductions defined as (≡ ∪→)∗.

2.2 Example: Optimised Business Protocol with Code Mobility

We show a business/financial protocol interaction from [17, 18] which integrates the
two kinds of type-safe optimisations. We extend the scenario from [11] to highlight
the expressiveness gained using the new method. Fig. 3 draws the sequencing of ac-
tions modelling a hotel booking through a process Agent. On the left Client behaves
dually to Agent; on the right, an optimised MClient utilises type-safe asynchronous
behaviour.

rtt

move

hotel

roomtype

rate

creditcard

local

move

hotel

roomtype

rate creditcard

rtt

code code

run code run code

MClientAgentClient

Fig. 3. Standard (left) and Optimised (right) Interaction for Hotel Booking

The Agent behaves the same towards both clients: initially it calculates the round-
trip time (RTT) of communication (rtt) and sends it; it then offers to the other party the
option to consider the RTT and either send mobile code to interact with the Agent on
its location, or to continue the protocol with each executing remotely their behaviour.
When mobile code (after choice move) is received, it is run by the Agent completing
the transaction on behalf of the client, in a sequence of steps. The behaviour of Client
is straightforward and complementary to Agent, but MClient has special requirements:
it represents a mobile device with limited processing power, and irrespective of the RTT
it always sends mobile code; moreover, it does not care about money, and provides the
creditcard number (card) before finding out the rate.

To represent this optimised scenario, we start from the process for Agent:

Agent = a(x).x!〈rtt〉.x�{move : x?(code).(run code | Q), local : Q}
Q = x?(hotel).x?(roomtype).x!〈rate〉.x?(creditcard) . . .

The session is initiated over a, then the rtt is sent, then the choices move and local are
offered. If the first choice is made then the received code is run in parallel to the process

6 Dimitris Mostrous and Nobuko Yoshida

Q which continues the agent’s session, performing optimisation by code mobility. As
expected, Client has dual behaviour:

Client = a(x).x?(rtt).x�move.x!〈px!〈ritz〉.x!〈suite〉.x?(rate).x!〈card〉. . . .q〉

A more interesting optimisation is given by MClient which at first may seem to dis-
agree with the intended protocol:

MClient = a(x).x�move.x!〈px!〈ritz〉.x!〈suite〉.x!〈card〉.x?(rtt).x?(rate) . . .q〉

After the session is established, it eagerly sends its choice move, ignoring rtt, followed
by a thunk that will continue the session; and another important point is that in the
mobile code the output of the card happens before rtt and rate are received.

Even without subtyping, the typing of sessions in the HOπ-calculus poses deli-
cate conditions [11]; in the present system, we can further verify that the optimisation
of MClient does not violate communications safety (but the similar example in § 1,
s!〈ps?(x).s!〈x〉q〉.s?(z1).s?(z2).0, must be untypable): when values are received they are
always of the expected type, conforming to a new subtyping relation given in the next
section.

3 Higher-Order Linear Types with Asynchronous Subtyping

3.1 Types

This section presents an asynchronous subtyping relation for the HOπ-calculus based
on [12]. The syntax of the types is given below:

Term T ::= U | �
Value U ::= H | S HO-value H ::= unit | U → T | U (T | 〈S〉
Session S ::= ![U].S | ?[U].S | ⊕[l1 :S1, . . . , ln :Sn] | &[l1 :S1, . . . , ln :Sn]

| µt.S | t | end

It is an integration of the types from the simply typed λ-calculus with linear functional
types, U (T , and the session types from the π-calculus. A linear type represents a
function to be used exactly once. Term types, ranging over T , include all value types and
the process type �. Session types range over S,S′, ... Higher-Order value types consist of
the unit type, the function types, the linear function types and the channel type 〈S〉, and
value types consist of HO-value and session types. Note that linear types are attached
only to function types. In the session types, ![U].S represents the output of a value
typed by U followed by a session typed by S; ?[U] is its dual. ⊕[l1 :S1, . . . , ln :Sn] is the
selection type on which one of the labels li can be sent, with the subsequent session
typed by Si; &[l1 :S1, . . . , ln :Sn] is its dual called the branching type. t is a type variable
and µt.S is a recursive type. We only consider contractive recursive types [20]. end
denotes the termination of the session. We often write &[li : Si]i∈I and ⊕[li : Si]i∈I and
pTq for unit→ T and pTq1 for or unit(T . The type end is often omitted.

Each session type S has a dual type, denoted by S, which describes complemen-
tary behaviour. This is inductively defined as: ![U].S =?[U].S, ⊕[l1 : S1, . . . , ln : Sn] =

Session-Based Communication Optimisation for Higher-Order Mobile Processes 7

(OI) ![U].?[U ′].S � ?[U ′].![U].S (SI) ⊕[l j :?[U].S j] j∈J � ?[U].⊕ [l j :S j] j∈J

(OB) ![U].&[l j :S j] j∈J � &[l j :![U].S j] j∈J (SB) ⊕[li :&[l′j :Si j] j∈J]i∈I � &[l′j :⊕[li :Si j]i∈I] j∈J

(Tr)
S1� S2 S2� S3

S1� S3
(CB)

∀i ∈ I. Si� S′i
&[li :Si]i∈I �&[li :S′i]i∈I

(CI)
S� S′

?[U].S�?[U].S′

(CO) ![U].S�![U].S (CS) ⊕[li :Si]i∈I �⊕[li :Si]i∈I (E) end� end (M) µt.S� µt.S

Fig. 4. Top Level Asynchronous Action Rules

&[l1 : S1, ..., ln : Sn], ?[U].S =![U].S, &[l1 : S1, . . . , ln : Sn] = ⊕[l1 : S1, ..., ln : Sn], t = t,
µt.S = µt.S and end = end.

We say a type is guarded if it is neither a recursive type nor a type variable. (An
occurrence of) a type constructor not under a recursive prefix in a recursive type is
called top-level action (for example, ![U1] and ?[U2] in ![U1].?[U2].µt.![U3].t are top-
level, but ![U3] in the same type is not). In the above type, ![U1] is the head since it
appears as the left-most occurrence of the top-level actions in S (note that ?[U2] is not
the head). We write Type for the collection of all closed types.

3.2 Higher-Order Asynchronous Subtyping

This subsection studies a theory of asynchronous session subtyping: reordered commu-
nications, even higher-order and mobile, can preserve the faithfulness to the other dual
party. Fig. 4 defines the axioms for partial permutation of top-level actions for closed
types, denoted�. S� S′ is read: S is an action-asynchronous subtype of S′, and means
S is more asynchronous than (or more optimised than) S′. We write S� S′ for S′� S.
A permutation of two inputs or two outputs is not allowed since it violates type-safety.
Suppose P = s!〈2〉.s!〈true〉.s?(x).0 and Q = s?(y).s?(z).s!〈y + 2〉.0. These processes
interact correctly. If we permute the outputs of P to get P′= s!〈true〉.s!〈2〉.s?(x).0, then
the parallel composition (P′ | Q) causes a type-error. Similarly the reverse direction of
(OI,OB,SI,SB) causes a deadlock, losing progress in session s. For example, consider
exchanging s!〈true〉 and s?(z) in P1 = s!〈true〉.s?(z).0, and Q1 = s?(y).s!〈2〉.0. Note
that partial permutation is only applied to finite parts of the top-level actions without
unfolding recursive types.

To handle recursive types in asynchronous subtyping, we need to generalise the
unfolding function defined in [5] since� might be applicable to a type after unfolding
of recursions under some guarded prefixes. The definition is based on [12].

Definition 3.1 (n-time unfolding).
unfold0(S) = S for all S unfold1+n(S) = unfold1(unfoldn(S))
unfold1(![U].S) =![U].unfold1(S) unfold1(⊕[li : Si]i∈I) =⊕[li : unfold1(Si)]i∈I

unfold1(?[U].S) =?[U].unfold1(S) unfold1(&[li : Si]i∈I) = &[li : unfold1(Si)]i∈I

unfold1(t) = t unfold1(µt.S) = S[µt.S/t] unfold1(end) = end

8 Dimitris Mostrous and Nobuko Yoshida

For any recursive type S, unfoldn(S) is the result of inductively unfolding the top level
recursion up to a fixed level of nesting. Because our recursive types are contractive,
unfoldn(S) terminates.

We now introduce the main definition of the paper, asynchronous communication
subtyping for the HOπ-calculus. First, let us define:

(H,H ′)~ = (H,H ′) (S,S′)~ = (S′,S) (�,�)~ = (�,�)

which is used to adjust for the different variance of functional and session types.

Definition 3.2 (Asynchronous Subtyping). A relation ℜ ∈ Type× Type is an asyn-
chronous type simulation if (T1,T2) ∈ℜ implies the following conditions:

1. If T1 = �, then T2 = �.
2. If T1 = unit, then T2 = unit.
3. If T1 = U1 → T ′1 , then T2 = U2 → T ′2 or T2 = U2 (T ′2 with (U2,U1)~ ∈ ℜ and

(T ′1 ,T
′

2)
~ ∈ℜ.

4. If T1 = U1(T ′1 , then T2 = U2(T ′2 with (U2,U1)~ ∈ℜ and (T ′1 ,T
′

2)
~ ∈ℜ.

5. If T1 = 〈S1〉, then T2 = 〈S2〉 and (S1,S2) ∈ℜ and (S2,S1) ∈ℜ.
6. If T1 = end, then unfoldn(T2) = end.
7. If T1 =![U1].S1, then unfoldn(T2)�![U2].S2, (U1,U2)~ ∈ℜ and (S1,S2) ∈ℜ.
8. If T1 =?[U1].S1, then unfoldn(T2) =?[U2].S2, (U2,U1)~ ∈ℜ and (S1,S2) ∈ℜ.
9. If T1 =⊕[li : S1i]i∈I , then unfoldn(T2)�⊕[l j : S2 j] j∈J , I⊆ J and ∀i ∈ I.(S1i,S2i) ∈ℜ.

10. If T1 = &[li : S1i]i∈I , then unfoldn(T2)= &[l j : S2 j] j∈J , J⊆ I and ∀ j ∈ J.(S1 j,S2 j) ∈ℜ.
11. If T1 = µt.S, then (unfold1(T1),T2) ∈ℜ.

As standard, the coinductive subtyping relation T1 6c T2 (read: T1 is an asynchronous
subtype of T2) is defined when there exists a type simulation ℜ with (T1,T2) ∈ℜ.

The integration of the subtyping of higher-order (linear) functions and asynchronous
sessions requires a careful formulation: (1,2,6) are standard identity rules. (3) says the
unlimited function can be used as the linear function. Note that the reverse is unsafe:
suppose f = λx.k!〈x〉 with a linear type nat(�. If we apply the reverse direction,
λ(y :nat→�).(y1 | y2) f becomes typable, destroying the linearity of session k.

In (3), when Ui is a session type, we use the relation (S1,S2)~ = (S2,S1) to swap
the tuple. The session types are dualised since the session channel is going to be used
in a process in a contravariant manner.1 To see this condition, suppose process P =
(λ(x : S).x!〈2〉.x?(y).0)s with S =![nat].?[bool].end. Then P can safely interact with
Q = s!〈true〉.s?(z).0. For P to be composable with Q, s in P has a dual type of s in
Q, which is S′ =?[bool].![nat].end. Hence we must have S→�6c S′→�, with S6c S′

where the subtyping ordering of session channels is covariant. The case Ti is a session
type is similarly explained. (4) is similar.

1 The original session typing system uses a judgement “Γ ` P : Σ” where Γ is a shared (standard)
environment and Σ is a mapping from a session channel to a session type. This means: P
accesses the session channels specified at most by Σ. Contrarily, in our typing system defined
in the next section, Σ appears in the left-side position, so that we need to dualise the session
types for subtyping, cf. [19].

Session-Based Communication Optimisation for Higher-Order Mobile Processes 9

(5) says the shared channel type is invariant (as is the standard session types [5, 7,
12]). In (7), an output of T1 can be simulated after applying asynchronous optimisation
� to the unfolded T2. We also need to ensure object type U1 is a subtype of U2. For
similar reasons with (3), we swap the ordering if they are session types. For the input in
(8), we do not require�, since, by definition of�, if the input appears at the top level
in S, then it does so in all S′ such that S� S′. The definitions of selection and branch-
ing subsume the traditional session branching/selection subtyping. In (9), selection is
defined similarly to output since a label appearing in T1 must be included in T2; dually,
in (10), branching is defined like input and any branch of T2 must be included in T1.
Finally (11) forces T1 to be unfolded until it reaches a guarded type.

More examples can be found in § 4.3. We conclude this section with the main theo-
rem for6c. Since now types include higher-order function types and session delegations
with a combination of n-time unfolding and permutation, the proof of transitivity of 6c
requires a family of relations to connect two relations ℜ1 and ℜ2, for which we use the
transitivity connection trc(ℜ1,ℜ2).

Lemma 3.3. If S1 6c S2 and S′1� unfoldn(S1) then S′1 6c S2.

From the above lemma we have that whenever S1 ℜ S2 for type simulation ℜ, then
for some n-times unfolding of S1, and after applying a sequence of permutations to ob-
tain S′1 such that S′1� unfoldn(S1), there exists a type simulation ℜ′ such that S′1 ℜ′ S2.

We use this fact below: given S1 ℜ S2, we obtain a simulation (the union of ℜ′) for
each level n of unfolding of S1, relating each possible permutation S′1 of unfoldn(S1)
and S2.

Definition 3.4 (Transitivity Connection). When S1 ℜ S2 for type simulation ℜ, we
define the asynchrony relation of S1 and S2 as:

A(S1,S2) =
[
n∈N

{
(S′1,S

′
2) | unfoldn(S1)� S ∧ S ℜ

′ S2 ∧ ℜ
′ ⊆ 6c ∧ (S′1,S

′
2) ∈ℜ

′}
Then, for type simulations ℜ1 and ℜ2, we define their transitivity connection trc(ℜ1,ℜ2)
as the smallest relation such that whenever S1 ℜ1 S2 and S2 ℜ2 S3, we have A(S2,S3)⊆
trc(ℜ1,ℜ2).

For type simulation ℜ with S1 ℜ S2, A(S1,S2) (hence trc(ℜ1,ℜ2)) is also a type
simulation. Using this property, we have:

Theorem 3.5 (Preorder). 6c is a preorder.

Proof. Reflexivity is easy. For transitivity, we assume (T1,T2) ∈ ℜ1 and (T2,T3) ∈ ℜ2
for simulations ℜ1 and ℜ2, to find a simulation ℜ such that (T1,T3) ∈ℜ. Define ℜ as:

ℜ = ℜ12 ·ℜ21 ∪ ℜ21 ·ℜ12 with ℜi j = ℜi ∪ trc(ℜ j,ℜi)

We have (T1,T3) ∈ ℜ1 ·ℜ2 ⊆ ℜ12 ·ℜ21 ⊆ ℜ; we then prove that ℜ is a type simula-
tion, observing the fact that each ℜi j above is a type simulation, as the union of type
simulations, see [1].

10 Dimitris Mostrous and Nobuko Yoshida

(Common)
(Shared)
H 6= U (T
Γ,u :H; /0; /0 ` u : H

(Session)

Γ;k :S; /0 ` k : S

(LVar)

Γ,x : U (T ; /0;{x} ` x : U (T

(Base)

Γ; /0; /0 ` () : unit

(Function) (Process)
(Abs) Γ,x :H;Σ;L ` P : T
if H = U (T ′ then x ∈ L
Γ;Σ;L \ x ` λ(x :H).P : H→ T

(AbsS)
Γ;Σ,x :S;L ` P : T
Γ;Σ;L ` λ(x :S).P : S→ T

(Sub) Γ;Σ;L ` P : H
Σ 6c Σ′ H 6c H ′

Γ;Σ′;L ` P : H ′

(Recursion)
Γ,x :U → T ; /0; /0 ` λ(y :U).P : U → T
Γ; /0; /0 ` µ(x :U → T).λ(y :U).P : U → T

(App) Γ;Σ1;L1 ` P : U (T Γ;Σ2;L2 ` Q : U
if U = U ′→ T ′ then Σ2 = L2 = /0

Γ;Σ1,Σ2;L1,L2 ` PQ : T

Fig. 5. Selected Linear Session Typing

4 Asynchronous Higher-Order Session Typing

4.1 A Typing System for Programs

We first introduce the linear Higher-Order typing system for programs (terms which do
not contain queues and session-restrictions). We define two environments:

Γ ::= /0 | Γ,u : H Σ ::= /0 | Σ,k : S

Γ is a finite mapping, associating HO value types to identifiers. Σ is a finite mapping
from session channels to session types. In addition, we use a finite set of linear variables
ranged over L , L ′, ... to ensure linear usage of function terms that may contain session
channels. Σ,Σ′ and L ,L ′ denote disjoint-domain unions. Γ,u :U means u 6∈ dom(Γ).

Then the typing judgement takes the shape:

Γ;Σ;L ` P : T

which is read: under a global environment Γ, a term P has a type T with session usages
described by Σ and linear variables specified by L . We say the judgement is well-formed
if dom(Γ)⊇ L and dom(Γ)∩dom(Σ) = /0. The typing system is given in Fig. 5. In each
rule, we assume the environments of the consequence are defined.

We focus on the rules which differ from [11]. In the first group, (Common), (Shared)
is an introduction rule for identifiers with shared types; (Session) is for session chan-
nels. (LVar) is for linear variables. The second group, (Function), comes from the typed
linear λ-calculus with recursive types. All rules are identical except the addition of (Re-
cursion). In (Abs), the premise side-condition ensures that the formal parameter x, to
be substituted with the received function, appears in the linear variables. In the con-
clusion, we remove x from the function environment. (AbsS) is an abstraction rule for
session channels. (Recursion) forbids the use of any free linear identifier (by the condi-
tion Σ = L = /0) because it is repeatedly used. (App) is the rule for application; the side

Session-Based Communication Optimisation for Higher-Order Mobile Processes 11

condition ensures that when the right term is of shared function type, it is required not
to have free session channels or linear variables. The conclusion says that P and Q’s
session environments and linear variable sets are disjoint. The final group, (Process), is
for processes. The only different rule from [11] is (Sub) which now uses 6c; we write
Σ6c Σ′ when dom(Σ) = dom(Σ′) and for all k :S ∈ Σ, we have k :S′ ∈ Σ′ with S 6c S′.
The rest of the rules and their explanations can be found in [11].

4.2 A Typing System for Runtime

Session Remainder Type soundness is established by also typing the queues created
during the execution of a well-typed initial program. We track the movement of linear
functions and channels to and from the queue to ensure that linearity is preserved, and
we check that endpoints continue to have dual types up to asynchronous subtyping after
each use. To analyse the intermediate steps precisely, we utilise a session remainder
S−~τ = S′ which subtracts the vector~τ of queue types (τ ::= U | l) of the values stored
in a queue from the complete session type S of the queue, obtaining a remaining session
S′. The rules are formalised below:

(Empty) S− ε = S (Get) S−~τ = S′ ⇒ ?[U].S−U~τ = S′

(Put) S−~τ = S′ ⇒ ![U].S−~τ =![U].S′

(Branch) Sk−~τ = S′∧ k ∈ I ⇒ &[li : Si]i∈I− lk~τ = S′

(Select) ∀ i ∈ I .Si−~τ = S′i ⇒ ⊕[li : Si]i∈I−~τ =⊕[li : S′i]i∈I

When S′ is end, then the session has been completed; otherwise it is not closed yet.
(Empty) is a base rule. (Get) takes an input prefixed session type ?[U].S and subtracts

the type U at the head of the queue, then returns the remainder S′ of the rest of the
session S minus the tail~τ of the queue type. (Put) disregards the output action type of
the session and calculates the remainder S′ of S−~τ, which is returned prefixed with the
original output giving ![U].~τ. Therefore the output is not consumed. (Branch) is similar
with (Get), but it only records the remainder of the k-th branch with respect to a stored
label lk. Dually, (Select) records the remainder of all selection paths.

A Typing System for Runtime We first extend the session environment as follows:

∆ ::= Σ | ∆,s :~τ | ∆,s : (S,~τ)

The typing judgement is also extended with Γ;Σ;L ` l : l which is used for typing any
labels appearing in a session queue. ∆ contains usage information for queues (s :~τ) in a
term, so that the cumulative result can be compared with the expected session type; for
this we use the pairing (s : (S,~τ)) that combines the usage of a channel and the sequence
of types already on its queue. We identify (S,~τ) and (~τ,S).

We define a composition operation � on ∆-environments, used to obtain the paired
usages for channels and queues:

∆1� ∆2 = {s :(∆1(s),∆2(s)) | s ∈ dom(∆1)∩dom(∆2)} ∪ ∆1\dom(∆2) ∪ ∆2\dom(∆1)

The typing rules for runtime are listed in Fig. 6. (Label) types a label in a queue, while
(Queue) forms a sequence of the types of the values in a queue: we ensure the disjoint-
ness of session environments of values, and apply a weakening for end (Σ0) for closure

12 Dimitris Mostrous and Nobuko Yoshida

(Label)

Γ; /0; /0 ` l : l

(Queue) if τi = U → T then Σi = /0

Γ;Σi; /0 ` hi : τi i ∈ 1..n Σ0 = {~s : ~end}
Γ;(Σ0, ..,Σn)� s :τ1..τn; /0 ` s :h1..hn : �

(Par)
Γ;∆1,2;L1,2 ` P1,2 : �

Γ;∆1� ∆2;L1,L2 ` P1 | P2 : �
(News)
Γ;∆,s :(S1, ~τ1),s :(S2, ~τ2); /0 ` P : � Si−~τi = S′i i ∈ 1,2 S′1 6c S′2

Γ;∆; /0 ` (ν s)P : �

(New)
Γ, a :〈S〉;∆;L ` P : �

Γ;∆;L ` (ν a :〈S〉)P : �

Fig. 6. Runtime Typing

under the structure rules. (Par) composes processes, including queues, and records the
session usage by � ; this rule subsumes (Par) for programs. (News) is the main rule for
typing the two endpoint queues of a session. Types S1 and S2 can be given to the queues
s and s when the session remainders S′1 and S′2 of S1− ~τ1 and S2− ~τ2 are dual session
types up to asynchronous subtyping; more precisely, S′1 must be a subtype of the dual
of S′2, written S′1 6c S′2. Since the session is compatible, we can restrict s. Note that in
all runtime systems, the set of linear variables is empty.

4.3 Typing the Optimised Mobile Business Protocol

Using the program and runtime typing systems, we can now type the hotel booking ex-
ample in § 2.2, in the presence of asynchronous optimisation for higher-order mobility.
Agent and standard Client can be typed with:

SAgent =![int].&[move :?[unit(�].S′Agent , local : S′Agent]

with S′Agent =?[string].?[string].![double].?[int].end and Sclient = SAgent

We then type MClient by using the rules in Fig. 5 and [11].

SMClient =⊕[move :![unit(�].![string].![string].![int].?[int].?[double].end]

Applying Def. 3.2 we verify that SMClient 6c SAgent (and SMClient 6c SClient). Then
using typing rules (Acc,Req) we can type both MClient and Agent with a : 〈SAgent〉 ∈ Γ,
after applying (Sub) on the premises of (Req) typing the body of MClient.

We now demonstrate runtime typing; after three reduction steps of MClient | Agent
we can have this configuration:

(νs)(s�{move : s?(code).(run code | . . .), local : . . .} | s:rtt | s:move ·ps!〈ritz〉 . . .q)

with s as the Agent’s queue. Both queues contain values including the linear higher-
order code sent by MClient (which became 0 after this output). Using (Queue, Label) we
type s:move ·ps!〈ritz〉 . . .qwith session environment {s : S′MClient, s : move ·unit(�}
where S′MClient comes from typing the HO code containing s, and:

S′MClient =![string].![string].![int].?[int].?[double].end

Session-Based Communication Optimisation for Higher-Order Mobile Processes 13

and similarly we type s :rtt with {s : int}. The Agent s � {move : . . . , local : . . .} is
typed with (Bra) under session environment

{
s : &[move :?[unit(�].S′Agent , local : S′Agent]

}
.

The above session environments can be synthesised using � to obtain:{
s : (S′MClient,int), s : (&[move :?[unit(�].S′Agent , local : S′Agent],move ·unit(�)

}
Now we use the rules in § 4.2 to calculate the session remainder of each queue:

S′MClient − int =![string].![string].![int].?[double].end

&[move :?[unit(�].S′Agent , local : S′Agent] − move ·unit(�= S′Agent

and we have ![string].![string].![int].?[double].end6c S′Agent. Finally, we can ap-
ply (News) and complete the derivation. We can also check that the similar example in
§ 1, s!〈ps?(x).s!〈x〉q〉.s?(z1).s?(z2).0, is untypable since we cannot compose the session
environments which include s both in the sent thunk and in the continuation.

5 Communication Safety and Algorithmic Subtyping

5.1 Type Soundness and Communication Safety

This section studies the key properties of our typing system. First we show that typed
processes enjoy subject reduction and communication safety.

We begin by introducing balanced environments which specify the conditions of
composable environments of runtime processes.

Definition 5.1 (Balanced ∆). balanced(∆) holds if whenever {s : (S1,~τ1),s : (S2,~τ2)}⊆
∆ with S1−~τ1 = S′1 and S2−~τ2 = S′2, then S′1 6c S′2.

The definition is based on (News) in the runtime typing system (Fig. 6): intuitively,
all subprocesses generated from an initial typable program should conform to the bal-
anced condition. We next define the ordering between the session environments which
abstractly represents an interaction at session channels.

Definition 5.2 (∆ Ordering). Recall � defined in § 4.2. We define ∆vs ∆′ as follows:

s :?[U].S� s : U~τ vs s : S� s :~τ s : &[li : Si]i∈I� s : lk~τ vs s : Sk� s :~τ k ∈ I

s :![U].S� s :~τ vs s : S� s :~τU s :⊕[li : Si]i∈I� s :~τ vs s : Sk� s :~τlk k ∈ I

s : µt.S� s′ :~τ vs s : S′� s′ :~τ′ if s : S[µt.S/t]� s′ :~τ vs s : S′� s′ :~τ′

∆� ∆1 vs ∆� ∆2 if ∆1 vs ∆2 and ∆� ∆1 defined

Note that if ∆1 vs ∆2 and ∆� ∆1 is defined, then ∆� ∆2 is defined; and if balanced(∆)
and ∆vs ∆′ then balanced(∆′). Then by the standard substitution lemmas, we have:

Theorem 5.3 (Type Soundness).

1. Suppose Γ;∆;L ` P : �. Then P≡ P′ implies Γ;∆;L ` P′ : �.
2. Suppose Γ;∆; /0 ` P : T with balanced(∆). Then P −→ P′ implies Γ;∆′; /0 ` P′ : T

and either ∆ = ∆′ or ∆vs ∆′.

14 Dimitris Mostrous and Nobuko Yoshida

We now formalise communication-safety (which subsumes the usual type-safety). First,
an s-queue is a queue process s :~h. An s-input is a process of the shape s?(x).P or
s � {li : Pi}i∈I . An s-output is a process s!〈V 〉.P or s � l.P. Then, an s-process is an
s-queue, s-input or s-output. Finally, an s-redex is a parallel composition of either an
s-input and non-empty s-queue, or an s-output and s-queue.

Definition 5.4 (Error Process). We say P is an error if P≡ (ν~a)(ν~s)(Q | R) where Q
is one of the following: (a) a |-composition of two s-processes that does not form either
an s-redex or an s-input and an empty s-queue; (b) an s-redex consisting an s-input and
s-queue such that Q = s?(x).Q′ | s : lk~h or Q = s � {li : Pi}i∈I | s :V~h; (c) an s-process
for s ∈~s with s not free in R or Q; (d) a prefixed process or application containing an
s-queue.

The above says that a process is an error if (a) it breaks the linearity of s by having
e.g. two s-inputs in parallel; (b) there is communication-mismatch; (c) there is no cor-
responding opponent process for a session; or (d) it encloses a queue under prefix, thus
making it unavailable. As a corollary of Theorem 5.3, we achieve the following general
communication-safety theorem, subsuming the case that P is an initial program.

Theorem 5.5 (Communication Safety). If Γ;∆;L ` P : � with balanced(∆), then P
never reduces into an error.

5.2 Algorithmic Higher-Order Asynchronous Subtyping

This subsection proposes an algorithmic subtyping, extending the method from [12,
§ 3]. While the inclusion of the higher-order sessions and functional types complicates
the proof of soundness, the basic idea of the rules and proofs stays as before. First we
prove the decidability of S� S′, introducing the rewriting rule S !7→ S′ which moves
the output action to the head (using � in the reverse direction). Similarly for S ⊕7→ S′.
For a simple example, let S0 = &[l1 :?[U1].![U2].end, l2 :![U2].end]. Then S0

!7→ &[l1 :

![U2].?[U1].end, l2 :![U2].end] !7→![U2].&[l1 :?[U1].end, l2 : end] by applying (OI,OB) in

Fig. 4 in the reverse direction. Since !7→ and ⊕7→ terminate, and S� S′ can be decomposed
into a finite sequence of S

π17→ · · · πn7→ S′ (n ≥ 0) with πi ∈ {!,⊕}, the decidability of
� is straightforward. Using this relation, we can define the derivability of judgement
Σ ` T 6 T ′ where Σ is a sequence of assumed goals in the subtyping derivation. We list
only the key output rule which is used together with the standard output rule [4, 5]:

(Out)
Σ `![U1].S1 6![U2].T [S2h]h∈H T [![U2].S2h]h∈H !7→![U2].T [S2h]h∈H S1 1 T [S2h]h∈H

Σ `![U1].S1 6 T [![U2].S2h]h∈H

where T [Sh]h∈H represents a h-hole context; and T 1 T ′ means that T and T ′ have
the same session constructors under matching recursions; and labels in each type are
distinct. This rule reads: we fix the subtype and apply !7→ to place ![U2] to the head; then
we can use the standard output rule. As an example, let S1 = &[l1 :?[U1].end, l2 : end].
Then we can derive ![U2].S1 6 S0 (S0 is given above) by using (Out). The algorithm is
applied to the initial goal /0 ` T 6 T ′. Then using the same method developed in [5, 12],

Session-Based Communication Optimisation for Higher-Order Mobile Processes 15

we can prove the subtyping algorithm always terminates. We conclude this section with
the following theorem (see [1]):

Theorem 5.6 (Soundness and Completeness of the Algorithmic Subtyping). For all
closed types T and T ′ with T 1 T ′, T 6c T ′ if and only if /0 ` T 6 T ′.

6 Related and Future Work

The asynchronous subtyping has been firstly studied in [12] for multiparty session
types [8]; this work does not support neither higher-order sessions (delegations) nor
code mobility (higher-order functions). Both of these features provide powerful abstrac-
tions for structured distributed computing; delegation is the key primitive in our imple-
mentation of session types in Java [9] and web service protocols [17, 18], to which we
can now apply our theory for flexible optimisation. The proof of the transitivity in this
paper requires more complex construction of the transitive closure trc(ℜ1,ℜ2) (Defini-
tion 3.4) than the one in [12] due to the higher-order constructs. In spite of the richness
of the type structures, we proposed more compact runtime typing and proved commu-
nication safety in the presence of higher-order code, which is not presented in [12].
Note that our new typing system subsumes the previous linear typing system in [11],
demonstrating a smooth integration of two kinds of type-directed optimisation.

Coinductive subtyping of recursive session types is first studied in [5], adapting the
standard methods for the IO-subtyping in the π-calculus [14]. The system of [5] does
not provide any form of asynchronous permutation, thus does not need the nested n-
times unfolding (Definition 3.1). Our transitivity proof and the algorithmic subtyping
are more involved than [5] due to the incorporation with n-time unfolding and higher-
order functions.

Our treatment of runtime typing, specifically our method for typing session queues
and the use of session remainders, is more compact than previous asynchronous session
works [2, 3, 8] where they use the method of rolling-back messages – the head type of
a queue typing moves to the prefix of the session type of a process using the queue, and
then compatibility is checked on the constructed types. Our method is simpler, as we re-
move type elements appearing in a queue from its typing. On the other hand, our queue
typing is more similar to that of the functional language in [6], where smaller types are
obtained after matching with buffer values. Our method works with queue types rather
than with values directly, hence it can be extended smoothly to handle asynchronous
optimisation, which is not treated in [6]. For example we allow a type consisting an
output followed by an input action to be reduced with a type corresponding to the input,
leaving the output prefix intact. Using a more delicate composition between values and
queue typing, our system enables linear mobile code to be stored in the queues.

We intend to integrate the improved methods from this work back to our original
subtyping method for multiparty sessions [12], extending it to higher-order multiparty
sessions. Another direction is progress [2], by which we mean deadlock-free execution
of multiple interleaved sessions: in the presence of higher-order code mobility, this
extension is challenging since it requires tracking dependencies inside mobile code.
For example, if s!〈pPq〉 is blocked, the sessions inside pPq are also blocked. On the
other hand, we postulate that asynchronous subtyping does not introduce deadlock to a

16 Dimitris Mostrous and Nobuko Yoshida

deadlock-free supertype, as outputs and selections can only be done in advance (partial
commutativity), satisfying even stricter input dependencies than those required by the
dual session of the supertype.

References

1. On-line Appendix of this paper. www.doc.ic.ac.uk/˜mostrous/hopiasync.
2. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.

Global progress in dynamically interleaved multiparty sessions. In CONCUR, volume 5201
of LNCS, pages 418–433, 2008.

3. E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Calculus. In
TGC’07, volume 4912 of LNCS, pages 240–256, 2008.

4. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming
for Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.

5. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Info.,
42(2/3):191–225, 2005.

6. S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types, October
2008. Submitted for publication.

7. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for
Structured Communication-based Programming. In ESOP’98, volume 1381 of LNCS, pages
22–138, 1998.

8. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

9. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
ECOOP’08, volume 5142 of LNCS, pages 516–541, 2008.

10. R. Milner. Functions as processes. MSCS, 2(2):119–141, 1992.
11. D. Mostrous and N. Yoshida. Two Session Typing Systems for Higher-Order Mobile Pro-

cesses. In TLCA’07, volume 4583 of LNCS, pages 321–335. Springer, 2007.
12. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially commutative

asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332. Springer, 2009.
available from www.doc.ic.ac.uk/˜mostrous/asyncsub.

13. The Message Passing Interface (MPI) standard. http://www-
unix.mcs.anl.gov/mpi/usingmpi/examples/intermediate/main.htm.

14. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In Logic in
Computer Science, 1993. Full version in Mathematical Structures in Computer Science ,
Vol. 6, No. 5, 1996.

15. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher Order
Paradigms. PhD thesis, University of Edinburgh, 1992.

16. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-
tem. In PARLE’94, volume 817 of LNCS, pages 398–413. Springer-Verlag, 1994.

17. UNIFI. International Organization for Standardization ISO 20022 UNIversal Financial In-
dustry message scheme. http://www.iso20022.org, 2002.

18. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage. http://www.w3.org/2002/ws/chor/.

19. N. Yoshida. Channel dependency types for higher-order mobile processes. In POPL ’04,
pages 147–160. ACM Press, 2004. Full version available at www.doc.ic.ac.uk/̃ yoshida.

20. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Disciplines for Structured
Communication-based Programming Revisit. In SecRet’06, volume 171(3) of ENTCS, pages
127–151. Elsevier, 2007.

