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This paper addresses a problem found within the construction of Service Oriented Architecture: the

adaptation of service protocols with respect to functional redundancy and heterogeneity of global

communication patterns. We utilise the theory of Multiparty Session Types (MPST). Our approach

is based upon the notion of a multiparty session type isomorphism, utilising a novel constructive

realisation of service adapter code to establishing equivalence. We achieve this by employing trace

semantics over a collection of local types and introducing meta abstractions over the syntax of global

types. We develop a corresponding equational theory for MPST isomorphisms. The main motivation

for this line of work is to define a type isomorphism that affords the assessment of whether two com-

ponents/services are substitutables, modulo adaptation code given software components formalised

as session types.

1 Introduction

Multiparty session types (MPST) [10] formalise multi component distributed architectures whose se-

mantics is necessarily given as message passing choreographies. The desired interactions are specified

into a session or a global type between participants through a series of simple syntax including interac-

tion between two participants (composition of one send and corresponding receive), choice and recursion.

Global types are then projected onto local types, describing communication from each participant’s point

of view. The theory of session types guarantees that local conformance of all participants results in of an

architecture that globally conforms to the initially specified global types.

We follow the approach developed in [8]. In that work, the notion of session type isomorphisms

was initially explored. The main motivation for that line of work is to define the type isomorphism

that would allow assessment of whether two components/services are substitutable modulo adaptation

code, given component specification is considered to be a session type. This approach to isomorphism

practically consists of a library of constructive combinators for witnessing this kind of equivalence. We

build upon this with the intention of defining multiparty session type isomorphism combinators and study

their correctness. Comparison of two MPST is double layered: there is global syntax that is grounded in

local communication semantics.

The common framework involves both configurations (collections of local types) and traces of events

performed in the course of the global protocol execution as in [6]. Hence syntactic change to the global

protocol description might not affect local types and affords candidates for equivalent MPST. To con-

struct combinators for MPST isomorphisms, we employ meta abstractions over global syntax, ensuring

the isomorphism preserves MPST well-formedness (projectability to local types, guaranteeing there are

no orphan messages, deadlocks and that each participant has unambiguous instruction for the behaviour

within the protocol). We find concurrent interactions that are independent and that do not change the

outcome if permuted.

http://dx.doi.org/10.4204/EPTCS.291.1
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G=
(1) P→ I : 〈PId,DId〉;
(2) D→ R : 〈RetrRec〉;
(3) P→D : 〈IId,Symptoms〉;
(4) D→ P : {Prescr :R→ I : 〈Quote〉;

D→ R : {Prescr : D→ R : 〈UpRec〉;end},
Ref : R→ I : 〈Quote〉;

D→ R : {Ref : D→ R : 〈Test〉;end}}.

Figure 1: eHealth GP Visit Protocol

eHealth Record Example Consider the following example, a basic eHealth record logging system.

Communication is between four participants: Patient (P), Doctor (D), Insurance company (I) and Hospi-

tal Record (R). The diagram and global type protocol for it are depicted in Fig.1. The insurance company

is required to give approval according to their contract conditions at each step of the treatment and at the

same time hospital records have to be updated and available for further hospital and specialist systems.

There are independent communications happening between Doctor and Patient, while the Insurance com-

pany makes enquiries with Hospital Records.

Let us discuss the protocol in the Figure 1. First, P → I : 〈PId,DId〉 global type describes Patient

booking appointment with the Insurance by sending his/her identification of the type PId and Doctor’s

details of DId value type. In the second line of the global type G we have D → R : 〈RetrRec〉, Doctor

opens Patients records with the Hospital Record system, sending retrieval protocol of type RetrRec. Next

the Patient lists his ”Symptoms” to the Doctor, who either prescribes a treatment or refers the Patient for

further tests. At line (4), the Doctor sends his choice to the Patient and updates Patient’s Hospital Record,

initiating Referral or Prescription protocol with Insurance company and the Hospital.

Now we observe that lines (1) and (2) follow communication between pairwise different participants,

which means there is no synchronisation dependence between these two communications and they could

be swapped. Another candidate for protocol transformation is the exchange between the Insurance and

the Hospital Record (line (4)), triggered by the Doctor-to-Patient communication where Insurance and

the Hospital Record are not aware of the order and content of the branching choices.

In this work we restrict our consideration to a synchronous setting, when participants cannot start

a new interaction without completing current one by waiting for the message to be received. Hence

global protocol transformation will stem from the communications, which are order dependent or inde-

pendent(between pairwise different participants). In the next section, we will define the formal setting

for protocol transformation combinators.

2 Design of Multiparty Session Type Isomorphism

Global types define overall schemes of labelled communications between session participants. We will

deconstruct the general global type syntax introduced in [3] to include Prefix and Branch subterms of

the global type denoted Gtype. We assume base set of participants, ranged over by p,q, r,s..; exchange

values, ranging over boolean or natural numbers, which could also be assigned to labels l1, l2, .. and

recursion variables, ranged over t, t′...
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⊢ p : Part
(PARTICIPANT)

⊢U : Bool
⊢U : Vtype

⊢U : Nat
⊢U : Vtype

(EXCHANGE VALUES)
⊢U : Vtype

⊢U : Label
(LABELS)

⊢ p,p′ : Part ⊢U : VType

⊢ p→ p
′ : 〈U〉 : Prefix

(GLOBAL PREFIX)

⊢ end : Gtype ⊢ t : Gtype

⊢ g : Prefix ⊢ G : Gtype

⊢ g;G : Gtype
(GLOBAL TYPE)

⊢ p,p′ : Part ⊢ li : Label ⊢ Gi : Gtype ⊢ gi := p→ p
′ : li : Prefix i ∈ I

⊢ g1;G1 × . . .×gi;Gi,i∈I : Gtype
(BRANCHING)

⊢ t : Gtype ⊢ G : Gtype

⊢ µt.G : Gtype
(RECURSION)

Table 1: Formation Rules for Global Types

Type formation rules for the multiparty global type abstraction are outlined in the Table 1.

Global Types We define the syntax for MPST in the Definition 1, introducing prefix terms for pairwise

communications and predicates inp and out over it that distinguish inputting and outputting participants,

which will be useful for developing global and local type trace based understanding of equivalence

between two MPST.

Definition 1 (Multiparty Session Types). Given participants p,q.., types of exchanged messages U ∈
{Bool, Int} and labels l1, ..., ln, the grammar of global types (G,G′..) is defined as:

G ::= g;G | g1;G1 × . . .×gk;Gk,k∈I | t | µt.G | end

g ::= p→ q : 〈U〉 gi ::= p→ q : li,∀i ∈ I

inp(g) := q, out(g) := p with pid(g) = {p,q}; and inp(gi) := q, out(gi) := p with ∀i∈ I.pid(gi) = {p,q}.

The corresponding local session types syntax is as follows:

T ::= inp(g)!〈U〉;T | out(g)?〈U〉;T | inp(gi)⊕{li : Ti} | out(gi)&{li : Ti} | t | µ t.T | end

We will redefine the standard notion of the projection from global to local types. Mergeability ⊲⊳ is

the smallest equivalence over local types closed under all contexts and the mergeability rule. If T1 ⊲⊳ T2

holds then branch merging is well-defined with a partial commutative operator ⊔. See [7] for the full

definition.

Definition 2 (Global Type Projection) Projection (G ↾ q) of a global type G onto a participant q is

defined by induction on G. Let g = p→ p
′ : 〈U〉 and gi = p→ p

′ : li,∀i∈I:

(g;G′) ↾ q=







inp(g)!〈U〉;(G′ ↾ q) if q= out(g)

out(g)?〈U〉;(G′ ↾ q) if q= inp(g)

G′ ↾ q otherwise

(g1;G1 × . . .× gn;Gn)n∈I ↾ q=







inp(g)⊕{li : (Gi ↾ q)}i∈I if q= out(gi)i∈I

out(g)&{li : (Gi ↾ q)}i∈I if q= inp(gi)i∈I

⊔i∈IGi ↾ q if q 6= pid(gi)i∈I and

∀i, j ∈ I.Gi ↾ q ⊲⊳ G j ↾ q
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(µ t.G) ↾ q=

{

µ t.(G ↾ q) if G ↾ q 6= t,

end otherwise.
t ↾ q= t end ↾ q= end.

Within our example, projection onto the Insurance participant reflects his/her ignorance of the choice

sent by the Doctor to the Patient, therefore Insurance is activated by the Patient sending it booking details,

waits for the Quote from the Health Records and then ends: G ↾ I= P?〈PId, DId〉;R?〈Quote〉;end.

The operational semantics for local types is defined in Table 2 with local labels set ranged over by

ℓ,ℓ′, ...:

L= {inp(g)!m, out(g)?m | m ∈ {〈U〉, l}, g : Prefix, U : VType, l : Label}

where inp(g)!m is a send action (participant out(g) is sending m, which could be a value or a label, to

participant inp(g)) and out(g)?m is a dual receive action.

[LIn] out(g)?〈U〉;T
out(g)?〈U〉
−−−−−−→ T [LOut] inp(g)!〈U〉;T

inp(g)!〈U〉
−−−−−−→ T

[LBra] out(g)&{li : Ti}
out(g)?l j
−−−−−→ Tj ( j ∈ I) [LSel] inp(g)⊕{li : Ti}

inp(g)!l j
−−−−−→ Tj ( j ∈ I)

[LRec] T [µt.T/t]
ℓ
−→ T ′ =⇒ µt.T

ℓ
−→ T ′, ℓ ∈ L

Table 2: Operational Semantics of Local Types

[LIn] is for a single receive action and its dual [LOut] for a send action. Similarly, [LSel] is the

rule for sending a label and its dual [LBra] is for receiving a label. Rule [LRec] is the standard rule for

recursions.

Reduction rules for the global protocol are summarised in Table 3. This work focuses upon syn-

chronous semantics for the global type communication, following methodology introduced in [11]. [In-

ter] shows reduction of the global type when communication within prefix g occurs, similarly [SelBra]

rule shows selecting of one of the branches gk and executing it, which results in reduction of the global

type to the continuation of the selected branch Gk. Rules [IPerm] and [SBPerm] show how to execute

message passing between participants that are not part of the the prefix communication. The last rule

[Rec] is the standard rule for recursions.

[Inter] g;G
g
−→ G [SelBra] g1;G1 × . . .×gi;Gi,i∈I

gk
−→ Gk

[IPerm]
G

g′

−→ G′ pid(g)∩pid(g′) = /0

g;G
g′

−→ g;G′

[Rec] G[µt.G/t]
g
−→ G′ =⇒ µt.G

g
−→ G′

[SBPerm]
∀i ∈ I,Gi

g′

−→ G′
i pid(g′)∩pid(gi) = /0

g1;G1 × . . .×gi;Gi,i∈I
g′

−→ g1;G′
1 × . . .×gi;G′

i,i∈I

Table 3: Operational Semantics of Global Types
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Definition 3 (Trace of a Global Type) Given global type G, we call the trace of a global type a sequence

of possible communication events during protocol execution:

Tr(G) = {g1;g2..;gn|G
g1
−→ ..

gn
−→ G′,gi∈I : Prefix}

λ -Terms of MPST In order to build isomorphism combinators we require two syntactic classes of

variables: one called Prefix for term variables, and another one called Gtype for global type variables.

We define typed λ -terms on the variables of the Prefix or Gtype types:

(VARIABLES) v := vg : Prefix | vG : Gtype

(Λ-TERMS) M := v | λv.M | if e then M else M | let v= M in M | MM

(BOOLEAN EXPRESSIONS) e := true | false | not(e) | e1 and e2 | e1 or e2

We work with the usual λ -calculus typing judgment rules for well-formation. Isomorphisms are com-

binators (functions) with respect to abstraction over global session type expressions, i.e. Prefix for term

variables and Gtype for global type variables.

We describe isomorphism in terms of invertible transformations over global types syntax as in the

following definition:

Definition 4 (Global Type Isomorphism and Invertible Combinators) Two global types G and G′ are

isomorphic G⇄ G′ iff there exist functions M : G → G′ and N : G′ → G, such that M ◦N = λx : G.x and

N ◦M = λx : G′.x. Terms M,N are called invertible combinators.

Let us assume g j = Fj(G), j ∈ I where combinator Fj produces j-th prefix and Taili(G) = G′ with

j < i, i, j ∈ I and Tail j(G) = g j+1;g j+2; ...;gi;G′, we can write a swapping combinator:

G = g1; ..;gi−1;gi; ..gn;G

Swapl
gi

⇄
Swapr

gi

g1; ..;gi−2;gi;gi−1..gn;G (Prefix commutativity)

where

Swaplgi(G), λG. let gi = Fi(G) and G′ = Taili(G) in

if pid(gi)∩pid(gi−1) = /0 then g1; ..;gi−2;gi;gi−1;G′ else G.
(1)

and reverting combinator Swapr
gi

will accordingly have a form:

Swaprgi(G), λG. let gi = Fi(G) and G′ = Taili+1(G) in

if pid(gi)∩pid(gi+1) = /0 then g1; ..;gi−1;gi+1;gi;G′ else G.
(2)

Returning to our example protocol G from the Fig 1, if we apply this combinator to swap first two

lines of independent communication we arrive at an isomorphic protocol Gsw:

G
Swapl

⇄
Swapr

D→ R : 〈RetrRec〉;P→ I : 〈PId,DId〉;Tail(G) = Gsw

.
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Gbr
sw =
(1) D→ R : 〈RetrRec〉;
(2) P→ I : 〈PId, DId〉;
(3) P→ D : 〈IId,Symptoms〉;
(4) R→ I : 〈Quote〉;
(5) D→ P : {Prescr :D→ R :

{Prescr : D→ R : 〈UpRec〉;end},
Ref : D→ R :

{Ref : D→ R : 〈Test〉;end}.

D R P I

Symptoms

Prescribe

Quote

Prescr

Update

Refer

Ref

Test

choice

Figure 2: Isomorphic eHealth Protocol (branch and prefix swapping combinators applied)

Consider communication between participants p and q, where p sends choices, identified with labels

li, i ∈ I, to proceed within each branch exchanging value U between participants p′ and q
′ and then con-

tinue as global type Gi branch. Then these two communications can be swapped reflecting concurrency

of the interaction:

g1;g;G1 × . . .×gi;g;Gi

Contr

⇄
Exp

g;(g1;G1 × . . .×gi;Gi,i∈I ) (Branching)

Contr(G), λgλg1 . . .λgkλG1 . . .λGk. if G = g1;g;G1 × . . .×gk;g;Gk and

pid(g)∩pid(gi) = /0,1 ≤ i ≤ k then g;(g1;G1 × . . .×gk;Gk) else G.
(3)

The inverse of the contracting function Contr will be expanding one:

Exp(G), λgλg1 . . .λgkλG1 . . .λGk. if G = g;(g1;G1 × . . .×gk;Gk) and

pid(g)∩pid(gi) = /0,1 ≤ i ≤ k then g1;g;G1 × . . .×gk;g;Gk else G.
(4)

The next swapping equivalence for the global type is the analogue of the distributivity for branching

within branches (indexed prefixes reflect the labels exchanged):

g1;(gn+1;G1 × . . .×gn+k;Gk)× . . .×gn;(gn+1;G1 × . . .×gn+k;Gk)
SwapBrl

⇄
SwapBrr

gn+1;(g1;G1 × . . .×gn;G1)× . . .×gn+k;(g1;Gk × . . .×gn;Gk), k ∈ I,n ∈ I else G.
(Branching distributivity)

In the case of the eHealth logging protocol, as we mentioned, there is an independent communication

between Insurance and the Records system within the choice sent from the Doctor to the Patient. Ap-

plying contracting combinator Contr to the Gsw isomorphic to the G, we arrive to another isomorphic

protocol Gbr
sw depicted in Fig.2. Projections of this transformation Gbr

sw of the original protocol G onto

the Patient, Doctor and Insurance participant are exactly the same. An interesting case arises when

looking at the local type for the Hospital Record: syntactically projections on this participant of the

global types from the Fig.1 and Fig.2 are different. However trace sets of the projections are equivalent

Tr(G ↾ R) = Tr(Gbr
sw ↾ R).
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3 Semantics of Multiparty Session Type Isomorphism

The common framework to describe session networks is to study configurations. Configurations are

collections of local types corresponding to remaining expected actions for all participants. We follow

notation introduced in [6] to compare sets of languages of local message traces for associated global

types.

Definition 5 (Configuration Traces) A configuration trace σ is a mapping from participants to a se-

quence of labels of local types, i.e. σ(r) = ℓ1...ℓn where ℓi ∈ L. A participant r is in the domain of σ if

σ(r) 6= ε where ε stands for an empty sequence.

Definition 6 (Configurations) Given a set of roles P , we define a configuration as ∆ = (Tp)p∈P where

Tp is a local type projected to participant p (i.e. a local type of participant p). The synchronous transition

relation between configurations is defined as:

Tp
ℓ
−→ T ′

p
Tq

ℓ
−→ T ′

q
Tr = T ′

r r 6= p, r 6= q

(Tp)p∈P

ℓ·ℓ
−→ (T ′

p
)p∈P

(SYNCH)

The relation between traces and configuration is given by execution relation ∆ σ
synch ∆′:

Definition 7 (Configuration Execution and Traces) Configuration ∆ executes trace σ to configuration

∆′ for synchronous semantics, if

1. For any configuration ∆, ∆ σ0

synch ∆,where ∀r : σ0(r) = ε

2. For any configurations ∆,∆1,∆2 any trace σ , any label l, if ∆ σ
synch ∆1 and ∆1

ℓ·ℓ
−→ ∆2 within

synchronous semantics, then we define ∆ σ ′

synch ∆2 as follows:

ℓ · ℓ= q!m ·p?m, then σ ′(p) = σ(p).q!m,σ ′(q) = σ(q).p?m and σ ′(r) = σ(r), r /∈ {p,q}.

Definition 8 (Denotation of a Global Type and Terminated Traces). Let us define δ (G)= (Tp)p∈P where

P is a set of participants in G. We define the denotation of global type G under synchronous semantic,

denoted D(G), as the set of all terminated traces from δ (G) where a terminated trace from δ (G) means

δ (G) σ
synch ∆ where ∆ 6→.

Therefore we arrive to the statement about global type isomorphism with relation to the local traces:

isomorphic global types will have the same sets of traces. We can show for the three isomorphisms

(Commutativity, Branching and Branching distributivity), that two isomorphic types will have equal

trace sets, i.e. executing the same action (communication between two participants) on each isomorphic

global type will result in equivalent up to defined isomorphism global types.

Lemma 1 If G1⇄ G2, then Tr(G1) = Tr(G2).

We prove Lemma 1 by induction over global operational semantics given in Table 3 for the three

isomorphism rules. The proof is given in Appendix A.

Next Theorem 1 shows the equivalence between trace sets of a global type and configuration traces

of a set of local types projected from that global type. Let us denote the trace set of the configuration

of the global type by TS(∆). The following theorem proves the trace set of the global type G for the

synchronous semantic, Tr(G), is equivalent to TS(∆). Below the equivalence relation ≡ is defined by

identifying g = p→ q : m (the label of the global type trace) to q!m ·p?m (the labels of the configuration

trace). The proof is given in Appendix B.
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Theorem 1 (Equivalence between Synchronous Global Types and Configuration Traces) Let G be

a global type with participants P and let ∆ = (G ↾ p)p∈P be the local type configuration projected

from G. Then Tr(G)≡ TS(∆) where ∆ = (Tp)p∈P .

By Lemma 1 and Theorem 1, Theorem 2 concludes that the denotational semantics of two isomorphic

global types are the same.

Theorem 2 (Soundness) Let G be a global type with participants P . If G1 ⇄ G2, then TS(∆1) =
TS(∆2) where ∆i = (Tip)p∈P with i ∈ {1,2} and Tip = Gi ↾ p. Hence if G1⇄ G2, then D(G1) = D(G2).

We conjecture the completeness direction.

4 Related Work and Conclusions

Type Isomorphism The main theory of type isomorphisms developed in [9] demonstrated that type

theory is an effective formalism to classify software components and how type isomorphism can be

practically employed to catalogue and manage behaviorally equivalent components. However, isomor-

phisms are often considered to be too strict in distributed settings, whose behavioural semantics is often

given by means of process calculus. The need for the latter formalism of distributed component equiv-

alence was a historical motivation for developing notions of component similarity and adaptation via

bisimulation [12], testing equivalences [1] and so on.

In contrast, our pursuit of defining isomorphism framework for the globally governed semantic of

multiparty processes is an attempt to find more flexible type level equalities. We build upon earlier work

to axiomatise session type isomorphisms through behavioral adaptation. The first such attempt to in-

vestigate session type isomorphisms, following the theory of type isomorphisms [5] and finite hereditary

permutations, was presented in [8] and described combinators for binary session types isomorphisms cor-

responding to adjacent processes. Interpretation of linear logic propositions as session types for commu-

nicating processes explains how type isomorphisms resulting from linear logic equivalences are realised

by coercions between interface types of session-based concurrent systems [13].

We extend our investigation beyond binary session types to multiparty session types (MPST) [10].

Global Protocol Adaptation Works addressing adaptation for multiparty communications include

[14], [4] and [2] . The paper [14] proposes a choreographic language for distributed applications. Adap-

tation follows a rule-based approach, in which all interactions, under all possible changes produced by

the adaptation rules, proceed as prescribed by an abstract model. In [4] a calculus based on global types,

monitors and processes is introduced and adaptation is triggered after the execution of the communica-

tions prescribed by a global type, in reaction to changes of the global state. In contrast, in [2] adaptation

is triggered by security violations, and assures access control and secure information flow.

Trace Semantics for MPST The first study of the expressiveness of multiparty session types through

trace semantics is given in [6]. That work employs sets of languages of local message traces to compare

expressiveness of different semantics of multiparty session types based on: the presence and nature

of varied data structures (input or output queues), flexibility of the local types, defined as a subtyping

relation, and presence of parallel sessions and interruptions. The global type isomorphism design we

offer here is straightforwardly extendable to this semantics.
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Our future work includes the extensions to subtyping, sessions with interruptions, and asynchronous

semantics. At the practical side, it is interesting to implement combinators in functional languages such

as Haskell or OCaml taking Scribble [15] as a source global protocol.
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cure information flow in multiparty communications. Formal Asp. Comput. 28(4), pp. 669–696,

doi:10.1007/s00165-016-0381-3.

[3] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani & Nobuko Yoshida (2015): A Gen-

tle Introduction to Multiparty Asynchronous Session Types. In: SFM 2015, pp. 146–178,

doi:10.1007/978-3-319-18941-3 4.

[4] Mario Coppo, Mariangiola Dezani-Ciancaglini & Betti Venneri (2015): Self-adaptive multiparty sessions.

Service Oriented Computing and Applications 9(3-4), pp. 249–268, doi:10.1007/s11761-014-0171-9.

[5] Roberto Di Cosmo (2005): A short survey of isomorphisms of types. MSCS 15(5), pp. 825–838,

doi:10.1017/S0960129505004871.

[6] Romain Demangeon & Nobuko Yoshida (2015): On the Expressiveness of Multiparty Sessions.

In: FSTTCS 2015, LIPIcs 45, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 560–574,

doi:10.4230/LIPIcs.FSTTCS.2015.560.

[7] Pierre-Malo Deniélou & Nobuko Yoshida (2013): Multiparty Compatibility in Communicating Au-

tomata: Characterisation and Synthesis of Global Session Types. In: ICALP 2013, pp. 174–186,

doi:10.1007/978-3-642-39212-2 18.

[8] Mariangiola Dezani-Ciancaglini, Luca Padovani & Jovanka Pantovic (2014): Session Type Isomorphisms.

In: PLACES 2014, EPTCS 155, pp. 61–71, doi:10.4204/EPTCS.155.9.

[9] Roberto Di Cosmo (1995): Isomorphisms of types: from λ -calculus to information retrieval and language

design. Birkhauser, doi:10.1007/978-1-4612-2572-0.

[10] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In:

POPL2008, pp. 273–284, doi:10.1145/1328438.1328472.

[11] Dimitrios Kouzapas & Nobuko Yoshida (2014): Globally Governed Session Semantics. Logical Methods in

Computer Science 10(4), doi:10.2168/LMCS-10(4:20)2014.

[12] Robin Milner (1984): Lectures on a Calculus for Communicating Systems. In: Seminar on

Concurrency, Carnegie-Mellon University, Pittsburg, PA, USA, July 9-11, 1984, pp. 197–220,

doi:10.1007/3-540-15670-4 10.
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A Proof of Lemma 1

Recall Definition 3 of the trace set of the global type. We will show for the three isomorphisms, that two

isomorphic types will have the same trace sets, i.e. executing the same action(communication between

two participants) on each isomorphic global type will result in the same or equivalent up to isomorphism

global type. We will start with the prefix swapping isomorphism, that reflect the reordering of message

passing for the pairwise different participants.

• g1;g2;G
︸ ︷︷ ︸

G1

⇄ g2;g1;G
︸ ︷︷ ︸

G2

Proof Let us recall operational semantics Table 3 for the Global types progress. There are three

possibilities for the types G1 and G2 to proceed:

1. Execute communication g1:

Following the rule [Inter], type G1 will reduce to: g1;g2 : G
g1
−→ g2;G. To execute the same

trace on G2, we apply rule [IPerm]:g2;g1 : G
g1
−→ g2;G. Both times execution of this trace

results in the same global type g2;G, hence Tr(G1) = Tr(G2).

2. Execute communication between participants in g2:

By the rule [Iperm] global type G1 reduces to g1;g2;G
g2
−→ g1;G. The same trace on the global

type G2 will utilise [Inter] operational rule: g2;g1 : G
g2
−→ g1;G. Both G1 and G2 reduce to

the same global type g1;G, which implies trace equality on this path: Tr(G1) = Tr(G2).

3. Execute communication g within global type G between participants that are not involved in

g1 and g2, reducing G into G′:

G
g
−→ G′ pid(g1)∩pid(g2)∩pid(g) = /0

[IPerm]
G1 = g1;g2;G

g
−→ g1;g2;G′ G2 = g2;g1;G

g
−→ g2;g1;G′

We arrive to the global types, equivalent up to prefix swapping isomorphism, by induction

step on g1;g2;G′ and g2;g1;G′, therefore Tr(G1) = Tr(G2).

Thus, these two suspect isomorphic global types G1 and G2 have the same trace sets and by our

definition of the global multiparty session type isomorphism are indeed isomorphic. �

• g1;g;G1 × . . .×gi;g;Gi
︸ ︷︷ ︸

G1

⇄ g;(g1;G1 × . . .×gi;Gi,i∈I )
︸ ︷︷ ︸

G2

Proof Following operational semantic for the global types, we distinguish three cases of the trace

execution:

1. Execute communication between participants offering branching selection in the k-th branch:

g1;g;G1 × . . .×gi;g;Gi
gk−→ g;Gk by the rule [SelBra]. The same trace on the global type G2

will require application of the [IPerm] rule:
g1;G1 × . . .×gi;Gi,i∈I

gk
−→ Gk [SelBra]

[IPerm]
g;(g1;G1 × . . .×gi;Gi,i∈I )

gk
−→ g;Gk

http://dx.doi.org/10.1007/978-3-319-05119-2_3
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2. Executing communication within prefix g

g;Gk
g
−→ Gk, pid(g)∩pid(gi) = /0, k ∈ I [Inter]

[SBPerm]
g1;g;G1 × . . .×gi;g;Gi

g
−→ g1;G1 × . . .×gi;Gi,i∈I

while G2
g
−→ G0 when applying rule [Inter].

3. Executing communication g that moves global types Gi into corresponding Gi is similar to

the case 2 above.

B Proof of the Theorem 1

Proof By induction on reduction of the global type LTS we show that if δ (G)  σ
synch δ (G′), then

T (∆)  σ
synch T (∆′), i.e. if the trace σ is in the trace set of a global type G, then it is also in the

trace set of the configuration corresponding to this global type.

• Let G = end . This is a trivial case and δ (end)≡ T (end) = ε .

• Let G = g;G1, where g = p→ q : 〈U〉 and pid(G1) = {r1, ..rn}= r

Then configuration ∆ of the global type G is the set of its local projections, ∆ = Tp,Tq,Tr. There

are two possibilities for the global type G to proceed according to the operational semantics of

LTS in Table 3:

1. G
g
−→ G′ Then configuration of the global type G will follow the transition relation [Synch]

rule with the trace σ = inp(g)!〈U〉 ·out(g)?〈U〉:

∆ = inp(g)!〈U〉;Tout(g),out(g)?〈U〉;Tinp(g),Tr
inp(g)!〈U〉·out(g)?〈U〉
−−−−−−−−−−−−→ Tout(g),Tinp(g),Tr = ∆′

At the same time δS(G
′) : Tout(g),Tinp(g),Tr.

2. G
g′

−→ G′, where g′ = r→ s : 〈U ′〉 and emptyS(g,g
′), the trace we execute in this case will be

σ = inp(g′)!〈U ′〉 ·out(g′)?〈U ′〉

∆= inp(g)!〈U ′〉;Tout(g),out(g)?〈U
′〉;Tinp(g), inp(g

′)!〈U ′〉;Tout(g′),out(g
′)?〈U ′〉;Tinp(g′)Tr →

inp(g′)!〈U ′〉·out(g′)?〈U ′〉
−−−−−−−−−−−−−−→ inp(g)!〈U ′〉;Tout(g),out(g)?〈U

′〉;Tinp(g),Tout(g′),Tinp(g′),Tr = ∆′ (5)

Transition of the configuration ∆ reduces to the configuration ∆′, meanwhile trace of the

reduced global type δ (G′) = ∆′

• Let G = g1;G1 × . . .×gk;Gk,k∈I , where gi = p→ q : li, i ∈ I and pid(Gi) = ri. There are two cases

depending on the transition rule used for the global type operational semantics:

1. G
gi
−→Gi following [SelBra] rule. Corresponding global type configuration ∆ will be executing

trace σ = inp(gi)!li ·out(gi)?li.

2. G
g′i−→ G′ using [SBPerm] rule. Corresponding configuration will be executing trace σ =

inp(g′)!l′i · out(g
′)?l′i . In both cases configuration trace of the branching global type will be

coinciding with reduced global type configuration.
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