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Abstract. Session-based communication has gained a widespread acceptance in
practice as a means for developing safe communicating systems via structured
interactions. In this paper, we investigate how these structured interactions are af-
fected by reversibility, which provides a computational model allowing executed
interactions to be undone. In particular, we provide a systematic study of the in-
tegration of different notions of reversibility in both binary and multiparty single
sessions. The considered forms of reversibility are: one for completely reversing
a given session with one backward step, and another for also restoring any inter-
mediate state of the session with either one backward step or multiple ones. We
analyse the costs of reversing a session in all these different settings. Our results
show that extending binary single sessions to multiparty ones does not affect the
reversibility machinery and its costs.

1 Introduction

In modern ICT systems, the role of communication is more and more crucial. This
calls for a communication-centric programming style supporting safe and consistent
composition of protocols. In this regard, in the last decade, primitives and related type
theories supporting structured interactions, namely sessions, among system participants
have been extensively studied (see, e.g., [10,22,5,18,11]).

Another key aspect of ICT systems concerns their reliability. Recently, reversibility
has been put forward as a convenient support for programming reliable systems. In fact,
it allows a system that has reached an undesired state to undo, in automatic fashion,
previously performed actions. Again, foundational studies of mechanisms for reversing
action executions have been carried out (see, e.g., [7,8,9,19,14,13,6,4]).

In this paper, we investigate how the benefits of reversibility can be brought to struc-
tured communication and, hence, how reversibility and sessions affect each other. We
concentrate on the primitives and mechanisms required to incorporate different notions
of reversibility into two forms of session, and we analyse the costs of reversing a ses-
sion in these different settings. To study the interplay between reversibility and sessions
we rely on a uniform foundational framework, based on π-calculus [17].

Specifically, we focus on a simplified form of session, called single, in which the
parties that have created a session can only continue to interact along that single ses-
sion. This setting permits to consider a simpler theoretical framework than the one with
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Binary Single Sessions
(1) Whole session reversibility
Session interactions reversibility

(2) Multi-step
(3) Single-step

Multiparty Single Sessions
(4) Whole session reversibility
Session interactions reversibility

(5) Multi-step
(6) Single-step

Fig. 1. Sessions and Reversibility: considered combinations

the usual notion of session, called here multiple, where parties can interleave inter-
actions performed along different sessions. This allows us to focus on the basic, key
aspects of our investigation. Although single sessions are simpler, they are still largely
used in practice, and differently from multiple sessions (see, e.g., [20,2]) their effect to
reversibility is not studied yet in the literature.

Concerning the parties involved in the sessions, we take into account both binary
and multiparty sessions, which involve two or multiple parties, respectively. For each
kind of session, we investigate the use of two forms of reversibility: (i) whole session
reversibility, where a single backward step reverses completely the given session, thus
directly restoring its initialisation state; and (ii) session interactions reversibility, where
any intermediate state of the session can be restored, either in a (ii.a) multi-step or a
(ii.b) single-step fashion. Figure 1 sums up the different combinations of sessions and
reversibility we consider.

We exemplify the reversible approaches throughout the paper by resorting to a typi-
cal business protocol example, drawn from [11]. In case of binary session (Figure 2.(a)),
the protocol involves a Buyer willing to buy a book from a Seller. Buyer sends the book
title to Seller, which replies with a quote. If Buyer is satisfied by the quote, then he sends
his address and Seller sends back the delivery date; otherwise Buyer quits the conversa-
tion. In the multiparty case (Figure 2.(b)), the above protocol is refined by considering
two buyers, Buyer1 and Buyer2, that wish to buy an expensive book from Seller by
combining their money. Buyer1 sends the title of the book to Seller, which sends the
quote to both Buyer1 and Buyer2. Then, Buyer1 tells Buyer2 how much he is willing to
contribute. Buyer2 evaluates how much he has to pay and either accepts, and exchanges
the shipping information, or terminates the session. In these scenarios, reversibility can
be entered into the game to deal with errors that may occur during the interactions, or to
make the protocols more flexible by enabling negotiation via re-iteration of some inter-
actions. For example, a buyer, rather than only accepting or rejecting a quote, can ask
the seller for a new quote by simply reverting the interaction where the current quote
has been communicated. Similarly, Buyer2 can negotiate the division of the quote with
Buyer1. Other possibilities allow the buyers to partially undo the current session, in
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Fig. 2. Single session protocols: Buyer-Seller (a) and Two-Buyers-Seller (b)
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order to take a different branch along the same session, or even start a new session with
(possibly) another seller.

The contribution of this paper is twofold. Firstly, we show for each kind of session
discussed above a suitable machinery that permits extending the corresponding non-
reversible calculus in order to become reversible. Secondly, we compare the different
cases, i.e. (1)-(6) in Figure 1, by means of their costs for reverting a session, given
in terms of number of backward steps and occupancy of the data structures used to
store the computation history (which is a necessary information to reverse the effects of
session interactions). Our results about reversibility costs are summarised in Figure 3.

Binary Multiparty
(1) (2) (3) (4) (5) (6)

# backward steps 1 n 1 1 n 1

# memory items 1 n n 1 n n

n: number of interactions along the session to be reversed

Fig. 3. Costs of Reversing Single Sessions

It is worth noticing that linearity of ses-
sions permits to achieve costs that are at
most linear. Moreover, despite in case
of complex interactions the multiparty
approach provides a programming style
more natural than the binary one, binary
and multiparty sessions have the same
reversibility costs. We discuss at the end of the paper how our work can extend to mul-
tiple sessions, which require a much heavier machinery for reversibility with respect to
single ones, and have higher costs. This means that it is not convenient to use in the sin-
gle session setting the same reversible machineries already developed for calculi with
multiple sessions, which further motivates our investigation.

The practical benefit of our systematic study is that it supplies a support to system
designers for a conscious selection of the combination of session notion and reversibil-
ity mechanism that is best suited to their specific needs.

Summary of the rest of the paper. Section 2 provides background notions on binary
and multiparty session-based variantes of π-calculus. Section 3 shows how reversibil-
ity can be incorporated in single binary sessions and what is its cost, while Section 4
focusses on multiparty ones. Section 5 concludes by reviewing strictly related work
and by touching upon directions for future work. We refer to the companion technical
report [21] for further background material and proofs of results.

2 Background on session-based π-calculi

In this section, we give the basic definitions concerning two variants of the π-calculus,
enriched with primitives for managing binary and multiparty sessions, respectively.

Binary session calculus. The syntax definition of the binary session π-calculus [22]
relies on the following base sets: variables (ranged over by x), storing values; shared
channels (ranged over by a), used to initiate sessions; session channels (ranged over
by s), consisting on pairs of endpoints (ranged over by s, s̄) used by the two parties to
exchange values within an established session; labels (ranged over by l), used to select
and offer branching choices; and process variables (ranged over by X), used for re-
cursion. Letter u denotes shared identifiers, i.e. shared channels and variables together;
letter k denotes session identifiers, i.e. session endpoints and variables together; letter c
denotes channels, i.e. session channels and shared channels together. Values, including
booleans, integers, shared channels and session endpoints, are ranged over by v.
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P ::= Processes
ū(x).P | u(x).P | k!〈e〉.P | k?(x).P request, accept ,output, input
| k / l.P | k . {l1 : P1, . . . , ln : Pn} | 0 | P1 |P2 selection, branching, inact, parallel
| (νc)P | if e then P1 else P2 | X | µX.P choice, restriction, recursion

e ::= v | op(e1, . . . , en) Expressions

Fig. 4. Binary session calculus: syntax

ā(x1).P1 | a(x2).P2 → (νs)(P1[s̄/x1] | P2[s/x2]) s, s̄ /∈ fse(P1, P2) [CON]

k̄!〈e〉.P1 | k?(x).P2 → P1 | P2[v/x] (k = s or k = s̄), e ↓ v [COM]

k̄ / li.P | k . {l1 : P1, . . . , ln : Pn} → P | Pi (k = s or k = s̄), 1 ≤ i ≤ n [LAB]

if e then P1 else P2 → P1 e ↓ true [IF1]

if e then P1 else P2 → P2 e ↓ false [IF2]

P1 → P ′1

P1 |P2 → P ′1 |P2

[PAR] P → P ′

(νc)P → (νc)P ′
[RES] P1 ≡ P ′1 → P ′2 ≡ P2

P1 → P2
[STR]

Fig. 5. Binary session calculus: reduction relation

Processes (ranged over by P ) and expressions (ranged over by e and defined by
means of a generic expression operator op representing standard operators on boolean
and integer values) are given by the grammar in Figure 4.

The operational semantics of the calculus is given in terms of a structural congru-
ence and of a reduction relation, and is only defined for closed terms, i.e. terms without
free variables. The structural congruence, written ≡, is standard (see [21]). The reduc-
tion relation, written →, is the smallest relation on closed processes generated by the
rules in Figure 5. We resort to the auxiliary function · ↓ for evaluating closed expres-
sions: e ↓ v says that expression e evaluates to value v. Notationally, for P a process,
fv(P ) denotes the set of free variables in P , and fse(P ) the set of free session end-
points. We comment on salient points. A new session is established when two parallel
processes synchronise via a shared channel a; this results on the generation of a fresh
(private) session channel whose endpoints are assigned to the two session parties (rule
[CON]). Along a session, the two parties can exchange values (for data- and channel-
passing, rule [COM]) and labels (for branching selection, rule [LAB]). The other rules
are standard and state that: conditional choice evolves according to the evaluation of the
expression argument (rules [IF1] and [IF2]); if a part of a larger process evolves, the
whole process evolves accordingly (rules [PAR] and [RES]); and structural congruent
processes have the same reductions (rule [STR]).

The syntax of sorts (ranged over by S) and types (ranged over by α, β) used in
the binary session type discipline is defined in Figure 6. The type ![S].α represents the
behaviour of first outputting a value of sort S, then performing the actions prescribed
by type α; type ![β].α represents a similar behaviour, which starts with session output
(delegation) instead; types ?[S].α and ?[β].α are the dual ones, receiving values instead
of sending. Type ⊕[l1 : α1, . . . , ln : αn] represents the behaviour which would select
one of li and then behaves as αi, according to the selected li (internal choice). Type
&[l1 : α1, . . . , ln : αn] describes a branching behaviour: it waits with n options, and
behave as type αi if the i-th action is selected (external choice). Type end represents
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S ::= Sorts
bool | int | 〈α〉 boolean, integer, shared channel

α ::= Types
![S].α | ![β].α | ?[S].α | ?[β].α output, input
| ⊕[l1 : α1, . . . , ln : αn] | &[l1 : α1, . . . , ln : αn] selection, branching
| end | t | µt.α end, recursion

Fig. 6. Binary session calculus: sorts and types

P ::= Processes
ū[p](x).P | u[p](x).P | k[p]!〈e〉.P | k[p]?(x).P request, accept, output, input
| k[p] / l.P | k[p] . {l1 :P1, . . . , ln :Pn} | 0 | P1 |P2 selection, branching, inact, par.
| if e then P else Q | (νc)P | X | µX.P choice, restriction, recursion

Fig. 7. Multiparty session calculus: syntax

inaction, acting as the unit of sequential composition. Type µt.α denotes a recursive
behaviour, representing the behaviour that starts by doing α and, when variable t is
encountered, recurs to α again.

Typing judgements are of the formΘ;Γ ` P . ∆, whereΘ, Γ and∆, called basis,
sorting and typing respectively, are finite partial maps from shared identifiers to sorts,
from session identifiers to types, and from process variables to typings, respectively
Intuitively, the judgement Θ;Γ ` P . ∆ stands for “under the environment Θ;Γ ,
process P has typing ∆”. The axioms and rules defining the typing system are standard
(see [21]).

Example 1 (Buyer-Seller protocol). We show how the protocol in Figure 2.(a) is ren-
dered in the variant of π-calculus with binary sessions. The behaviour of Buyer is de-
scribed by the following process:

Buyer , ā(x). x!〈“The Divine Comedy”〉. x?(xquote).
if xquote ≤ 20 then x / lok. x!〈addr()〉. x?(xdate). P else x / lquit.0

This Buyer is interested in buying the Divine Comedy and is willing to pay not more
than 20 euros. The Seller participant instead is rendered as follows:

Seller , a(z). z?(ztitle). z!〈quote(ztitle)〉. z . {lok :z?(zaddr). z!〈date()〉.Q , lquit :0}

Note that addr(), quote() and date() are used to get a buyer address, a quote for a given
book, and the delivery date, respectively. The overall specification is Buyer | Seller.

Multiparty session calculus. The base sets for the synchronous multiparty session cal-
culus [12] are the same of the binary case, except for session endpoints, which now are
denoted by s[p], with p,q ranging over roles (represented as natural numbers). Thus,
session identifiers k now range over session endpoints s[p] or variables x.

The syntax of the calculus is defined by the grammar in Figure 7, where expres-
sions e are defined as in the binary case (with values that extends to multiparty session
endpoints). Primitive ū[p](x).P initiates a new session through identifier u on the other
multiple participants, each one of the form u[q](x).Pq where 1 ≤ q ≤ p − 1. Variable
x will be substituted with the session endpoint used for the interactions inside the es-
tablished session. Primitive k[p]!〈e〉.P denotes the intention of sending a value to role
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ā[n](x).Pn |
∏

i={1,..,n−1} a[i](x).Pi → s /∈ fse(Pi) with i = {1, .., n} [M-CON]
(νs)(Pn[s[n]/x] |

∏
i={1,..,n−1} Pi[s[i]/x])

s[p][q]!〈e〉.P | s[q][p]?(x).Q → P | Q[v/x] e ↓ v [M-COM]

s[p][q] / li.P | s[q][p] . {l1 : P1, . . . , ln : Pn} → P | Pi 1 ≤ i ≤ n [M-LAB]

Fig. 8. Multiparty session calculus: reduction relation (excerpt of rules)

p; similarly, process k[p]?(x).P denotes the intention of receiving a value from role p.
Selection and branching behave in a similar way.

As usual the operational semantics is given in terms of a structural congruence and
of a reduction relation. The rules defining the structural congruence are the same ones
used for the binary calculus, where the rule for the scope extension of session channels
takes into account the new form of session endpoints. The reduction relation→, instead,
is the smallest relation on closed processes generated by the rules [IF1], [IF2], [PAR],
[RES] and [STR] in Figure 5, and the additional rules in Figure 8. We comment on
salient points. Rule [M-CON] synchronously initiates a session by requiring all session
endpoints be present for a synchronous reduction, where each role p creates a session
endpoint s[p] on a fresh session channel s. The participant with the maximum role
(ā[n](x).Pn) is responsible for requesting a session initiation. Rule [M-COM] defines
how a party with role p sends a value to the receiving party with role q. Selection and
branching are defined in a similar way (rule [M-LAB]).

The type discipline of this synchronous multiparty session calculus is simpler than
the asynchronous one in [11], but it is much more elaborate than the binary case, as it
considers global and local types. Therefore, due to lack of space, we relegate the defini-
tions of types, as well as the rules of the corresponding type system, to the companion
technical report [21] and refer the interested reader to [12] for a detailed account.

Example 2 (Two-Buyers-Seller protocol). We show how the protocol in Figure 2.(b) is
rendered in the variant of π-calculus with the multiparty sessions. The behaviour of
Buyer1 and Buyer2 are described by the following processes:

Buyer1 , ā[3](x). x[1]!〈“The Divine Comedy”〉. x[1]?(xquote). x[2]!〈split(xquote)〉. P1

Buyer2 , a[2](y). y[1]?(yquote). y[3]?(ycontrib).if yquote − ycontrib ≤ 10
then y[1] / lok. y[1]!〈addr()〉. y[1]?(ydate). P2 else y[1] / lquit.0

Now, Buyer1 divides the quote by means of the split() function. The Seller process is
similar to the binary case, but for the form of session endpoints:

Seller , a[1](z). z[3]?(ztitle). z[2]!〈quote(ztitle)〉. z[3]!〈lastQuote(ztitle)〉.
z[2] . {lok : z[2]?(zaddr). z[2]!〈date()〉.P3 , lquit : 0}

where lastQuote() simply returns the last quote computed for a given book.

3 Reversibility of single binary sessions

This section formally introduces the notion of single session, and illustrates constructs,
mechanisms and costs to support the reversibility in the binary cases.
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P ::= Reversible processes
. . . | 〈s : m〉 I P π-calculus processes, single session

m ::= Memory stacks
P | P ·m bottom element, push

Fig. 9. Reversible extension
3.1 Single sessions

In the single sessions setting, when two processes start a session their continuations
only interact along this single session. Thus, neither delegation (i.e., passing of session
endpoints) nor initialisation of new sessions (also after the session closure) is allowed.
As clarified below, the exclusive use of single sessions is imposed to processes by means
of a specific type system, thus avoiding the use of syntactical constraints.

Reversibility is incorporated in a process calculus typically by adding memory de-
vices to store information about the computation history, which otherwise would be
lost during computations. In all single session cases, i.e. (1)-(6) in Figure 1, we will
extend the syntax of (binary/multiparty) session-based π-calculus as shown in Figure 9.
The term 〈s : m〉 I P represents a single session along the channel s with associated
memory m and code P . A memory m is a (non-empty) stack of processes, each one
corresponding to a state of the session (the bottom element corresponds to the term that
initialised the session). The term 〈s : m〉 I P is a binder, i.e. it binds session channel s
in P . In this respect, it acts similarly to operator (νs)P , but the scope of 〈s : m〉 I P
cannot be extended.

In the obtained reversible calculi, terms can perform, besides standard forward com-
putations, also backward computations that undo the effect of the former ones.

We compare approaches (1)-(6) with respect to the cost of reverting a session in the
worst case, i.e. the cost of completely reverting a session. The cost is given in terms of
(i) the number of backward reductions (Cbr), necessary to complete the rollback, and (ii)
memory occupancy (Cmo), i.e. the number of element in the memory stack of the session
when the rollback starts. The two kinds of cost depend on the length of the considered
session, given by the number of (forward) steps performed along the session.

3.2 Binary session reversibility

Not all processes allowed by the syntax presented above corresponds to meaningful
processes in the reversible single sessions setting. Indeed, on the one hand, the syntax
allows terms violating the single sessions limitation. On the other hand, in a general
term of the calculus the history stored in its memories may not be consistent with the
computation that has taken place.

We address the above issues by only considering a class of well-formed processes,
called reachable processes. In the definition of this class of processes, to ensure the use
of single sessions only, as in [11] we resort to the notion of simple process.

Definition 1 (Simple process). A process is simple if (i) it is generated by the grammar
in Figure 4 and (ii) it is typable with a type derivation using prefix rules where the
session typings in the premise and the conclusion are restricted to at most a singleton3.

3 Using the standard typing system for the binary session π-calculus (see [21, Figure 13]), point
(ii) boils down to: ∆ of rules [REQ], [ACC], [SEND], [RCV], [SEL] and [BR] are empty;
neither [THR] nor [CAT] is used; ∆ ·∆′ in [CONC] contains at most a singleton; and ∆ of the
remaining rules contain at most a singleton.
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The point (i) of the above definition states that a simple process has no memory, while
point (ii) states that each prefixed subterm in a simple process uses only a single session.

The following properties clarify the notion of simple process.

Property 1. In a simple process, delegation is disallowed.

Proof. The proof proceeds by contradiction and straightforwardly follows from Defini-
tion 1 (see [21]).

Property 2. In a simple process, subordinate sessions (i.e., new sessions initialised
within the single session) are disallowed.

Proof. The proof proceeds by contradiction (see [21]).

We explain the meaning of subordinate session used in Property 2 by means of an ex-
ample. Let us consider the process a(x).b(y).x!〈1〉.P with y ∈ fv(P ), which initialises
a (subordinate) session using channel b within a session previously initialised using
channel a. This process is not simple, because typing it requires to type the (sub)process
b(y).x!〈1〉.P under typing x :![int].α, which is not empty as required by Definition 1.

Now, to ensure history consistency, as in [6] we only consider reachable processes,
i.e. processes obtained by means of forward reductions from simple processes.

Definition 2 (Reachable processes). The set of reachable processes, for the case (i) in
Figure 1 with i ∈ {1, 2, 3}, is the closure under relation�(i) (see below) of the set of
simple processes.

We clarify this notion by means of an example. The process stored in the memory of
term 〈s : (ā(x).x!〈1〉 | a(y).y?(z))〉 I (s̄!〈2〉 | s?(z)) is not consistent with the related
session process, because there is no way to generate the term (s̄!〈2〉 | s?(z)) from the
stored process (in fact, in the session process, the value sent along the endpoint s̄ should
be 1 instead of 2).

We now present the semantics of the reversibility machinery in the three binary
cases. As usual, the operational semantics is given in terms of a structural congruence
and a reduction relation4. For all three cases, the laws defining the structural congruence
are the same of the binary session calculus. Instead, the reduction relations for the cases
(1)-(3), written �(i) with i ∈ {1, 2, 3}, are given as the union of the corresponding
forward reduction relations �(i) and backward reduction relations  (i), which are
defined by different sets of rules in the three cases. Notably, the rules in Figure 10,
whose meaning is straightforward, are shared between the three cases.

The semantics is only defined for closed, reachable terms, where now the definition
of closed term extends to session endpoints, in the sense that all occurrences of session
endpoints s and s̄ have to be bound by a single session term 〈s : m〉 I ·. This latter
requirement is needed for ensuring that every running session in the considered process

4 We use a reduction semantics with respect to a labelled one because the former is simpler (e.g.,
it does not require to deal with scope extension of names) and, hence, is preferable when the
labelled semantics is not needed (e.g., here we are not interested in labelled bisimulations).
Moreover, works about session-based π-calculus use a reduction semantics, as well as many
reversible calculi (e.g., [14], [4], [16]).
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if e then P1 else P2 �(i) P1 e ↓ true [FW-IF1]

if e then P1 else P2 �(i) P2 e ↓ false [FW-IF2]

P1 �(i) P
′
1

P1 | P2 �(i) P
′
1 | P2

[FW-PAR]
P �(i) P

′

(νc)P �(i) (νc)P ′
[FW-RES]

P ≡ P ′ �(i) Q
′ ≡ Q

P �(i) Q
[FW-STR]

Fig. 10. Single sessions: shared forward and backward rules (for i ∈ {1..6}); rules [BW-PAR],
[BW-RES], [BW-STR] are omitted (they are like the forward rules where (i) replaces�(i))

can be reverted; for example, in the reachable process (s̄!〈1〉 | s?(x) | Q) there is a
running session s that cannot be reverted because no computation history information
(i.e., no memory stack) is available for it. We discuss below the additional definitions
for the operational semantics of the three binary cases.

(1) Whole session reversibility. In this case the reversibility machinery of the calculus
permits to undo only whole sessions. The forward rules additional to those in Figure 10
are as follows:

P �(1) 〈s : P 〉 I (P1[s̄/x] | P2[s/y]) P = (ā(x).P1 | a(y).P2) [FW(1)-CON]

P → P ′

〈s : m〉 I P �(1) 〈s : m〉 I P ′
[FW(1)-MEM]

Rule [FW(1)-CON] initiates a single session s with the initialisation term P stored in
the memory stack. As usual the two session endpoints s̄ and s replace the corresponding
variables x and y in the two continuations P1 and P2 (within the scope of the single
session construct). Notably, there is no need of using the restriction operator, because
in the single session setting the session endpoints cannot be communicated outside
the session, i.e., delegation is disallowed (Property 1). Moreover, differently from the
non-reversible case (see rule [CON] in Figure 5), there is also no need of requiring the
session endpoints s and s̄ to be fresh in the session code (i.e., in P1 and P2), because
of the notion of closed process given in this section. Rule [FW(1)-MEM] simply states
that a process within the scope of a single session evolves with a forward reduction
according to its evolution with a standard reduction (defined in Figure 5).

The only additional backward rule is the following one:

〈s : P 〉 I Q  (1) P [BW(1)]

This rule permits to rollback the whole session conversation in every moment during
its execution. In particular, the term that initialised the session is restored with a single
backward reduction step. Notably, the fact that scope extension is not allowed for the
operator 〈· : ·〉 I · ensures that the processQ in [BW(1)] does not contain processes not
belonging to session s, i.e. unwanted deletions are prevented. It is also worth noticing
that the rollback of session s does not involve other sessions, as no subordinate sessions
can be active in Q (Property 2).
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(2) Multi-step. In this case a session can be reversed either partially or totally. When
the rollback starts, it proceeds step-by-step and can terminate in any intermediate state
of the session, as well as in the initialisation state. The additional forward rules are:

P �(2) 〈s : P 〉 I (P1[s̄/x] | P2[s/y]) P = (ā(x).P1 | a(y).P2) [FW(2)-CON]

P → P ′

〈s : m〉 I P �(2) 〈s : P ·m〉 I P ′
[FW(2)-MEM]

Differently from the case (1), here it is necessary to keep track in the memory stack of
each (forward) interaction that has taken place in the session. Therefore, the forward
rule [FW(2)-MEM] pushes the process P , representing the state before the transition,
into the stack.

The backward reduction relation is defined by the following additional rules:

〈s : P 〉 I Q  (2) P [BW(2)-1] 〈s : P ·m〉 I Q  (2) 〈s : m〉 I P [BW(2)-2]

Rule [BW(2)-1] is like to [BW(1)], but here it can be used only when the memory
stack contains just one element. The single session is removed because its initialisation
state is restored. Rule [BW(2)-2], instead, permits undoing an intermediate state Q, by
simply replacing it with the previous intermediate state P . In this case, since after the
reduction the stack is not empty, the single session construct is not removed.

(3) Single-step. This is similar to the previous case, but the rollback (also of inter-
mediate states) is always performed in a single step. The forward reduction relation is
defined by the same rules of case (2), where�(3) replaces�(2), while the backward
one is defined by the following additional rules:

〈s : P 〉 I Q  (3) P [BW(3)-1] 〈s : P ·m〉 I Q  (3) 〈s : m〉 I P [BW(3)-2]

〈s : m · P 〉 I Q  (3) P [BW(3)-3] 〈s : m′ · P ·m〉 I Q  (3) 〈s : m〉 I P [BW(3)-4]

Rules [BW(3)-1] and [BW(3)-2] are like [BW(2)-1] and [BW(2)-2], respectively. In
particular, rule [BW(3)-2] is still used to replace the current state by the previous one.
In addition to this, now rule [BW(3)-4] permits to replace the current state Q also by
an intermediate state P of the session computation; this is done in a single step. No-
tice that all interactions that took place after the one produced by P (i.e., the states
stored in m′) are erased when P is restored, while the previous interactions (i.e., the
states stored in m) are kept. Notice also that the selection of the past state to restore
is non-deterministic. A real-world reversible language instead should provide specific
primitives and mechanisms to control reversibility (see discussion on Section 5); any-
way the controlled selection of the past states does not affect the reversibility costs,
hence this aspect is out-of-scope for this paper and left for future investigations. Rule
[BW(3)-3] permits to directly undo the whole session from an intermediate state.

Results. The cost of reverting a session in setting (1), in terms of both backward reduc-
tions (Cbr) and memory occupancy (Cmo), is constant w.r.t. the session length. In case
(2), instead, the costs are linear in the length of the session (recall that we consider the
worst case, where the session is completely reversed). Finally, in setting (3) the cost is
constant in terms of backward reductions, and linear in terms of memory occupancy.
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Theorem 1. Let n be the length of a session, the costs of reverting it are: case (1)
Cbr = Cmo = 1; case (2) Cbr = Cmo = n; case (3) Cbr = 1 and Cmo = n.
Proof. The proof of case (1) is straightforward, while proofs of cases (2) and (3) pro-
ceed by induction on n (see [21]).

The following result shows that single binary sessions of cases (2) and (3) enjoy a
standard property of reversible calculi (Loop lemma, see [7]): backward reductions are
the inverse of the forward ones and vice versa.

Lemma 1 (Loop lemma). Let P = 〈s : m〉 I Q and P ′ = 〈s : m′〉 I Q′ be two
reachable processes in setting (i), with i ∈ {2, 3}. P �(i) P

′ if and only if P ′  (i) P .

Proof. The proof for the if (resp. only if ) part is by induction on the derivation of the
forward (resp. backward) reduction (see [21]).

Notably, case (1) does not enjoy this lemma because backward reductions do not allow
to restore intermediate states of sessions.

We conclude the section with an example showing the three approaches at work on
the Buyer-Seller protocol.

Example 3 (Reversible Buyer-Seller protocol). Let us consider a reversible scenario
concerning the Buyer-Seller protocol specified in Example 1, where there are two sell-
ers and a buyer.

In case (1), the system evolves as follows:

Seller1 | Seller2 | Buyer
�(1) Seller1 | 〈s : Seller2 | Buyer〉 I (s?(ztitle).Ps | s̄!〈vtitle〉.Pb)

�∗(1) Seller1 | 〈s : Seller2 | Buyer〉 I (Q[. . .] | P [. . . , vdate/xdate]) = R

where vtitle stands for “The Divine Comedy”. After these interactions betweenBuyer
and Seller2, the buyer has received a delivery date from the seller. In the unfortunate
case that this date is not suitable for the buyer, the session can be reversed as follows:

R  (1) Seller1 | Seller2 | Buyer

Now, Buyer can start a new session with Seller2 as well as with Seller1.
In case (2), the parties can reach the same state as follows:

Seller1 | Seller2 | Buyer �∗(2) Seller1 | 〈s : m〉 I (Q[. . .] | P [. . . , vdate/xdate]) = R′

where m is Rdate · Raddr · Rok · Rif · Rquote · Rtitle, with Ri denoting the process
generating the interaction i. In this case, the buyer can undo only the last two session
interactions as follows:

R′  (2) Seller1 | 〈s : m′〉 I Rdate  (2) Seller1 | 〈s : m′′〉 I Raddr

withm′ = Raddr ·m′′ andm′′ = Rok ·Rif ·Rquote ·Rtitle. Now, the buyer can possibly
send a different address to the seller in order to get a more suitable date (as we assume
addr() and date() be two non-deterministic functions abstracting the interaction with
buyer and seller backends).

Finally, in case (3), the system can reach again the state R′, but this time the session
can be also partially reversed by means of a single backward step:

R′  (3) Seller1 | 〈s : m′′〉 I Raddr

11



4 Reversibility of single multiparty sessions

For the same motivations of the binary case, we do not consider all processes allowed
by the syntax of the reversible multiparty single-session calculus, obtained by extend-
ing the grammar in Figure 7 with the single sessions construct in Figure 9. Again, we
consider only reachable processes, whose definition relies on the notion of simple pro-
cess.

Definition 3 (Multiparty simple process). A multiparty process is simple if (i) it is
generated by the grammar in Figure 7 and (ii) it is typable with a type derivation us-
ing the prefix rules where the session typings in the premise and the conclusion are
restricted to at most a singleton5.

Definition 4 (Multiparty reachable processes). The set of reachable processes, for
the case (i) in Figure 1 with i ∈ {4, 5, 6}, is the closure under relation�(i) (see below)
of the set of multiparty simple processes.

We now present the semantics of the three multiparty cases. For the definition of the
reduction relations we still rely on the shared rules in Figure 10.

(4) Whole session reversibility. In case the reversibility machinery only permits to undo
a whole session, the forward reduction relation is defined by these additional rules:

P �(4) 〈s : P 〉 I (Pn[s[n]/x] |
∏

i={1,..,n−1} Pi[s[i]/x]) [FW(4)-M-CON]

P = (ā[n](x).Pn |
∏

i={1,..,n−1} a[i](x).Pi)

P → P ′

〈s : m〉 I P �(4) 〈s : m〉 I P ′
[FW(4)-MEM]

The meaning of these rules is similar to that of [FW(1)-CON] and [FW(1)-MEM], with
the only difference that the initialised single session is multiparty.

The backward reduction relation is given by the same rules of case (1), of course
defined for relation (4) instead of (1).

(5) Multi-step. When sessions can be reversed also partially, in a step-by-step fashion,
the additional forward rules are as follows:

P �(5) 〈s : P 〉 I (Pn[s[n]/x] |
∏

i={1,..,n−1} Pi[s[i]/x]) [FW(5)-M-CON]

P = (ā[n](x).Pn |
∏

i={1,..,n−1} a[i](x).Pi)

P → P ′

〈s : m〉 I P �(5) 〈s : P ·m〉 I P ′
[FW(5)-MEM]

5 Using the typing system for the synchronous multiparty session π-calculus (see [21, Fig-
ure 15]), point (ii) boils down to: ∆ of rules [MREQ], [MACC], [SEND], [RECV], [SEL] and
[BRA] are empty; neither [DELEG] nor [SRECV] is used; ∆ ·∆′ in [CONC] contains at most a
singleton; and ∆ of the remaining rules contain at most a singleton.
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These rules are the natural extension of the corresponding rules of the binary version,
i.e. case (2). Their meaning, indeed, is the same.

The backward reduction relation in setting (5) is given by the same rules of case (2)
where relation (2) is replaced by (5).

It is worth noticing that, by Definitions 3 and 4, concurrent interactions along the
same session are prevented (by the type discipline in [12], which forces a linear use of
session channels). Therefore, there is no need here to use a more complex reversible
machinery (as in [20]) for enabling a causal-consistent form of session reversibility.

(6) Single-step. As in the corresponding binary session setting, here the forward re-
duction relation is defined by the same rules of the multi-step case, i.e. case (5), where
�(6) replaces �(5). Instead, the backward reduction relation is defined by the same
rules of case (3), where (6) replaces (3).

Results. The cost of reverting a session in setting (4) is constant, while it is linear in
the length of the session in case (5). In setting (6), instead, the cost is constant in terms
of backward reductions, and linear in terms of memory occupancy.

Theorem 2. Let n be the length of a session, the costs of reverting it are: case (4)
Cbr = Cmo = 1; case (5) Cbr = Cmo = n; case (6) Cbr = 1 and Cmo = n.
Proof. The proof of case (4) is a trivial adaptation of the proof of case (1) in Theorem 1,
while proofs of cases (5) and (6) proceed by induction on n (see [21]).

In all multiparty approaches, cases (4)-(6), the backward computations have the
same semantics of the corresponding binary approaches, cases (1)-(3), respectively. An
important consequence of this fact is that the cost of reverting a session in a multiparty
case is the same of the corresponding binary case. In other words, we can claim that
extending binary sessions to multiparty ones, in the single session setting, does not
affect the machinery for the reversibility and its costs.

As in the binary case, also the multiparty sessions of cases (5) and (6) enjoy the
Loop lemma.

Lemma 2 (Loop lemma). Let P = 〈s : m〉 I Q and P ′ = 〈s : m′〉 I Q′ be two
reachable processes in setting (i), with i ∈ {5, 6}. P �(i) P

′ if and only if P ′  (i) P .

Proof. The proof for the if (resp. only if ) part is by induction on the derivation of the
forward (resp. backward) reduction (see [21]).

We conclude by showing the three multiparty approaches at work on the Two-
Buyers-Seller protocol.

Example 4 (Reversible Two-Buyers-Seller protocol). We consider a reversible scenario
of the Two-Buyers-Seller session protocol specified in Example 2.

In case (4), the system can evolve as follows:

Buyer1 | Buyer2 | Seller
�(4) 〈s : Buyer1 | Buyer2 | Seller〉 I

(s[3][1]!〈vtitle〉. s[3][1]?(xquote). Pb1 | s[2][1]?(yquote). Pb2

| s[1][3]?(ztitle). s[1][2]!〈quote(ztitle)〉. s[1][3]!〈lastQuote(ztitle)〉. Ps)

�∗(4) 〈s : Buyer1 | Buyer2 | Seller〉 I
(Pb1[vquote/xquote] | Pb2[vquote/yquote] | Pb1[vtitle/xtitle]) = R

13



These interactions lead to a state where both buyers have received the seller’s quote for
the requested book. Now, if one of the two buyers is not satisfied with the proposed
quote, he can immediately stop the session execution and reverse it with a single step:

R  (4) Buyer1 | Buyer2 | Seller

In case (5), instead, the protocol execution can lead to a similar state, say R′, with
the difference that the session memory m keeps track of the traversed states, i.e. m is
Rquote2·Rquote1·Rtitle. In this case, the unsatisfied buyer can enact a sort of negotiation
by undoing the last two session interactions:

R′  (5) 〈s : Rquote1 ·Rtitle〉 I Rquote2  (5) 〈s : Rtitle〉 I Rquote1

From the state Rquote1 the seller can compute again the quote for the requested book.
Finally, in case (6), the system can reach again the state R′ and, likewise case (3),

the session can be partially reversed by means of a single backward step:

R′  (6) 〈s : Rtitle〉 I Rquote1

5 Concluding remarks

This work falls within a large body of research that aims at studying at foundational
level the integration of reversibility in concurrent and distributed systems. In particular,
reversible variants of well-established process calculi, such as CCS and π-calculus, have
been proposed as untyped formalisms for studying reversibility mechanisms in these
systems. Relevant works along this line of research have been surveyed in [15]. Among
them, we would like to mention the works that are closely related to ours, as they have
been source of inspiration: RCCS [7], from which we borrow the use of memory stacks
for keeping track of computation history; Rπ [6], from which we borrow the notion of
reachable process (see Definition 2); RµOz [16], which analyses reversibility costs in
terms of space overhead; and ρπ [14], from which we borrow the use of a reversible
reduction semantics (which is motivated by the fact that a labelled semantics would
complicate our theoretical framework). However, all works mentioned above only focus
on causal-consistent reversibility mechanisms for untyped concurrent systems, without
taking into account how they may impact on linearity-based structured interactions,
which is indeed our aim. Moreover, none of the above work provides a systematic study
of the different forms of reversibility we consider, namely whole session, multi-step and
single-step, and of their costs.

The works with the aim closest to ours are [2] and [20]. The former paper studies
session reversibility on a formalism based on session behaviours [1], which is a sort of
sub-language of CCS with a checkpoint-based backtracking mechanism. The common-
ality with our work is the use of a one-size memory for each behaviour, which records
indeed only the behaviour prefixed by the lastly traversed checkpoint. This resembles
the one-size memories that we use in cases (1) and (4), with the difference that our
checkpoints correspond to the initialisation states of sessions. On the other hand, ses-
sion behaviours provide a formalism much simpler than session-based π-calculus, as
e.g. message passing is not even considered. Differently from our work, [2] does not
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consider different solutions for enabling alternative forms of reversibility and does not
provide a study of session reversibility complexity. The latter paper introduces ReSπ,
a reversible variant of the π-calculus with binary multiple sessions. ReSπ embeds a
multi-step form of reversibility and, rather than using a single stack memory per ses-
sion, it uses a graph-like data structure and unique thread identifiers. Each element of
this structure is devoted to record data concerning a single event, corresponding to the
taking place of a communication action, a choice or a thread forking. Thread identifiers
are used as links among memory elements, in order to form a structure for conveniently
keeping track of the causal dependences among the session interactions. These depen-
dences are crucial in the multiple session setting, where computations have to be undone
in a causal-consistent fashion [7,3], that is independent concurrent interactions can be
undone in an order different from that of the forward computation. Differently from
the present work, which considers both binary and multiparty session types, [20] only
focusses on the binary version. In addition, it does not address any cost issues about
reversible sessions.

We plan to study the cost of reversing multiple sessions, where interactions along
different sessions can be interleaved. By looking at ReSπ, we can see that passing from
single sessions to multiple ones has significant impacts: firstly, in terms of complexity
of the memory structure, and secondly in terms of costs. In the multiple case, reverting
a session corresponds to revert a concurrent computation in a causal-consistent way,
which requires to revert all interactions performed along other sessions that have a
casual dependence with the interactions of the session to be reverted. This means that,
in general, the cost is not defined only in terms of the length of the considered session,
but it must include also the cost of reverting the depending interactions of other sessions.

Another future direction that we plan to consider for our study concerns how the use
of primitives and mechanisms to control reversibility (see, e.g., [13]) affect our results.
In a controlled approach for session reversibility, backward steps would not be always
enabled, but they would be triggered by specific rollback actions.

Moreover, we intend to extend our analysis on memory cost. In fact, the approach
used in this work is coarse-grained, as it is based on the number of elements of the
stacks rather than on the amount of memory necessary for storing such elements. A
fine-grained view is indeed not necessary for the purpose of this work, as we just want
to compare the different combinations of session and reversibility approaches and, in
particular, to distinguish the whole session reversibility with respect to the other cases,
and we want to show that single-step interaction reversibility and multi-step ones re-
quire memory with the same number of elements. Nevertheless, a fine-grained analysis
on memory cost and an investigation of more compact representations of computation
history would be interesting extensions of this work.

Finally, the enactment of reversibility is currently based on the information stored
in the syntactical terms representing the involved processes. We plan to investigate the
use of type information to enact and manage reversibility.

References
1. Franco Barbanera and Ugo de’Liguoro. Sub-behaviour relations for session-based cli-

ent/server systems. Mathematical Structures in Computer Science, 25(6):1339–1381, 2015.

15



2. Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Compliance for
reversible client/server interactions. In BEAT, volume 162 of EPTCS, pages 35–42, 2014.
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