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Abstract

In this work, we incorporate reversibility into structured communication-
based programming, to allow parties of a session to automatically undo, in
a rollback fashion, the effect of previously executed interactions. This per-
mits to take different computation paths along the same session, as well
as to revert the whole session and starting a new one. Our aim is to de-
fine a theoretical basis for examining the interplay in concurrent systems
between reversible computation and session-based interaction. We thus pro-
pose ReSπ, a session-based variant of π-calculus using memory devices to
keep track of the computation history of sessions in order to reverse it. We
show how a session type discipline of π-calculus is extended to ReSπ, and
illustrate its practical advantages for static verification of safe composition
in communication-centric distributed software performing reversible compu-
tations. We also show how a fully reversible characterisation of the calculus
extends to commitable sessions, where computation can go forward and back-
ward until the session is committed by means of a specific irreversible action.
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1. Introduction

In the field of programming languages, reversible computing aims at pro-
viding a computational model that, besides the standard forward executions,
also permits backward execution steps to undo the effect of previously per-
formed forward computations. Despite being a subject of study for many
years, reversible computing is recently experiencing a rise in popularity. This
is mainly due to the fact that reversibility is a key ingredient in different ap-
plication domains. In particular, for what specifically concerns our interest,
many researchers have put forward exploiting this paradigm in the design of
reliable concurrent systems. In fact, it permits us to understand existing pat-
terns for programming reliable systems (e.g., compensations, checkpointing,
transactions) and, possibly, to develop new ones.

A promising line of research on this topic advocates reversible vari-
ants of well-established process calculi, such as CCS [2] and π-calculus [3],
as formalisms for studying reversibility mechanisms in concurrent systems.
By pursing this line of research, in this work we incorporate reversibility
into a variant of π-calculus equipped with session primitives supporting
communication-based programming. A (binary) session consists in a series
of reciprocal interactions between two parties, possibly with branching and
recursion. Interactions on a session are performed via a dedicated private
channel, which is generated when initiating the session. Session primitives
come together with a session type discipline offering a simple checking frame-
work to statically guarantee the correctness of communication patterns. This
prevents programs from interacting according to incompatible patterns.

Practically, combining reversibility and sessions paves the way for the
development of session-based communication-centric distributed software in-
trinsically capable of performing reversible computations. In this way, with-
out further coding effort by the application programmer, the interaction
among session parties is relaxed so that, e.g., the computation can automat-
ically go back, thus allowing to take different paths when the current one is
not satisfactory. As an application example, used in this paper for illustrating
our approach, we consider a simple scenario involving a client and multiple
providers offering the same service (e.g., on-demand video streaming). The
client connects to a provider to request a given service (specifying, e.g., title
of a movie, video quality, etc.). The provider replies with a quote deter-
mined according to the requested quality of service and to the servers status
(current load, available bandwidth, etc.). Then, the client can either accept,
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negotiate or reject the quote; in the first two cases, the interaction between
the two parties shall continue. If a problem occurs during the interaction
between the client and the provider for finalising the service agreement, the
computation can be automatically reverted. This allows the client to par-
tially undo the current session, in order to take a different computation path
along the same session, or even start a new session with (possibly) another
provider.

The proposed reversible session-based calculus, called ReSπ (Reversible
Session-based π-calculus), relies on memories to store information about in-
teractions and their effects on the system, which otherwise would be lost
during forward computations. This data is used to enable backward com-
putations that revert the effects of the corresponding forward ones. Each
memory is devoted to record data concerning a single event, which can cor-
respond to the taking place of a communication action, a choice or a thread
forking. Memories are connected with one other, in order to keep track of
the computation history, by using unique thread identifiers as links. Like
all other formalisms for reversible computing in concurrent settings, forward
computations are undone in a causal-consistent fashion [4, 5]. This means
that backtracking does not have to necessarily follow the exact order of for-
ward computations in reverse, because independent actions can be undone
in a different order. Thus, an action can be undone only after all the actions
causally depending on it have already been undone.

Concerning the session type discipline, ReSπ inherits the notion of types
and the typing system from π-calculus. Thus, the related results are mainly
based on the ones stated for π-calculus. Besides the possibility of taking
advantage of the theory already defined for π-calculus, this also allows our
investigation to focus on a standard session type setting, rather than on an
ad-hoc one specifically introduced for our calculus.

The resulting formalism offers a theoretical basis for examining the inter-
play between reversible computations and session-based structured interac-
tions. We notice that reversibility enables session parties not only to partially
undo the interactions performed along the current session, but also to auto-
matically undo the whole session and restart it, possibly involving different
parties. The advantage of the reversible approach is that this behaviour is
realised without explicitly implementing loops, but simply relying on the
reversibility mechanism available in the language semantics. On the other
hand, the session type discipline affects reversibility as it forces concurrent in-
teractions to follow structured communication patterns. If we would consider
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only a single session, due to linearity, a causal-consistent form of reversibility
would not be necessary, i.e. concurrent interactions along the same session
are forbidden and, hence, the rollback would follow a single path. Instead,
in the general case, concurrent interactions along different sessions may take
place, thus introducing causal dependences. In this case, a session execution
has to be reverted in a causal-consistent fashion. Notably, interesting issues
concerning reversibility and session types are still open questions, especially
for what concerns the validity in the reversible setting of standard properties
(e.g., progress enforcement) and possibly new properties (e.g., reversibility
of ongoing session history, safe closure of subordinate sessions).

It is worth noticing that the proposed calculus is fully reversible, i.e. back-
ward computations are always enabled. Full reversibility provides theoreti-
cal foundations for studying reversibility in session-based π-calculus, but it
is not suitable for a practical use on structured communication-based pro-
gramming. In fact, reverting a completed session might not be desirable.
Therefore, we also propose an extension of the calculus with an irreversible
action for committing the completion of sessions. In this way, computation
would go backward and forward, allowing the parties to try different inter-
actions, until the session is successfully completed and, hence, irreversibly
closed.

Summary of the rest of the paper. Section 2 reviews strictly related work.
Section 3 recalls syntax and semantics definitions of the considered session-
based variants of π-calculus. Section 4 introduces ReSπ, our reversible
session-based calculus. Section 5 shows the results concerning the reversibil-
ity properties of ReSπ. Section 6 describes the associated typing discipline.
Section 7 presents the extension of ReSπ with irreversible commit actions.
Section 8 concludes the paper by touching upon directions for future work.
Proofs of results are collected in the Appendices.

2. Related work

Our proposal combines the notion of (causal-consistent) reversibility with
(typed) primitives supporting session-based interactions in concurrent sys-
tems. We review here some of the closely related works concerning either
reversibility or session types.

Forms of reversible computation can be found in different formalisms in
the literature. For example, backward reductions are considered in the λ-
calculus to define equality on expressions [6]. Similar notions are used in the
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definitions of back and forth bisimulations [7] on Labelled Transition Systems,
and of reversible steps in Petri nets [8]. More in practice, reversibility can be
used for exploring different possibilities in a computation. For example, the
Prolog language uses its backtracking capabilities to explore the state-space
of a derivation to find a solution for a given goal. However, in our paper we
mainly focus on the use of reversible computing as a suitable paradigm for
designing and developing reliable concurrent systems, which came to promi-
nence in recent years. Along this line of research, the works in the reversible
computing field most closely related to ours are those concerning the defi-
nition of reversible process calculi. We briefly discuss the most relevant of
them below, and refer the interested reader to [9] for a comprehensive survey
and a larger perspective.

Reversible CCS (RCCS) [5] is the first proposal of reversible calculus, from
which all subsequent works drew inspiration. The host calculus (i.e., the non-
reversible calculus extended with capabilities for reversibility) is CCS without
recursive definitions and relabelling. To each currently running thread is as-
sociated an individual memory stack keeping track of past actions, as well
as forks and synchronisations. Information pushed on the memory stacks,
upon doing a forward transition, can be then used for a rollback. The mem-
ories also serve as a naming scheme and yield unique identifiers for threads.
When a process divides in two sub-threads, each sub-thread inherits the fa-
ther memory together with a fork number (either 〈1〉 or 〈2〉) indicating which
of the two sons the thread is. Then, in the case of a forward synchronisation,
the synchronised threads exchange their names (i.e., memories) in order to
allows the corresponding backward synchronisation to take place. A draw-
back of this approach for memorising fork actions is that the parallel operator
does not satisfy usual structural congruence rules as commutativity, associa-
tivity and nil process as neutral element. It is proved that RCCS is causally
consistent, i.e. the calculus allows backtrack along any causally equivalent
past, where concurrent actions can be swapped and successive inverse ac-
tions can be cancelled. RCCS has been used for studying a general notion of
transactions in [10].

CCS-R [11] is another reversible variant of CCS, which however mainly
aims at formalising biological systems. Like the previous calculus, it relies on
memory stacks for storing information needed for backtracking, which now
also record events corresponding to the unfolding of process definitions. In-
stead, differently from RCCS, specific identifiers are used to label threads; in
case of unfolding, sub-threads are labelled on-the-fly. Forking now does not
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exploit fork numbers, but it requires the memory stack of a given thread be
empty before enabling the execution of its sons; this forces the sub-threads
to share the memory that their father had before the forking. As in RCCS,
in case of synchronisation, the communicating threads exchange their iden-
tifiers. The transition system of CCS-R is proved to be reversible and it is
demonstrated that CCS-R is sound and complete w.r.t. CCS.

CCS with communication Keys (CCSK) [12] is a reversible process calcu-
lus obtained by applying a general procedure to produce reversible calculi. A
relevant aspect of this approach is that it does not rely on memories for sup-
porting backtracking. The idea is to maintain the structure of processes fixed
throughout computations, thus avoiding to consume guards and alternative
choices, which is the source of irreversibility. Past behaviour and discarded
alternatives are then recorded in the syntax of terms. This is realised by
transforming the dynamic rules of the SOS semantics into static-like rules.
In this way, backward rules are obtained simply as symmetric versions of
the forward ones. To ensure that synchronisations are properly reverted,
two communicating threads have to agree on a communication key, which
will uniquely identify that communication. In this way, the synchronising
actions are locked together and can only be undone together. As usual, re-
sults showing that the method yields well-behaved transition relations are
provided. The proposed converting procedure can be applied to other calculi
without name passing, such as ACP [13] or CSP [14], but it is not suitable
for calculi with name binders, as π-calculus, which we are interested in this
work.

ρπ [15] is a reversible variant of the higher-order π-calculus [16]. It bor-
rows from RCCS the use of memories for keeping track of past actions. How-
ever, in ρπ memories are not stacks syntactically associated to threads, but
they simply are terms, each one dedicated to a single communication, in par-
allel with processes. The connection between memories and threads is kept
by resorting to identifiers in a way similar to CCSK. Fork handling relies on
specific structured tags connecting the identifier of the father thread with the
identifiers of its sub-threads. Besides proving that ρπ is causally consistent,
it is also shown that it can be faithfully encoded into higher-order π-calculus.
Notably, differently from the approaches mentioned before, the semantics of
ρπ is given in a reduction style. A variant of this calculus, called roll-π [17],
has been defined to control backward computations by means of a rollback
primitive. The approaches proposed in [15, 17] have been applied in [18] for
reversing a variant of Klaim [19].
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Another reversible variant of π-calculus is Rπ [20]. Differently from ρπ,
Rπ considers a standard π-calculus (without choice and replication) as host
calculus, and its semantics is defined in terms of a labelled transition rela-
tion. This latter point requires to introduce some technicalities to properly
deal with scope extrusion. Similarly to RCCS, this calculus relies on memory
stacks, now recording events (i.e., consumed prefixes and related substitu-
tions) and forking (by means of the fork symbol 〈↑〉). Results about the
notion of causality induced by the semantics of the calculus are provided.

Reversible structures [21] is a simple computational calculus, based on
DSD [22], for modelling chemical systems. Since such systems are naturally
reversible but have no backtracking memory, differently from most of the
above proposals, reversible structures does not exploit memories. Instead,
reversible structures maintain the structure of terms and use a special sym-
bol ˆ to indicate the next operations (one forward and one backward) that a
term can perform. Terms of the calculus are parallel compositions of signals
and gates (i.e., terms that accept input signals and emit output signals),
which interact according to a CCS-style model. When a forward synchroni-
sation takes place, the executed gate input is labelled by the identifier of the
consumed signal, and the pointer symbol inside the gate is moved forward.
The backwards computation is realised by executing these operations in a re-
verse way, thus releasing the output signal. As usual, the interplay between
causal dependency and reversible structures is studied, with the novelty that
in this setting signal identifiers are not necessary unique.

In our work we mainly take inspiration from the ρπ approach. Indeed,
all other approaches based on CCS and DSD cannot be directly applied
to a calculus with name-passing. Moreover, the ρπ approach is preferable
to the Rπ one because the former proposes a reduction semantics, which
we are interested in, while the latter proposes a labelled semantics, which
would complicate our theoretical framework (in order to properly deal with
scope extension of names). Specifically, we use unique (non-structured) tags
for identifying threads and memories for recording taking place of actions,
choices and forking. Each memory is devoted to storing the information
needed to revert a single event, and memories are connected each other, in
order to keep track of computation history, by using tags as links.

For what concerns the related works on session-based calculi, it is worth
noticing that we consider a setting as standard and simple as possible, which
is the one with synchronous binary sessions. In particular, our host cal-
culus is the well-established variant of π-calculus introduced in [23], whose
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notation has been revised according to [24]. We leave for future investi-
gation the application of our approach to formalisms relying on the other
forms of sessions introduced in the literature, among which we would like
to mention asynchronous binary sessions [25], multiparty asynchronous ses-
sions [26], multiparty synchronous sessions [27], sessions with higher-order
communication [24], sessions specifically devised for service-oriented com-
puting [28, 29, 30].

Finally, the paper with the aim closest to ours is [31], where a formalism
combining the notions of reversibility and session is proposed. This calculus
is simpler than ReSπ, because it is an extension of the formalism of session
behaviours [32] without delegation (i.e., it is a sub-language of CCS) with
a checkpoint-based backtracking mechanism. In fact, neither message nor
channel passing are considered in the host calculus. Concerning reversibility,
only the behaviour prefixed by the lastly traversed checkpoint is recorded by a
given party, that is each behaviour is simply paired with a one-size memory.
Moreover, causal-consistency is not considered, because in this formalism
parties just reduce in sequential way. Also commitable sessions are not taken
into account. On the other hand, this formalism enabled the study of an
extension of the compliance notion to the reversible setting.

3. Session-based π-calculus

In this section we present the syntax and semantics definitions of the host
language considered for our reversible calculus. This is a variant of π-calculus
enriched with primitives for managing structured binary sessions.

3.1. Syntax

We use the following base sets: shared channels, used to initiate sessions;
session channels, consisting on pairs of endpoints used by the two parties to
exchange values within an established session; variables, used to store values;
labels, used to select and offer branching choices; and process variables, used
for recursion. The corresponding notation and terminology are as follows:
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Variables: x, y, . . .

Shared channels: a, b, . . .

}
Shared identifiers: u, u′, . . .

Channels: c, c′, . . .

{
Session channels s, s′ . . .
Variables: x, y, . . .
Session endpoints: s, s̄, . . .

}
Session identifiers: k, k′, . . .

Labels: l, l′, . . .
Process variables: X, Y, . . .

Values: v, v′, . . .


Booleans: true, false
Integers: 0, 1, . . .
Shared channels: a, b, . . .
Session endpoints: s, s̄, . . .

Notably, each session channel s has two (dual) endpoints, denoted by s and
s̄, each one assigned to one session party to exchange values with the other.
We define duality to be idempotent, i.e. ¯̄s = s. The use of two separated
endpoints is similar to that of polarities in [33, 23]. Notation ·̃ stands for
tuples, e.g. c̃ means c1, . . . , cn.

Processes, ranged over by P , Q, . . . , and expressions, ranged over by e,
e′, . . . are given by the grammar in Figure 1. We use op(·, . . . , ·) to denote a
generic expression operator; we assume that expressions are equipped with
standard operators on boolean and integer values (e.g., ∧, +, . . . ).

The initiation of a session is triggered by the synchronisation on a shared
channel a of two processes of the form ā(x).P and a(y).Q. This causes the
generation of a fresh session channel s, whose endpoints replace variables
x and y, by means of a substitution application, in order to be used by
P and Q, respectively, for later communications. Primitives k!〈e〉.P and
k′?(x).Q denote output and input via session endpoints identified by k and
k′, respectively. These communication primitives realise the standard syn-
chronous message passing, where messages result from the evaluation of ex-
pressions. Notably, an exchanged value can be an endpoint that is being
used in a session (this channel-passing modality is called delegation), thus
allowing complex nested structured communications. Constructs k / l.P and
k′ . {l1 : P1, . . . , ln : Pn} denote label selection and label branching (where
l1, . . . , ln are assumed to be pairwise distinct) via endpoints identified by
k and k′, respectively. They mime method invocation in object-based pro-
gramming.
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Processes P ::= ū(x).P connect
| u(x).P connect dual
| k!〈e〉.P output
| k?(x).P input
| k / l.P selection
| k . {l1 : P1, . . . , ln : Pn} branching
| if e then P else Q conditional choice
| P | Q parallel composition
| (νc)P restriction
| X process variable
| µX.P recursion
| 0 inaction

Expressions e ::= v value
| x variable
| op(e1, . . . , en) composed expression

Figure 1: Session-based π-calculus: syntax

The above interaction primitives are then combined by standard process
calculi constructs: conditional choice, parallel composition, restriction, re-
cursion and the empty process (denoting inaction). It is worth noticing that
restriction can have both shared and session channels as argument: (νa)P
states that a is a private shared channel of P ; similarly, (νs)P states that
the two endpoints of the session channel, namely s and s̄, are invisible from
processes different from P (see the seventh law in Figure 2), i.e. no exter-
nal process can perform a session action on either of these endpoints (this
ensures non-interference within a session). As a matter of notation, we will
write (νc1, . . . , cn)P in place of (νc1) . . . (νcn)P .

We adopt the following conventions about the operators precedence: pre-
fixing, restriction, and recursion bind more tightly than parallel composition.

Bindings are defined as follows: ū(x).P , u(x).P and k?(x).P bind variable
x in P ; (νa)P binds shared channel a in P ; (νs)P binds session channel s
in P ; finally, µX.P binds process variable X in P . The derived notions of
bound and free names, alpha-equivalence ≡α, and substitution are standard.
For P a process, fv(P ) denotes the set of free variables, fc(P ) denotes the
set of free shared channels, and fse(P ) the set of free session endpoints. For
the sake of simplicity, we assume that free and bound variables are always
chosen to be different, and that bound variables are pairwise distinct; the
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(P | Q) | R ≡ P | (Q | R) P | Q ≡ Q | P

P | 0 ≡ P (νc)0 ≡ 0

(νa)P | Q ≡ (νa)(P | Q) if a /∈ fc(Q) (νc1)(νc2)P ≡ (νc2)(νc1)P

(νs)P | Q ≡ (νs)(P | Q) if s, s̄ /∈ fse(Q) µX.P ≡ P [µX.P/X]

P ≡ Q if P ≡α Q

Figure 2: Session-based π-calculus: structural congruence

same applies to names. Of course, these conditions are not restrictive and
can always be fulfilled by possibly using alpha-conversion.

3.2. Semantics

The operational semantics is given in terms of a structural congruence
and of a reduction relation. Notably, the semantics is only defined for closed
terms, i.e. terms without free variables. Indeed, we consider the binding of
a variable as its declaration (and initialisation), therefore free occurrences of
variables at the outset in a term must be prevented since they are similar to
uses of variables before their declaration in programs (which are considered
as programming errors).

The structural congruence, written ≡, is defined as the smallest con-
gruence relation on processes that includes the equational laws shown in
Figure 2. These are the standard laws of π-calculus. Reading the laws in
Figure 2 by row from left to right, and from top to bottom row, the first three
are the monoid laws for | (i.e., it is associative and commutative, and has 0
as identity element). The second four laws deal with restriction and enable
garbage-collection of channels, scope extension and scope swap, respectively.
The eighth law permits a recursion to be unfolded (notation P [Q/X] de-
notes replacement of free occurrences of X in P by process Q). The last
law equates alpha-equivalent processes, i.e. processes only differing in the
identity of bound variables/channels.

To define the reduction relation, we use an auxiliary function · ↓ for
evaluating closed expressions: e ↓ v says that expression e evaluates to value
v (where v ↓ v, and x ↓ is undefined).

The reduction relation, written →, is the smallest relation on closed pro-
cesses generated by the rules in Figure 3. We comment on salient points.
A new session is established when two parallel processes synchronise via a
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ā(x).P1 | a(y).P2 → (νs)(P1[s̄/x] | P2[s/y]) s, s̄ /∈ fse(P1, P2) [Con]

k̄!〈e〉.P1 | k?(x).P2 → P1 | P2[v/x] (k = s or k = s̄), e ↓ v [Com]

k̄ / li.P | k . {l1 : P1, . . . , ln : Pn} → P | Pi (k = s or k = s̄), 1 ≤ i ≤ n [Lab]

if e then P1 else P2 → P1 e ↓ true [If1]

if e then P1 else P2 → P2 e ↓ false [If2]

P → P ′

P | Q → P ′ | Q
[Par] P → P ′

(νc)P → (νc)P ′
[Res]

P ≡ P ′ → Q′ ≡ Q
P → Q

[Str]

Figure 3: Session-based π-calculus: reduction relation

shared channel a; this results in the generation of a fresh (private) session
channel whose endpoints are assigned to the two session parties (rule [Con]).
During a session, the two parties can exchange values (for data- and channel-
passing, rule [Com]) and labels (for branching selection, rule [Lab]). The
other rules are standard and state that: conditional choice evolves accord-
ing to the evaluation of the expression argument (rules [If1] and [If2]); if a
part of a larger process evolves, the whole process evolves accordingly (rules
[Par] and [Res]); and structural congruent processes have the same reduc-
tions (rule [Str]).

3.3. The multiple providers scenario in the session-based π-calculus

The scenario involving a client and multiple providers introduced in Sec-
tion 1 can be rendered in π-calculus as follows (for the sake of simplicity,
here we consider just two providers):

Pclient | Pprovider1 | Pprovider2

where the client process Pclient is defined as

alogin(x). x!〈srv req〉. x?(yquote).
if accept(yquote) then x / lacc. Pacc
else (if negotiate(yquote) then x / lneg. Pneg else x / lrej.0)

while a provider process Pprovider i is as follows

alogin(y). y?(zreq). y!〈quotei(zreq)〉. y . {lacc : Qacc , lneg : Qneg , lrej : 0}
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We show below a possible evolution of the system, where the client con-
tacts provider1 and accepts the proposed quote:

Pclient | Pprovider1 | Pprovider2
→
(νs)( s̄!〈srv req〉. s̄?(yquote). if accept(yquote) then s̄ / lacc. Pacc[s̄/x]else (. . .)
| s?(zreq). s!〈quotei(zreq)〉. s . {lacc : Qacc[s/y] , lneg : Qneg[s/y] , lrej : 0} )

| Pprovider2
→
(νs)( s̄?(yquote). if accept(yquote) then s̄ / lacc. Pacc[s̄/x]else (. . .)
| s!〈quotei(srv req)〉. s . {lacc : Qacc[s/y][srv req/zreq] , . . .} )

| Pprovider2
→
(νs)( if accept(quote) then s̄ / lacc. Pacc[s̄/x][quote/yquote]else (. . .)
| s . {lacc : Qacc[s/y][srv req/zreq] , . . .} )

| Pprovider2
→
(νs)( s̄ / lacc. Pacc[s̄/x][quote/yquote] | s . {lacc : Qacc[s/y][srv req/zreq] , . . .} )
| Pprovider2
→
(νs)(Pacc[s̄/x][quote/yquote] | Qacc[s/y][srv req/zreq] )
| Pprovider2

4. Reversible Session-based π-calculus

In this section, we introduce ReSπ, a reversible extension of the calculus
described in Section 3.

A reversible calculus is typically obtained from the corresponding host
calculus by adding memory devices (see Section 2). They aim at storing in-
formation about interactions and their effects on the system, which otherwise
would be lost during forward computations, as e.g. the discarded branch in
a conditional choice. In doing this, we follow the approach of [15], which
in its turn is inspired by [5] (for the use of memories) and by [12] (for the
use of thread identifiers). Of course, since here we consider as host calculus
a session-based variant of standard π-calculus, rather than an asynchronous
higher-order variant, the technical development is different.
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Roughly, our approach to keep track of computation history is as follows:
we tag processes with unique identifiers and use memories to store the infor-
mation needed to reverse each single forward reduction. Thus, the history
of a reduction sequence is stored in a number of small memories connected
each other by using tags as links. In this way, ReSπ terms can perform,
besides forward reductions (denoted by �), also backward reductions (de-
noted by  ) that undo the effect of the former ones. As in the reversible
calculi discussed in Section 2, forward computations are reverted in a causal-
consistent fashion. That is, independent (more precisely, concurrent) actions
can be undone in an order possibly different from the exact order of forward
reductions in reverse. Specifically, an action can be undone only after all the
actions causally depending on it have already been undone. We will come
back on causal-consistency in Section 5.

Before introducing the technicalities of ReSπ, we informally provide a
basic intuition about its main features. Let us come back to the scenario
introduced in Section 1 and specified in π-calculus in Section 3.3. We can
obtain a ReSπ specification of the scenario by simply annotating the π-
calculus term with the (unique) tags t1, t2 and t3 as follows:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

Now, the computation described in Section 3.3 corresponds to a sequence of
five forward reductions leading to the ReSπ process M having the following
form:

(νs, t̃) ( t′1 : Pacc[s̄/x][quote/yquote] | t′2 : Qacc[s/y][srv req/zreq]

| 〈t1 −alogin(x)(y)(νs)P ′clientP
′
provider1→ t2, t

′′
1, t
′′
2〉

| 〈. . .〉 | 〈. . .〉 | 〈. . .〉 | 〈. . .〉 )
| Pprovider2

The forward computation has created a tuple t̃ of fresh tags, which includes
the tags t′1 and t′2 attached to the resulting processes of client and provider1,
respectively. Moreover, each reduction has created a memory 〈. . .〉, which is
spawn in parallel with the two processes of the involved parties and devoted
to store the information for reverting the corresponding forward reduction.
Here, for the sake of presentation, we have omitted the content of such mem-
ories, except for the one generated by the first reduction: it records that
the process tagged by t1 (i.e., the client) initiates a session s along channel
alogin with the process tagged by t2 (i.e., the first provider); it also records
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ReSπ Processes M ::= t : P thread
| (νh)M channel/tag restriction
| M | N parallel composition
| m memory
| nil empty process

Memories m ::= 〈t1 −A→ t2, t
′
1, t
′
2〉 action memory

| 〈t, e?P :Q, t′〉 choice memory
| 〈t⇒ (t1, t2)〉 fork memory

A ::= a(x)(y)(νs)PQ | k〈e〉(x)PQ action events
| k / li P{l1 : P1, . . . , ln : Pn}

Figure 4: ReSπ syntax (π-calculus Processes P and Expressions e are in Figure 1)

the variables replaced by the session endpoints and the continuation pro-
cesses together with their tags. Notably, process M cannot immediately use
this memory to revert the interaction corresponding to the session initiation.
Indeed, a memory can trigger a backward reduction only if two processes
properly tagged with the continuation tags are available, which is not the
case of the first memory in the process M . Therefore, as expected, all the
other forward reductions must be previously reverted in order to revert the
session initiation one.

4.1. Syntax

The syntax of ReSπ is given in Figure 4. In addition to the base sets
used for π-calculus processes in Section 3, here we use tags, ranged over
by t, t′, . . . , to uniquely identify threads. Letters h, h′, . . . denote names,
i.e. (shared and session) channels and tags together. Uniqueness of tags is
ensured by using the restriction operator and by only considering reachable
processes (see Definition 3).

ReSπ processes are built upon standard (session-based) π-calculus pro-
cesses by labelling them with tags. Thus, the syntax of π-calculus processes
P , as well as of expressions e, is the same of that shown in Figure 1 and,
hence, it is omitted here. It is worth noticing that only ReSπ processes can
execute (i.e., π-calculus ones cannot).

ReSπ also extends π-calculus with memory processes m. In particular,
there are three kind of memories:

15



• Action memory 〈t1 −A→ t2, t
′
1, t
′
2〉, storing an action event A together

with the tag t1 of the active party of the action, the tag t2 of the corre-
sponding passive party, and the tags t′1 and t′2 of the two new threads ac-
tivated by the corresponding reduction. An action event A, as we shall
clarify later, records all information necessary to revert the correspond-
ing interaction, which can be either a session initiation a(x)(y)(νs)PQ,
a communication along an established session k〈e〉(x)PQ, or a branch
selection k/li P{l1 : P1, . . . , ln : Pn}. Notably, in the latter two events,
k can only be either s or s̄ (i.e., it cannot be a variable).

• Choice memory 〈t, e?P :Q, t′〉, storing a choice event e?P :Q together
with the tag t of the conditional choice and the tag t′ of the new acti-
vated thread. The choice event e?P :Q records the evaluated expres-
sion e, and the processes P and Q of the then-branch and else-branch,
respectively.

• Fork memory 〈t⇒ (t1, t2)〉, storing the tag t of a splitting thread, i.e. a
thread of the form t : (P | Q), together with the tags t1 and t2 of the
two new activated threads, i.e. t1 : P and t2 : Q. The use of fork
memories is analogous to that of connectors in [18].

Threads and memories are composed by parallel composition and restric-
tion operators. The latter, as well as the notion of bound and free identifiers,
extend to names. In particular, for M a ReSπ process, ft(M) denotes the
set of free tags ; fv(·), fc(·) and fse(·) extend naturally to ReSπ processes.
Of course, we still rely on the same assumptions on free and bound vari-
ables/channels mentioned in Section 3.1.

Not all processes allowed by the syntax in Figure 4 are semantically mean-
ingful. Indeed, in a general term of the calculus, the history stored in the
memories may not be consistent, due to the use of non-unique tags or broken
connections between continuation tags within memories and corresponding
threads. For example, given the choice memory 〈t, e?P :Q, t′〉, we have a bro-
ken connection when no thread tagged by t′ exists in the ReSπ process and
no memory of the form 〈t′−A→ t2, t

′
1, t
′
2〉, 〈t1−A→ t′, t′1, t

′
2〉, 〈t′, e?P1 :P2, t1〉,

and 〈t′ ⇒ (t1, t2)〉 exist.
The class of meaningful ReSπ processes we are interested in consists of

programs and runtime processes. The former are the terms that can be writ-
ten by programmers, i.e. they are ReSπ processes with no memory. In fact,
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memories are not expected to occur in the source code written by program-
mers. We assume that the threads within a program have unique tags. The
latter terms of the class are the ReSπ processes that can be obtained by
means of forward reductions from programs; in this way, history consistency
is ensured. Using the terminology from [20], the processes of the considered
class are called reachable. We formalise their definition below.

Definition 1 (Programs). The set of ReSπ programs is the set of terms
generated by the following grammar

M ::= t : P | (νc)M | M | N | nil

and whose threads have distinct tags, where P is a π-calculus process as in
Figure 1.

Definition 2 (Runtime processes). The set of ReSπ runtime processes is
the set of terms obtained by the transitive closure under � (see Section 4.2)
of the set of ReSπ programs.

Definition 3 (Reachable processes). The set of ReSπ reachable pro-
cesses is the union of the sets of programs and runtime processes.

Notice that in Definition 1 the restriction operator is defined on channels
c rather than on names h. This because there is no need to restrict tags in
a program. In fact, it is sufficient to use distinct tags, as required by the
definition. In practice, the programmer would have to write just a π-calculus
term that can be then automatically annotated with unique tags to obtain
a ReSπ program. At runtime, as shown in the next subsection, it is the
operational semantics in charge of generating fresh tags for the new threads
by means of the restriction operator.

4.2. Semantics

The operational semantics of ReSπ is given in terms of a structural con-
gruence and of a reduction relation.

The structural congruence ≡ extends that of π-calculus (Figure 2) with
the additional laws in Figure 5. Most of the new laws simply deal with the
parallel and restriction operators on ReSπ processes. Thus, we only focus on
relevant laws (below, the laws are read by row from left to right, and from
top to bottom row). The eighth law permits a restriction on a π-calculus
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(M | N) | L ≡M | (N | L) M | N ≡ N |M

M | nil ≡M (νh) nil ≡ nil

(νt)M | N ≡ (νt)(M | N) if t /∈ ft(N) (νh1)(νh2)M ≡ (νh2)(νh1)M

(νa)M | N ≡ (νa)(M | N) if a /∈ fc(N) t : (νc)P ≡ (νc) t : P

t : P ≡ t : Q if P ≡ Q (νs)M | N ≡ (νs)(M | N) if s, s̄ /∈ fse(N)

M ≡ N if M ≡α N t : (P | Q) ≡ (νt1, t2)(t1 : P | t2 : Q | 〈t⇒ (t1, t2)〉)

Figure 5: ReSπ structural congruence (additional laws)

process to be moved to the level of ReSπ processes. The ninth law lifts the
congruence at π-calculus process level to the threads level. The last law is
crucial for fork handling: it is used to split a single thread composed of two
parallel processes into two threads with fresh tags; the tag of the original
thread and the new tags are properly recorded in a fork memory.

The reduction relation of ReSπ, written �, is given as the union of the
forward and backward reduction relations defined by the rules in Figure 6:
� =� ∪ . Relations� and are the smallest relations on closed ReSπ
reachable processes generated by the corresponding rules in the figure.

We comment on salient points. When two parallel threads synchronise to
establish a new session (rule [fwCon]), two fresh tags are created to uniquely
identify the two continuations of the synchronising threads. Moreover, all
relevant information is stored in the action memory 〈t1 −a(x)(y)(νs)P1P2→
t2, t

′
1, t
′
2〉: the tag t1 of the initiator (i.e., the thread executing a prefix of

the form ā(·)), the tag t2 of the thread executing the dual action, the tags
t′1 and t′2 of their continuations, the shared channel a used for the synchro-
nisation, the replaced variables x and y, the generated session channel s,
and the processes P1 and P2 to which substitutions are applied. All such
information is exploited to revert this reduction (rule [bwCon]). In particu-
lar, the corresponding backward reduction is triggered by the coexistence of
the memory described above with two threads tagged t′1 and t′2, all of them
within the scope of the session channel s and tags t′1 and t′2 generated by
the forward reduction (which, in fact, are removed by the backward one).
Notice that, when considering reachable processes, due to tag uniqueness,
the two processes P and Q must coincide with P1[s̄/x] and P2[s/y]; indeed,
as registered in the memory, these latter processes have been tagged with t′1
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t1 : ā(x).P1 | t2 : a(y).P2 s, s̄ /∈ fse(P1, P2) [fwCon]

� (νs, t′1, t
′
2)(t

′
1 : P1[s̄/x] | t′2 : P2[s/y]
| 〈t1 −a(x)(y)(νs)P1P2→ t2, t

′
1, t
′
2〉)

(νs, t′1, t
′
2)(t

′
1 : P | t′2 : Q | 〈t1 −a(x)(y)(νs)P1P2→ t2, t

′
1, t
′
2〉) [bwCon]

 t1 : ā(x).P1 | t2 : a(y).P2

t1 : k̄!〈e〉.P1 | t2 : k?(x).P2 (k = s or k = s̄) [fwCom]

� (νt′1, t
′
2)(t

′
1 : P1 | t′2 : P2[v/x] e ↓ v
| 〈t1 −k〈e〉(x)P1P2→ t2, t

′
1, t
′
2〉)

(νt′1, t
′
2)(t

′
1 : P | t′2 : Q | 〈t1 −k〈e〉(x)P1P2→ t2, t

′
1, t
′
2〉) [bwCom]

 t1 : k̄!〈e〉.P1 | t2 : k?(x).P2

t1 : k̄ / li.P | t2 : k . {l1 : P1, . . . , ln : Pn} (k = s or k = s̄) [fwLab]

� (νt′1, t
′
2)(t

′
1 : P | t′2 : Pi 1 ≤ i ≤ n
| 〈t1 −k / li P{l1 : P1, . . . , ln : Pn}→ t2, t

′
1, t
′
2〉)

(νt′1, t
′
2)(t

′
1 : Q | t′2 : Q′

| 〈t1 −k / li P{l1 : P1, . . . , ln : Pn}→ t2, t
′
1, t
′
2〉) [bwLab]

 t1 : k̄ / li.P | t2 : k . {l1 : P1, . . . , ln : Pn}

t : if e then P1 else P2 � (νt′)(t′ : P1 | 〈t, e?P1 :P2, t
′〉) e ↓ true [fwIf1]

t : if e then P1 else P2 � (νt′)(t′ : P2 | 〈t, e?P1 :P2, t
′〉) e ↓ false [fwIf2]

(νt′)(t′ : P | 〈t, e?P1 :P2, t
′〉)  t : if e then P1 else P2 [bwIf]

M � M ′

M | N � M ′ | N
[fwPar] M  M ′

M | N  M ′ | N
[bwPar]

M � M ′

(νh)M � (νh)M ′
[fwRes] M  M ′

(νh)M  (νh)M ′
[bwRes]

M ≡M ′ � N ′ ≡ N
M � N

[fwStr] M ≡M ′  N ′ ≡ N
M  N

[bwStr]

Figure 6: ReSπ reduction relation
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and t′2 by the forward reduction. The fact that two threads tagged with t′1
and t′2 are available in parallel to the memory ensures that all actions possi-
bly executed by the two continuations activated by the forward computation
have been undone and, hence, we can safely proceed to undone the forward
computation itself.

Rules [fwCom], [bwCom], [fwLab], [bwLab], [fwIf1], [fwIf2] and
[bwIf] are similar. Notably, in the first two rules mentioned above, besides
tags and continuation processes, the action memory stores the session end-
point k of the receiving party (the other endpoint k̄ is obtained by duality),
the expression e generating the sent value, and the replaced variable x. It is
also worth noticing that, since all information about a choice event is stored
in the corresponding memory, we need just one backward rule ([bwIf]) to re-
vert the effect of the forward rules [fwIf1] and [fwIf2]. The meaning of the
remaining rules, dealing with parallel composition, restriction and structural
congruent terms, is straightforward.

4.3. The multiple providers scenario in ReSπ

Let us consider again the multiple providers scenario. We have shown at
the beginning of this section that a ReSπ specification can be obtained by
simply annotating the π-calculus term with unique tags as follows:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

Now, the computation described in Section 3.3 corresponds to the follow-
ing sequence of forward reductions:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

� � � � �

M = (νs, t11, t
1
2, t

2
1, t

2
2, t

3
1, t

3
2, t

4
1, t

5
1, t

4
2)

( t51 : Pacc[s̄/x][quote/yquote] | t42 : Qacc[s/y][srv req/zreq]

| 〈t1 −alogin(x)(y)(νs)P ′clientP
′
provider1→ t2, t

1
1, t

1
2〉

| 〈t11 −s〈srv req〉(zreq)P ′′clientP ′′provider1→ t12, t
2
1, t

2
2〉

| 〈t22 −s̄〈quote〉(yquote)P ′′′provider1P ′′′client→ t21, t
3
2, t

3
1〉

| 〈t31, accept(quote)?Pclient t :Pclient e, t41〉
| 〈t41 −s / lacc Pacc[s̄/x][quote/yquote]

{lacc : Qacc[s/y][srv req/zreq], . . .}→ t32, t
5
1, t

4
2〉 )

| Pprovider2
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Basically, five memories have been generated, each one dedicated to revert
the effects of the corresponding forward reduction.

If a problem occurs during the subsequent interactions between the client
and the provider for finalising the service agreement, the computation can be
reverted to the initial state. In particular, the backward rules [bwCon], [bw-
Com], [bwLab] and [bwIf] can be applied only if the ReSπ term contains a
memory in parallel with thread(s) appropriately tagged by the continuation
tag(s) stored in the memory. For example, to apply the rule [bwCon] in the
process M , two threads tagged by t11 and t12 must be in parallel with the first
memory, which actually is not the case. In fact, in M , only the last memory
can trigger a backward step, by means of the application of rule [bwLab]:

M  M ′ = (νs, t11, t
1
2, t

2
1, t

2
2, t

3
1, t

3
2, t

4
1)

( t41 : s̄ / lacc. Pacc[s̄/x][quote/yquote]

| t32 : s . {lacc : Qacc[s/y][srv req/zreq] , . . .}
| 〈t1 −alogin(x)(y)(νs)P ′clientP

′
provider1→ t2, t

1
1, t

1
2〉

| 〈t11 −s〈srv req〉(zreq)P ′′clientP ′′provider1→ t12, t
2
1, t

2
2〉

| 〈t22 −s̄〈quote〉(yquote)P ′′′provider1P ′′′client→ t21, t
3
2, t

3
1〉

| 〈t31, accept(quote)?Pclient t :Pclient e, t41〉 )
| Pprovider2

In this way, the threads labelled by t51 and t42 are removed, while the threads
performing the selection and offering the branching choice, labelled by t41 and
t32 respectively, are restored.

Then, in the process M ′, only the last memory can trigger a backward re-
duction, which undoes the conditional choice performed by the client thread.
Similarly, other backward reductions can be subsequently triggered by the
other memories, consuming them from the bottom to the top of the term. In
this way, the forward computation can be completely reverted:

M ′     t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

Now, the client can start a new session, possibly with provider2 .
Notice that in ReSπ there is no need of explicitly implementing loops for

enabling the client to undo and restart sessions. Notice also that here we do
not consider specific primitives and techniques that avoid interacting again
with the same provider. This would break the Loop Lemma (see Lemma 5)
and complicate our theoretical framework; we refer to [34] for a definition of
some of such controlled forms of reversibility.
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5. Properties of the reversible calculus

We present in this section some properties of ReSπ, which are typically
enjoyed by reversible calculi. We exploit terminology, arguments and proof
techniques of previous works on reversible calculi (in particular, [15, 5, 20]).
As a matter of notation, we will use P and R to denote the set of π-calculus
processes and of ReSπ processes, respectively.

5.1. Correspondence with π-calculus

We first show that ReSπ is a conservative extension of the (session-based)
π-calculus. In fact, as most reversible calculi, ReSπ is only a decoration of
its host calculus. Such decoration can be erased by means of the forgetful
map φ, which maps ReSπ terms into π-calculus ones by simply removing
memories, tag annotations and tag restrictions.

Definition 4 (Forgetful map). The forgetful map φ : R → P, mapping
a ReSπ process M into a π-calculus process P , is inductively defined on the
structure of M as follows:

φ(t : P ) = P φ((νc)N) = (νc)φ(N)

φ((νt)N) = φ(N) φ(N1 | N2) = φ(N1) | φ(N2)

φ(m) = 0 φ(nil) = 0

To prove the correspondence between ReSπ and π-calculus, we need the
following auxiliary lemma relating structural congruence of ReSπ to that of
π-calculus.

Lemma 1. Let M and N be two ReSπ processes. If M ≡ N then φ(M) ≡
φ(N).

Proof We proceed by induction on the derivation of M ≡ N (see Appendix
A.1.1). �

Now, we can show that each forward reduction of a ReSπ process corre-
sponds to a reduction of the corresponding π-calculus process.

Lemma 2. Let M and N be two ReSπ processes. If M � N then φ(M)→
φ(N).
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Proof We proceed by induction on the derivation of M � N (see Appendix
A.1.1). �

The correspondence between ReSπ and π-calculus reductions is com-
pleted by the following lemmas, which intuitively are the inverse of Lemma 1
and Lemma 2.

Lemma 3. Let P and Q be two π-calculus processes. If P ≡ Q then for any
ReSπ process M such that φ(M) = P there exists a ReSπ process N such
that φ(N) = Q and M ≡ N .

Proof The proof is straightforward (see Appendix A.1.1). �

Lemma 4. Let P and Q be two π-calculus processes. If P → Q then for any
ReSπ process M such that φ(M) = P there exists a ReSπ process N such
that φ(N) = Q and M � N .

Proof We proceed by induction on the derivation of P → Q (see Appendix
A.1.1). �

5.2. Loop lemma

The following lemma shows that, in ReSπ, backward reductions are the
inverse of the forward ones and vice versa.

Lemma 5 (Loop lemma). Let M and N be two reachable ReSπ processes.
M � N if and only if N  M .

Proof The proof for the if part is by induction on the derivation of M � N ,
while the proof for the only if part is by induction on the derivation of
N  M (see Appendix A.1.2). �

5.3. Causal consistency

We show here that reversibility in ReSπ is causally consistent. Informally,
this means that an action can be reverted only after all the actions causally
depending on it have already been reverted. In this way, in the presence of
independent actions, backward computations are not required to necessarily
follow the exact execution order of forward computations in reverse. We
formalise below the notions of independent (i.e., concurrent) actions and of
causal consistency.
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As in [15] and [5], we rely on the notion of transition. In ReSπ, a transition

is a triplet of the form M
m,M,�−−−−→ N (resp. M

m,M, −−−−→ N), where M and N
are closed reachable ReSπ processes such that M � N (resp. M  N), m
is the action or choice memory involved in the reduction, and M is the set
of fork memories possibly involved in the reduction. A memory is involved
in a reduction if it is created or removed by the reduction. We use η to
denote transition labels (m,M,�) and (m,M, ). If η is (m,M,�), then

its inverse is η• = (m,M, ) and vice versa. In a transition M
η−→ N , we

call M the source of the transition and N its target. We use τ to range over
transitions; τ• denotes the inverse of transition τ .

Two transitions are coinitial if they have the same source, cofinal if they
have the same target, composable if the target of one is the source of the
other. A sequence of transitions, where each pair of sequential transitions
is composable, is called a trace; we use σ to range over traces. Notions of
target, source and composability extend naturally to traces. We use εM to
denote the empty trace with source M and σ1;σ2 the composition of two
composable traces σ1 and σ2.

We consider only transitions M
η−→ N where M and N do not contain

threads of the form t : (P | Q). This condition can be always satisfied by
splitting all threads of this kind into sub-threads, until their disappearance
in the considered terms, using the structural law t : (P | Q) ≡ (νt1, t2)(t1 :
P | t2 : Q | 〈t ⇒ (t1, t2)〉). Moreover, since conflicts between transitions
are identified by means of tag identifiers (see Definition 5 below), we only
consider transitions that do not use α-conversion on tags, and that generates
fork memories in a deterministic way, e.g. given a memory 〈t⇒ (t1, t2)〉 tags
t1 and t2 are generated by applying an injective function to t.

The stamp λ(η) of a transition label η identifies the threads involved in
the corresponding transition, and is defined as follows (we use T to denote a
set of tags {ti}i∈I):

λ(m,M,�) = λ(m,M, ) = λ(m) ∪ λλ(m)(M)

λ(〈t1 −A→ t2, t
′
1, t
′
2〉) = {t1, t2, t′1, t′2}

λ(〈t, e?P :Q, t′〉) = {t, t′}

λT ({mi}i∈I) =
⋃
i∈I λT (mi)

λT (〈t⇒ (t1, t2)〉) =

{{t1, t2} if t ∈ T
∅ otherwise
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The stamp of fork memories permits us to take into account the relationships
between a thread and its sub-threads. This is similar to the closure over
tags used in [18]. Notably, as in [15], the tags of continuation processes are
inserted into a stamp, in order to take into account possible conflicts between
a forward transition and a backward one. Notice also that it is instead not
necessary to include in the stamp the fresh session channel created or used
by a reduction. In fact, this would allow to detect conflicts between the
transitions involving the memory corresponding to the creation of the channel
and the transitions where such channel is used. Such conflicts, however,
are already implicitly considered, since after its creation the channel is only
known by the threads corresponding to the continuation processes, which are
already considered in the stamp as discussed above.

We can now define when two transitions are concurrent.

Definition 5 (Concurrent transitions). Two coinitial transitions M
η1−→

M1 and M
η2−→ M2 are in conflict if λ(η1) ∩ λ(η2) 6= ∅. Two coinitial transi-

tions are concurrent if they are not in conflict.

Intuitively, two transitions are concurrent when they do not involve a com-
mon thread.

The following lemma characterises the causally independence among con-
current transitions.

Lemma 6 (Square lemma). If τ1 = M
η1−→ M1 and τ2 = M

η2−→ M2 are
two coinitial concurrent transitions, then there exist two cofinal transitions
τ2/τ1 = M1

η2−→ N and τ1/τ2 = M2
η1−→ N .

Proof By case analysis on the form of transitions τ1 and τ2 (see Appendix
A.1.3). �

In order to study the causality of ReSπ reversibility, we introduce the
notion of causal equivalence [4, 5] between traces, denoted �. This is defined
as the least equivalence relation between traces closed under composition
that obeys the following rules:

τ1 ; τ2/τ1 � τ2 ; τ1/τ2 τ ; τ• � εsource(τ) τ• ; τ � εtarget(τ)

Intuitively, the first rule states that the execution order of two concurrent
transitions can be swapped, while the other rules state that the composition
of a trace with its inverse is equivalent to the empty transition.
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Now, we conclude with the result stating that two coinitial causally equiv-
alent traces lead to the same final state. Thus, in such case, we can rollback
to the initial state by reversing any of the two traces.

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces.
Then, σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof By construction of � and by applying Lemma 6 and other two aux-
iliary lemmas (see Appendix A.1.3). �

6. Type discipline

In this section, first we recall the session type discipline of session-based
π-calculus then we discuss how we could exploit it to type ReSπ processes.

6.1. Typing session-based π-calculus

The type discipline presented here is basically the one proposed in [23],
except for the notation of the calculus that has been revised according to [24].

6.1.1. Types

The syntax of sorts, ranged over by S, S ′, . . . , and types, ranged over by
α, β, . . . , is defined in Figure 7. The type ![S].α represents the behaviour of
first outputting a value of sort S, then performing the actions prescribed by
type α. Type ![β].α represents a similar behaviour, which starts with session
output (throw) instead. Types ?[S].α and ?[β].α are the dual ones, receiving
values instead of sending. Type &[l1 : α1, . . . , ln : αn] describes a branching
behaviour: it waits with n options, and behave as type αi if the i-th action
is selected (external choice). Type ⊕[l1 : α1, . . . , ln : αn] represents the
behaviour which would select one of li and then behaves as αi, according
to the selected li (internal choice). Type end represents inaction, acting as
the unit of sequential composition. Type µt.α denotes a recursive behaviour,
representing the behaviour that starts by doing α and, when variable t is
encountered, recurs to α again. As in [23], we take an equi-recursive view of
types, not distinguishing between a type µt.α and its unfolding α[µt.α/t], and
we are interested on contractive types only, i.e. for each of sub-expressions
µt.µt1 . . . µtn.α the body α is not t. The result is that, in a typing derivation,
types µt.α and α[µt.α/t] can be used interchangeably.

For each type α, we define α, the dual type of α, by exchanging ! and ?,
and & and ⊕. The inductive definition is in Figure 8.
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Sorts S ::= bool boolean
| int integer
| 〈α〉 shared channel

Types α, β ::= ![S].α output
| ?[S].α input
| ![β].α throw
| ?[β].α catch
| ⊕[l1 : α1, . . . , ln : αn] selection
| &[l1 : α1, . . . , ln : αn] branching
| end end
| t type variable
| µt.α recursion

Figure 7: Syntax of sorts and types

![S].α = ?[S].α ![β].α = ?[β].α ⊕[li : αi]i∈I = &[li : αi]i∈I

?[S].α = ![S].α ?[β].α = ![β].α &[li : αi]i∈I = ⊕[li : αi]i∈I

end = end µt.α = µt.α t = t

Figure 8: Dual types

6.1.2. Typing system

A sorting (resp. a typing, resp. a basis) is a finite partial map from
shared identifiers to sorts (resp. from session identifiers to types, resp. from
process variables to typings). We let Γ, Γ′, . . . (resp. ∆, ∆′, . . . , resp. Θ,
Θ′, . . . ) range over sortings (resp. typings, resp. bases). We write ∆ · k : α
when k /∈ dom(∆); this notation is then extended to ∆ ·∆′.

Typing judgements are of the form Θ; Γ ` P . ∆ which stands for “un-
der the environment Θ; Γ, process P has typing ∆”. The typing system is
defined by the axioms and rules in Figure 9. We call a typing completed
when it contains only end types. A typing ∆ is called balanced if whenever
s : α, s̄ : β ∈ ∆, then α = β. We refer the interested reader to [23] for
detailed comments on the rules.
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Γ ` true . bool [Booltt ] Γ ` false . bool [Boolff ] Γ ` 1 . int [Int] . . .

Γ ` e1 . int Γ ` e2 . int

Γ ` +(e1, e2) . int
[Sum]

Γ ` e1 . bool Γ ` e2 . bool

Γ ` ∧(e1, e2) . bool
[And]

. . .

Γ · u : S ` u . S [Id]

∆ completed

Θ; Γ ` 0 . ∆
[Inact]

Γ ` u . 〈α〉 Θ; Γ ` P . ∆ · x : α

Θ; Γ ` ū(x).P . ∆
[Req]

Γ ` u . 〈α〉 Θ; Γ ` P . ∆ · x : α

Θ; Γ ` u(x).P . ∆
[Acc]

Γ ` e . S Θ; Γ ` P . ∆ · k : α

Θ; Γ ` k!〈e〉.P . ∆ · k :![S].α
[Send]

Θ; Γ ` P . ∆ · k : β

Θ; Γ ` k!〈k′〉.P . ∆ · k :![α].β · k′ : α
[Thr]

Θ; Γ · x : S ` P . ∆ · k : α

Θ; Γ ` k?(x).P . ∆ · k :?[S].α
[Rcv]

Θ; Γ ` P . ∆ · k : β · x : α

Θ; Γ ` k?(x).P . ∆ · k :?[α].β
[cat]

Θ; Γ ` P . ∆ · k : αj

Θ; Γ ` k / lj .P . ∆ · k : ⊕[l1 : α1, . . . , ln : αn]
(1 ≤ j ≤ n) [Sel]

Θ; Γ ` P1 . ∆ · k : α1 . . . Θ; Γ ` Pn . ∆ · k : αn

Θ; Γ ` k . {l1 : P1, . . . , ln : Pn} . ∆ · k : &[l1 : α1, . . . , ln : αn]
[Br]

Γ ` e . bool Θ; Γ ` P . ∆ Θ; Γ ` Q . ∆

Θ; Γ ` if e then P else Q . ∆
[If]

Θ; Γ ` P . ∆ Θ; Γ ` Q . ∆′

Θ; Γ ` P | Q . ∆ ·∆′
[Conc]

Θ; Γ · a : S ` P . ∆

Θ; Γ ` (νa)P . ∆
[Res1]

Θ; Γ ` P . ∆ · s : α · s̄ : α

Θ; Γ ` (νs)P . ∆
[Res2]

Θ; Γ ` P . ∆ s not in ∆

Θ; Γ ` (νs)P . ∆
[Res3]

Θ ·X : ∆; Γ ` X . ∆ [Var]

Θ ·X : ∆; Γ ` P . ∆

Θ; Γ ` µX.P . ∆
[Rec]

Figure 9: Typing system for π-calculus

6.1.3. Results

We report here the main results concerning the type discipline, namely
Subject Reduction and Type Safety, borrowed from [23]. The former result
states that well-typedness is preserved along computations, while the latter
states that no interaction errors occur on well-typed processes.

Theorem 2 (Subject Reduction). If Θ; Γ ` P . ∆ with ∆ balanced
and P →∗ Q, then Θ; Γ ` Q . ∆′ and ∆′ balanced.
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Proof See proof of Theorem 3.3 in [23]. �

The notion of error, necessary to formalise Type Safety, is also taken
from [23]. A k-process is a process prefixed by subject k, while a k-redex
is the parallel composition of two k-processes either of the form (k̄!〈e〉.P1 |
k?(x).P2), or (k̄ / li.P | k . {l1 : P1, . . . , ln : Pn}). Then, P is an error if
P ≡ (νc)(Q | R) where Q is, for some k, the parallel composition of either
two k-processes that do not form a k-redex, or of three or more k-processes.

Theorem 3 (Type Safety). A program typable under a balanced channel
environment never reduces to an error.

Proof See proof of Theorem 3.4 in [23]. �

6.2. Typing ReSπ

We show here how the notion of types, the typing system and the related
results given for the π-calculus (Section 6.1) can be reused for typing ReSπ.
The key point is that we only consider reachable ReSπ processes originated
from ReSπ programs that are well-typed (according to the typing discipline
of π-calculus). In fact, by statically type checking ReSπ programs, we already
check all possible interactions that they will perform. More specifically, Sub-
ject Reduction and Type Safety ensure that all runtime processes obtained
from a program by means of (forward) reductions are interaction safe. Thus,
since backward computations cannot lead to new runtime processes, but just
go back to terms reachable from the program via forward reductions, there is
no need of type checking the content of the memories in runtime processes.

Now, before formally showing how the typing discipline of π-calculus
extends to ReSπ, we introduce a few auxiliary definitions and results.

Definition 6 (Reachable processes for typed ReSπ). The set of
reachable processes for the typed ReSπ only contains: (i) programs M such
that Θ; Γ ` φ(M) . ∆ with ∆ balanced, and (ii) runtime processes M
obtained by forward reductions from the above programs.

Property 1. Let M be a reachable process. If M �M ′ then M ′ is a reach-
able process.

Proof The proof follows from Definition 6 and Lemma 5 (see Appendix
A.2). �
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The notion of well-typedness for ReSπ, expressed by the judgement
Θ; Γ `r M . ∆, is defined in terms of the well-typedness notion introduced
for the π-calculus.

Definition 7 (Well-typedness). Θ; Γ `r M . ∆ if and only if Θ; Γ `
φ(M) . ∆, with ∆ balanced.

Thus, Subject Reduction extends to ReSπ terms as follows.

Theorem 4 (Subject Reduction). Let M be a reachable process. If
Θ; Γ `r M . ∆ with ∆ balanced and M � M ′, then Θ; Γ `r M ′ . ∆′

and ∆′ balanced.

Proof The proof relies on Theorem 2 (see Appendix A.2). �

We conclude by showing how the notion of error and Type Safety of π-
calculus extends to ReSπ. A ReSπ process M is an error if and only if φ(M)
is an error.

Theorem 5 (Type Safety). A ReSπ program typable under a balanced
channel environment never reduces to an error.

Proof By the notion of ReSπ error and by Theorem 3, we have that typable
programs are not errors. Then, by Theorem 4 we have the thesis. �

6.3. Typing the multiple providers scenario

Coming back to the scenario introduced in Section 3.3 and specified in
ReSπ in Section 4.3, we can easily verify that the process

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

is well-typed (assuming that the unspecified processes Pacc, Pneg, Qacc and
Qneg are properly typable). In particular, the channel alogin can be typed by
the shared channel type

〈 ?[Request]. ![Quote].&[lacc : αacc , lneg : αneg , lrej : end] 〉

where we use sorts Request and Quote to type requests and quotes, respec-
tively.

Let us consider now a scenario where the client wishes to concurrently
submit two different requests to the same provider, which would be able to
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concurrently serve them. Consider in particular the following specification
of the client (the provider one is dual):

alogin(x). (x!〈srv req 1〉. P1 | x!〈srv req 2〉. P2 )

The new specification of the scenario is clearly not well-typed, due to the use
of parallel threads within the same session. This forbids us from mixing up
messages related to different requests and wrongly delivering them. In order
to properly concurrently submit separate requests, the client must instantiate
separate sessions with the provider, one for each request.

The session type discipline, indeed, forces concurrent interactions to fol-
low structured patterns that guarantee the correctness of communication.
For what concerns reversibility, linear use of session channels limits the effect
of causal consistency, since concurrent interactions along the same session
are prevented and, hence, the backtracking of a given session follows a single
path. Of course, interactions along different sessions are still concurrent and,
therefore, it is important to use a causal-consistent rollback to revert them.

7. Commitable sessions

The calculus ReSπ discussed so far is fully reversible, i.e. backward com-
putations are always enabled. Full reversibility provides theoretical founda-
tions for studying reversibility in session-based π-calculus, but it is not suit-
able for a practical use on structured communication-based programming.
Therefore, in this section, we enrich the framework to allow computation to
go backward and forward along a session, allowing the involved parties to
try different interactions, until the session is successfully completed. This is
achieved by adding a specific action to the calculus for irreversibly commit-
ting the closure of sessions.

It is worth noticing that the fully reversible characterisation of the cal-
culus permits us to prove that its machinery for reversibility (i.e., memories
and their usage) soundly works with respect to the expected properties of
a reversible calculus. This remains valid also for the extension proposed
here. In fact, as clarified below, the extended calculus basically prunes some
computations allowed in ReSπ, which corresponds to backward and forward
actions that are undesired after a session closure.

7.1. ReSπ with commit
The syntax of ReSπC (Reversible Session-based π-calculus with Commit)

is obtained from that of ReSπ (given in Figure 4) by extending the syntactic
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category of processes P with process commit(k).P , and by extending the
syntactic category of memories m with the commit memory 〈t1−

√
(s)→ t2〉.

This new memory simply registers the closing event of the session identified
by s due to an agreement of threads tagged by t1 and t2.

The irreversible closure of a session is achieved by the synchronisation
on its session channel s of two threads of the form t1 : commit(s̄).P1 and
t2 : commit(s).P2. This synchronisation acts similarly to the ‘cut’ operator
in Prolog, as both mechanisms are used to prevent unwanted backtracking.
After the synchronisation, since the session s is closed, the continuations
P1 and P2 can no longer use the session channel s; this check is statically
enforced by the type system for ReSπC (presented later on).

Formally, the semantics of ReSπC is obtained by adding the following
rule to those defining the reduction relation of ReSπ (Figure 6):

t1 : commit(k̄).P1 | t2 : commit(k).P2 (k = s or k = s̄) [commit]

� (νt′1, t
′
2)(t

′
1 : P1 | t′2 : P2 | 〈t1 −

√
(s)→ t2〉)

Since commit is an irreversible action that will never be backtracked, there
is no need to remember information about the continuation processes in the
generated memory. For the same reason, there is no backward rule inverse
to [commit].

For what concerns the type discipline, types α (defined in Table 7) are
extended with type

√
, while the typing system is extended with the following

rule:
Θ; Γ ` P . ∆ · k : end

Θ; Γ ` commit(k).P . ∆ · k :
√ [Commit]

which ensures that after the commit the session is closed.

7.2. Irreversibility propagation

When a commit action is executed, all actions that caused it became
unbacktrackable, although they were themselves reversible. In other words, a
commit action creates a domino effect that disables the possibility of reversing
the session actions previously performed.

To formalise the domino effect caused by the commit irreversible action,
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we have to introduce the following notions of head and tail of memories:

head(〈t1 −A→ t2, t
′
1, t
′
2〉) = {t1, t2} tail(〈t1 −A→ t2, t

′
1, t
′
2〉) = {t′1, t′2}

head(〈t, e?P :Q, t′〉) = {t} tail(〈t, e?P :Q, t′〉) = {t′}
head(〈t⇒ (t1, t2)〉) = {t} tail(〈t⇒ (t1, t2)〉) = {t1, t2}
head(〈t1 −

√
(s)→ t2〉) = {t1, t2} tail(〈t1 −

√
(s)→ t2〉) = ∅

Using the terminology of [5], we say that a memory is locked when the
event stored inside can never be reverted, because the conditions triggering
the corresponding backward reduction will never be satisfied. Specifically,
to perform a backward reduction is required the coexistence of a memory
with threads properly tagged, and the latter will never be available due to
an irreversible action. Let us now formalise, given a process M , its set LM
of locked memories.

Definition 8 (Locked memories). Let M be a ReSπC process and MM

stand for the set of memories occurring in M . The set LM of locked memories
of M is defined as follows:

• 〈t1 −
√

(s)→ t2〉 ∈ MM ⇒ 〈t1 −
√

(s)→ t2〉 ∈ LM

• m ∈ LM , m′ ∈MM , t ∈ head(m), t ∈ tail(m′) ⇒ m′ ∈ LM

The first point says that a commit memory is locked, while the second point
describes the propagation of the locking effect, i.e. the event within m de-
pends on the event within m′ (because the latter generates a thread involved
in the former) and hence also m′ is locked. Of course, LM ⊆MM .

Now, we can demonstrate the main result about ReSπC , stating that
committed sessions cannot be reverted (Theorem 6). This result is based
on the notion of reversible memory (Definition 9) and on Lemma 7, ensuring
that locked memories cannot be reverted. We use + to denote the transitive
closure of  .

Definition 9. Let M be a ReSπC process. A memory m ∈ MM is re-
versible if there exists a process M ′ such that M  + M ′ and m /∈MM ′.

Intuitively, a memory can be reverted if there exists a backward computation
that consumes it to restore the threads it memorises.
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Lemma 7. Let M be a ReSπC process. If m ∈ LM then m is not reversible.

Proof The proof proceeds by contradiction (see Appendix A.3). �

Theorem 6. Let M be a ReSπC process and s a session committed in M .
Then, all interactions performed along s cannot be reverted.

Proof The proof relies on Lemma 7 (see Appendix A.3). �

7.3. The multiple providers scenario in ReSπC

Let us consider again the multiple providers scenario specified in ReSπ
in Section 4.3.

Suppose now that, for the sake of simplicity, the client and the first
provider commit the session immediately after the acceptance of the quote.
That is, Pacc andQacc stand for commit(x) and commit(y), respectively. Thus,
the computation described in Section 3.3 in ReSπC corresponds to:

t1 : Pclient | t2 : Pprovider1 | t3 : Pprovider2

� � � � �

M = (νs, t11, t
1
2, . . . , t

5
1, t

4
2)

( t51 : commit(s̄) | t42 : commit(s)
| 〈t1 −alogin . . .→ t2, t

1
1, t

1
2〉 | . . . | 〈t41 −s / lacc . . .→ t32, t

5
1, t

4
2〉 )

| Pprovider2

M can now evolve as follows:

M � M ′ = (νs, t11, t
1
2, . . . , t

5
1, t

4
2, t

6
1, t

5
2)

( t61 : 0 | t52 : 0 | 〈t51 −
√

(s)→ t42〉
| 〈t1 −alogin . . .→ t2, t

1
1, t

1
2〉 | . . . | 〈t41 −s / lacc . . .→ t32, t

5
1, t

4
2〉 )

| Pprovider2

The memory 〈t51−
√

(s)→ t42〉 generated by this last forward reduction is locked
(first point of Definition 8). Thus, also memory 〈t41 −s / lacc . . .→ t32, t

5
1, t

4
2〉

is locked, since its tail contains tags belonging to the head of the commit
memory (second point of Definition 8). Repeatedly applying the second
point of Definition 8, we obtain that LM ′ =MM ′ , i.e. all memory of M ′ are
locked. This means that M ′ 6 and hence, as desired, the computation along
session s cannot be reverted.
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8. Concluding remarks

To bring the benefits of reversible computing to structured
communication-based programming, we have defined a theoretical frame-
work based on π-calculus that can be used as formal basis for studying
the interplay between (causal-consistent) reversibility and session-based
structured interaction. We conclude the paper by discussing the main
directions of ongoing and future work.

Concerning the reversible calculus, we plan to investigate the definition
of a syntactic characterisation of consistent terms, which statically enforces
history consistency in memories (as in [15]), rather than using the current
definition of reachable process (as in [20, 18]). In line with [17], we also plan to
enrich the language with primitives and mechanisms to control reversibility.

For what concerns the typing discipline of ReSπ, we intend to investigate
the definition of a typing system capable of type checking contents of mem-
ories, in order to identify interaction errors that could be caused by terms
restored from memories. This permits us to extend the class of ReSπ pro-
grams to include also processes with memories, thus allowing programmers
to write also this kind of reversible code. We think that the required checks
would resemble the semantics of the roll primitive in [17], which can be then
used as a source of inspiration.

Coming to the extension with commitable sessions, it is worth noticing
that action commit must be carefully used in case of subordinate sessions. For
example, let us consider the typical three-party scenario where a Customer
sends an order to a Seller that, in his own turn, contacts a Shipper for the
delivery. We have that the session between the Seller and the Shipper is sub-
ordinated to the session between the Customer and the Seller. Now, when
the main session is committed, also the subordinate session is involved in
the commit. This is usually desirable, because the commit acts on the whole
transaction and, hence, after the commit the interaction with the Shipper
cannot be reverted. However, if the subordinate session is previously com-
mitted, the main session is affected, because interaction performed before
the commit cannot be reverted. This latter situation is typically undesir-
able; therefore, as a best practice, commit should be not used by subordinate
sessions. We plan to devise a static analysis technique supporting this disci-
plined use of commit in presence of subordinate sessions.

As longer-term goal, we intend to apply the proposed approach to other
session-based formalisms, which consider, e.g., asynchronous sessions and
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multiparty sessions. We also plan to investigate implementation issues that
may arise when incorporating the approach into standard programming lan-
guages, in particular in case of a distributed setting. The rollback mechanism
incorporated in the semantics of the language would require low-level syn-
chronisations between the involved parties.
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Appendix A. Proofs

Appendix A.1. Proofs of Section 5

Appendix A.1.1. Correspondence with π-calculus

Lemma 1. Let M and N be two ReSπ processes. If M ≡ N then φ(M) ≡
φ(N).

Proof We proceed by induction on the derivation of M ≡ N . For most of
the laws in Figure 5 the conclusion is trivial because φ(M) ≡ φ(N) directly
corresponds to a law for π-calculus in Figure 2. Instead, for the eighth and
twelve laws, we easily conclude because by applying φ we obtain the identity.

�

Lemma 2. Let M and N be two ReSπ processes. If M � N then φ(M)→
φ(N).

Proof We proceed by induction on the derivation of M � N . Base cases:

• [fwCon]: We have that M = t1 : ā(x).P1 | t2 : a(y).P2 and
N = (νs, t′1, t

′
2)(t

′
1 : P1[s̄/x] | t′2 : P2[s/y] | 〈t1 −a(x)(y)(νs)P1P2→

t2, t
′
1, t
′
2〉) with s, s̄ /∈ fse(P1, P2). By definition of φ, we obtain φ(M) =

ā(x).P1 | a(y).P2. Now, by applying rules [Con] and [Str], we have
φ(M)→ (νs)(P1[s̄/x] | P2[s/y] | 0) = P . By definition of φ, we have
φ(N) = P that permits us to conclude.

• [fwCom],[fwLab],[fwIf1],[fwIf2]: These cases are similar to the
previous one.

Inductive cases:

• [fwPar]: We have that M = M1 | M2 and N = M ′
1 | M2.

By the premise of rule [fwPar], we also have M1 � M ′
1 from which,

by induction, we obtain φ(M1) → φ(M ′
1). By definition of φ, we

get φ(M) = φ(M1) | φ(M2). By applying rule [Par], we have
φ(M) → φ(M ′

1) | φ(M2) = P . Thus, by definition of φ, we have
φ(N) = P that directly permits us to conclude.

• [fwRes]: This case is similar to the previous one. In particular, when
the restricted name is a tag, it is not even necessary to apply rule [Res],
because the forgetful map erases the restriction.
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• [fwStr]: By the premise of rule [fwStr], we have M ≡M ′, M ′ � N ′

and N ′ ≡ N . By induction, we obtain φ(M ′) → φ(N ′). By applying
Lemma 1, we have φ(M) ≡ φ(M ′) and φ(N ′) ≡ φ(N) that allow us to
conclude. �

Lemma 3. Let P and Q be two π-calculus processes. If P ≡ Q then for
any ReSπ process M such that φ(M) = P there exists a ReSπ process N
such that φ(N) = Q and M ≡ N .

Proof The proof is straightforward. Indeed, given a ReSπ process M such
that φ(M) = P , it must have the form (νt̃)(t : P |

∏
i∈I mi) up to ≡.

Thus, the process N , such that φ(N) = Q, can be defined accordingly:
N ≡ (νt̃)(t : Q |

∏
i∈I mi). Now, we can conclude by exploiting the ninth

law in Figure 5, i.e. t : P ≡ t : Q if P ≡ Q, and the fact that relation ≡ on
ReSπ processes is a congruence. �

Lemma 4. Let P and Q be two π-calculus processes. If P → Q then for
any ReSπ process M such that φ(M) = P there exists a ReSπ process N
such that φ(N) = Q and M � N .

Proof We proceed by induction on the derivation of P → Q. Base cases:

• [Con]: We have that P = ā(x).P1 | a(y).P2 and Q = (νs)(P1[s̄/x] |
P2[s/y]) with s, s̄ /∈ fse(P1, P2). Let M be a ReSπ process such that
φ(M) = P , it must have the form (νt̃)(t1 : ā(x).P1 | t2 : a(y).P2 |∏

i∈I mi) up to ≡. Thus, by applying rules [fwCon], [fwPar],
[fwRes] and [fwStr], we get M � (νt̃, s, t′1, t

′
2)(t

′
1 : P1[s̄/x] | t′2 :

P2[s/y] | 〈t1 −a(x)(y)(νs)P1P2→ t2, t
′
1, t
′
2〉 |

∏
i∈I mi) = N . We con-

clude by applying φ to N , since we obtain φ(N) = Q.

• [Com],[Lab],[If1],[If2]: These cases are similar to the previous one.

Inductive cases:

• [Par]: We have that P = P1 | P2 and Q = P ′1 | P2. Let
M be a ReSπ process such that φ(M) = P1 | P2. We have M ≡
(νt̃)(t1 : P1 | t2 : P2 |

∏
i∈I mi) ≡ (νt̃′)(M1 | t2 : P2 |

∏
j∈J mj) with

M1 ≡ (νt̃′′)(t1 : P1 |
∏

k∈Kmk), t̃ = t̃′, t̃′′ and J ∪ K = I. By the
premise of rule [Par], we also have P1 → P ′1 from which, by induction,
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since φ(M1) = P1, there exists M ′
1 such that φ(M ′

1) = P ′1 and M1 �
M ′

1. Thus, by applying rules [fwPar], [fwRes] and [fwStr], we get
M � (νt̃′)(M ′

1 | t2 : P2 |
∏

j∈J mj) = N . We conclude by applying φ
to N , because φ(N) = φ(M ′

1) | P2 = P ′1 | P2 = Q.

• [Res]: This case is similar to the previous one.

• [Str]: We have that P ≡ P ′, Q ≡ Q′ and P ′ → Q′. Let M be a
process such that φ(M) = P . By applying Lemma 3, there exists M ′

such that φ(M ′) = P ′ and M ≡ M ′. By induction, there is N ′ such
that φ(N ′) = Q′ and M ′ � N ′. By applying Lemma 3 again, there
exists N such that φ(N) = Q and N ≡ N ′. By applying rule [fwStr],
we conclude M � N . �

Appendix A.1.2. Loop lemma

Lemma 5. Let M and N be two reachable ReSπ processes. M � N if and
only if N  M .

Proof The proof for the if part is by induction on the derivation of M � N .
Base cases:

• [fwCon]: We have that M = t1 : ā(x).P1 | t2 : a(y).P2 and N =
(νs, t′1, t

′
2)(t

′
1 : P1[s̄/x] | t′2 : P2[s/y] | 〈t1 −a(x)(y)(νs)P1P2→ t2, t

′
1, t
′
2〉)

with s, s̄ /∈ fse(P1, P2). By applying rule [bwCon], we can directly
conclude N  M .

• [fwCom],[fwLab],[fwIf1],[fwIf2]: These cases are similar to the
previous one.

Inductive cases:

• [fwPar]: We have that M = N1 | N2, N = N ′1 | N2 and N1 � N ′1.
By induction N ′1  N1. Thus, we conclude by applying rule [bwPar],
since we get N = N ′1 | N2  N1 | N2 = M .

• [fwRes]: We have that M = (νh)M1, N = (νh)M ′
1 and M1 � M ′

1.
By induction M ′

1  M1. Thus, we conclude by applying rule [bwRes],
since we get N = (νh)M ′

1  (νh)M1 = M .

• [fwStr]: We have that M ≡M ′, N ≡ N ′ and M ′ � N ′. By induction
N ′  M ′. Thus, we conclude by applying rule [bwStr], since we
directly get N  M .
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The proof for the only if part is by induction on the derivation of N  M .
Base cases:

• [bwCon]: We have that N = (νs, t′1, t
′
2)(t

′
1 : P | t′2 : Q | 〈t1 −

a(x)(y)(νs)P1P2→ t2, t
′
1, t
′
2〉) and M = t1 : ā(x).P1 | t2 : a(y).P2.

SinceN is a reachable process, memory 〈t1−a(x)(y)(νs)P1P2→ t2, t
′
1, t
′
2〉

has been generated by a synchronisation between threads t1 : ā(x).P1

and t2 : a(y).P2, producing a session channel s and two continuation
processes P1[s̄/x] and P2[s/y] tagged by t′1 and t′2, respectively. Now,
by tag uniqueness implied by reachability and use of restriction in tag
generation, P and Q must coincide with P1[s̄/x] and P2[s/y], respec-
tively. Therefore, by applying rule [fwCon], we can directly conclude
M � N .

• [bwCom],[bwLab],[bwIf]: These cases are similar to the previous one.

Inductive cases:

• [bwPar]: We have that N = N1 | N2, M = N ′1 | N2 and N1  N ′1.
By induction N ′1 � N1. Thus, we conclude by applying rule [fwPar],
since we get M = N ′1 | N2 � N1 | N2 = N .

• [bwRes]: We have that N = (νh)N1, M = (νh)N ′1 and N1  N ′1.
By induction N ′1 � N1. Thus, we conclude by applying rule [fwRes],
since we get M = (νh)N ′1 � (νh)N1 = N .

• [bwStr]: We have that N ≡ N ′, M ≡M ′ and N ′  M ′. By induction
M ′ � N ′. Thus, we conclude by applying rule [fwStr], since we
directly get M � N . �

Appendix A.1.3. Causal consistency

Lemma 6. If τ1 = M
η1−→ M1 and τ2 = M

η2−→ M2 are two coinitial
concurrent transitions, then there exist two cofinal transitions τ2/τ1 = M1

η2−→
N and τ1/τ2 = M2

η1−→ N .

Proof By case analysis on the form of transitions τ1 and τ2.

• M m1,M1,�−−−−−→ M1 and M
m2,M2,�−−−−−→ M2. The two transitions can be any

combination of forward reductions. Let us consider the case of two com-
munication (the other cases are similar). Since the two transitions are
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concurrent, the involved threads are four distinct threads (two sending
threads and two receiving ones). In particular, we consider below two
communications along different sessions; in fact, the type discipline in
Section 6 forbids concurrent communications along the same session
(although, in this proof, this kind of concurrent communications would
not cause any problem). Thus, in the considered case, the source of
the two transitions is as follows:

M ≡ (νs1, s2, t̃)( t1 : s̄1!〈e1〉.P1 | t2 : s1?(x1).P2

| t3 : s̄2!〈e2〉.P3 | t4 : s2?(x2).P4 | M ′ )

where t1, t2, t3, t4 are in t̃. Then, M �M1 with

M1 ≡ (νs1, s2, t̃, t
′
1, t
′
2)( t

′
1 : P1 | t′2 : P2[v1/x1] | m1

| t3 : s̄2!〈e2〉.P3 | t4 : s2?(x2).P4 | M ′ )

where e1 ↓ v1 and m1 = 〈t1 −s̄1〈e1〉(x1)P1P2→ t2, t
′
1, t
′
2〉. Similarly,

M �M2 with

M2 ≡ (νs1, s2, t̃, t
′
3, t
′
4)( t1 : s̄1!〈e1〉.P1 | t2 : s1?(x1).P2

| t′3 : P3 | t′4 : P4[v2/x2] | m2 | M ′ )

where e2 ↓ v2 and m2 = 〈t3 −s̄2〈e2〉(x2)P3P4→ t4, t
′
3, t
′
4〉. Now, we have

that M1 � N with

N ≡ (νs1, s2, t̃, t
′
1, t
′
2, t
′
3, t
′
4)( t

′
1 : P1 | t′2 : P2[v1/x1] | m1

| t′3 : P3 | t′4 : P4[v2/x2] | m2 | M ′ )

As desired, we also have that M2 � N .

• M m1,M1,�−−−−−→ M1 and M
m2,M2, −−−−−→ M2. The two transitions can be any

combination of a forward rule and a backward one, respectively. Let us
consider the case of a forward communication and the undo of a choice
(again, the other cases are similar). Thus, in the considered case, the
source of the two transitions is as follows:

M ≡ (νs, t̃, t′3)( t1 : s̄!〈e1〉.P1 | t2 : s?(x1).P2

| t′3 : P3 | m2 | M ′ )

where m2 = 〈t3, e2?P3 :P4, t
′
3〉, e ↓ true, and t1, t2, t3 are in t̃. Notably,

since the two transitions are concurrent, the continuation tag in m2
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can be neither t1 nor t2 (indeed, in the above process M this tag is t′3).
Then, M �M1 with

M1 ≡ (νs, t̃, t′3, t
′
1, t
′
2)( t

′
1 : P1 | t′2 : P2[v1/x1] | m1

| t′3 : P3 | m2 | M ′ )

where e1 ↓ v1 and m1 = 〈t1 −s̄〈e1〉(x1)P1P2→ t2, t
′
1, t
′
2〉. Now, we also

have that M  M2 with

M2 ≡ (νs, t̃)( t1 : s̄!〈e1〉.P1 | t2 : s?(x1).P2

| t3 : if e2 then P3 else P4 | M ′ )

As desired, both M1 and M2 can then evolve with a backward and
forward reduction, respectively, to N :

N ≡ (νs, t̃, t′1, t
′
2)( t

′
1 : P1 | t′2 : P2[v1/x1] | m1

| t3 : if e2 then P3 else P4 | M ′ )

• M m1,M1, −−−−−→M1 and M
m2,M2, −−−−−→M2. Similar to the first case.

• M m1,M1, −−−−−→M1 and M
m2,M2,�−−−−−→M2. Similar to the second case.

�

The proof of the Causal Consistency theorem follows the (standard) pat-
tern used in [15, 5]. In particular, the proof relies on two auxiliary lemmas.
The first lemma permits us to rearrange a trace as a composition of a back-
ward trace and a forward one. The second lemma permits a forward trace
to be shortened.

Lemma 8. Let σ be a trace. There exist σ′ and σ′′ both forward traces such
that σ � σ′•;σ

′′.

Proof We prove this by lexicographic induction on the length of σ, and
the distance to the beginning of σ of the earliest pair of transitions in σ
contradicting the property. If there is no such contradicting pair, then we
are done. If there is one, say a pair of the form τ ; τ ′• with τ and τ ′ forward
transitions, we have two possibilities: either τ and τ ′ are concurrent, or they
are in conflict. In the first case, τ and τ ′• can be swapped by using Lemma 6,
resulting in a later earliest contradicting pair. Then, the result follows by
induction, since swapping transitions keeps the total length constant. In the
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second case, there is a conflict on a tag, because it belongs to the stamps of
both transitions. Again, we have two sub-cases: either the memory involved
in the two transitions is the same or not. In the first sub-case we have τ = τ ′,
and then we can apply Lemma 5 to remove τ ; τ•. Hence, the total length of σ
decreases and, again, by induction we obtain the thesis. Instead, the second
sub-case never happens. Indeed, let τ generate a memory m1 = 〈t, e?P :Q, t′〉
(the case with the action memory is similar). A conflict with τ ′ would be
caused by the presence of t or t′ in the memory m2 removed by τ ′• (and, by
hypothesis, different from m1). However, t cannot occur in m2, because the
transition τ consumed the thread uniquely tagged by t, which then cannot
be involved in the other transition. Also t′ cannot occur in m2, because the
thread uniquely tagged by t′ has been generated by τ ; thus, another forward
transition must take place before τ ′• to involve this thread so that t′ could
occur in m2. �

Lemma 9. Let σ1 and σ2 be coinitial and cofinal traces, with σ2 forward.
Then, there exists a forward trace σ′1 of length at most that of σ1 such that
σ′1 � σ1.

Proof The proof is by induction on the length of σ1. If σ1 is a forward
trace we are already done. Otherwise, by Lemma 8 we can write σ1 as σ•;σ

′

(with σ and σ′ forward). Due to its form, σ1 contains only one sequence of
transitions with opposite direction, say τ•; τ

′. Let m1 the memory removed
by τ•. Then, in σ′ there is a forward transition generating m1; otherwise
there would be a difference with respect to σ2, since the latter is a forward
trace. Let τ1 be the earliest such transition in σ1. Since τ1 is able to put back
m1, it has to be the opposite of τ•, i.e. τ1 = τ . Now, we can swap τ1 with
all the transitions between τ1 and τ•, in order to obtain a trace in which τ1
and τ• are adjacent. To do so, we use Lemma 6, since all the transitions in
between are concurrent. Assume in fact that there is a transition involving
memory m2 which is not concurrent to τ1. A possible conflict could be caused
by the presence of a continuation tag, say t, of m1 in m2. But this case can
never happen, since t is freshly generated by the forward rule used to produce
τ1 and thus, thanks to tag uniqueness, t cannot coincide with any tag of a
previously executed transition. The other possible conflict could be caused
by the presence of a continuation tag of m2 in m1. Since τ• removes m1,
this memory cannot contain a fresh tag generated by a subsequent transition
when m2 is created. Thus, also this case can never happen. Now, when τ•
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and τ are adjacent, we can remove both of them using �. The resulting trace
is shorter, thus the thesis follows by inductive hypothesis. �

Theorem 1. Let σ1 and σ2 be coinitial traces. Then, σ1 � σ2 if and only
if σ1 and σ2 are cofinal.

Proof By construction of �, if σ1 � σ2 then σ1 and σ2 must be coinitial
and cofinal, so this direction of the theorem is verified. Thus, it just remains
to prove that σ1 and σ2 being coinitial and cofinal implies that σ1 � σ2. By
Lemma 8, we know that the two traces can be written as composition of a
backward trace and a forward one. The proof is by lexicographic induction
on the sum of the lengths of σ1 and σ2 and on the distance between the end
of σ1 and the earliest pair of transitions τ1 in σ1 and τ2 in σ2 which are not
equal. If all the transitions are equal then we are done. Otherwise, we have
to consider four cases, depending on whether the two transitions are forward
or backward.

• τ1 forward and τ2 backward. One has σ1 = σ•; τ1;σ
′ and σ2 = σ•; τ2;σ

′′

for some σ, σ′, and σ′′. Lemma 9 applies to τ1;σ
′, since it is a forward

trace, and to τ2;σ
′′; indeed, σ1 and σ2 are coinitial and cofinal by

hypothesis, thus also τ1;σ
′ and τ2;σ

′′ are coinitial and cofinal. We then
have that τ2;σ

′′ has a shorter equivalent forward trace, and so σ2 has
a shorter equivalent forward trace. We can conclude by induction.

• τ1 backward and τ2 forward. This case is similar to the previous one.

• τ1 and τ2 forward. We have two possibilities: they are concurrent or
are not. In the latter case, they should conflict on a thread, say t : P ,
that they both consume and store in different memories. Since the two
traces are cofinal, there should be a transition τ ′2 in σ2 creating the
same memory as τ1. However no other thread t : P is ever created
in σ2; hence, this is not possible. Therefore, we can assume that τ1
and τ2 are concurrent. Let τ ′2 be the transition in σ2 creating the same
memory of τ1. We have to prove that τ ′2 is concurrent to all the previous
transitions. This holds since no previous transition can remove one of
the processes needed for triggering τ ′2 and since forward transitions can
never conflict on t. Thus we can repetitively apply Lemma 6 to derive
a trace equivalent to σ2 where τ2 and τ ′2 are consecutive. We can apply
a similar transformation to σ1. Now, we can apply Lemma 6 to τ1 and
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τ2 to have two traces of the same length as before but where the first
pair of different transitions is closer to the end. We then conclude by
inductive hypothesis.

• τ1 and τ2 backward. Let m1 be the memory removed by τ1, which
is surely different from the memory removed by τ2 (indeed, the two
backward transitions cannot remove the same memory). Since the two
traces are cofinal, either there is another transition in σ1 putting back
the memory or there is a transition τ ′1 in σ2 removing the same memory.
In the first case, τ1 is concurrent to all the backward transitions follow-
ing it, but the ones that consume processes generated by it. Thus, all
such transitions have to be undone by corresponding forward transi-
tions (since they are not possible in σ2). Consider the last such transi-
tion: we can use Lemma 6 to make it the last backward transition. The
forward transition undoing it should be concurrent to all the previous
forward transitions (the reason is the same as in the previous case). We
can then use Lemma 6 to make it the first forward transition. Finally,
we can apply τ• ; τ � εtarget(τ) to remove the two transitions, thus
shortening the trace. In this way, we obtain the thesis by inductive
hypothesis. �

Appendix A.2. Proofs of Section 6

Property 1. Let M be a reachable process. If M � M ′ then M ′ is a
reachable process.

Proof The proof follows from Definition 6. Indeed, since M is a reachable
process, there exists a typed program N such that N �∗ M , where �∗

denotes the reflexive and transitive closure of �. Now, we distinguish two
cases:

• M �M ′. In this case, we have N �∗ M �M ′, that is N �∗ M ′.

• M  M ′. Here we have to sub-cases:

– M ′ is a process encountered in the computation N �∗ M . Thus,
N �∗ M ′ �∗ M . In particular, since from M  M ′ by Lemma 5
we have M ′ �M , we obtain N �∗ M ′ �M .
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– M ′ is not encountered in N �∗ M . Since M ′ is obtained from M
by a backward reduction, the memories of M ′ are the same of M
except for the one consumed by the backward reduction (which, of
course, is missing in M ′). Being M a reachable process, the con-
tent of such memories is consistent. Thus, consuming all memories
in M ′ inevitably leads to the program N , i.e. M ′  ∗ N . By ap-
plying Lemma 5 to all reductions in this backward computation,
we obtain N �∗ M ′.

In all cases, M ′ is originated from the same program of M , hence it is a
reachable process too. �

Theorem 4. Let M be a reachable process. If Θ; Γ `r M . ∆ with ∆
balanced and M �M ′, then Θ; Γ `r M ′ . ∆′ and ∆′ balanced.

Proof We distinguish two cases:

1. (�=�). By Definition 7, from Θ; Γ `r M . ∆ we obtain
Θ; Γ ` φ(M) . ∆. By applying Lemma 2 to the hypothesis M �
M ′, we have φ(M) → φ(M ′). Thus, by Theorem 2, we get
Θ; Γ ` φ(M ′) . ∆′ with ∆′ balanced. Finally, by Definition 7, we
have the thesis Θ; Γ `r M ′ . ∆′.

2. (�= ). By Property 1, we get that processM ′ is reachable. Thus, by
Definition 6, there exists a program N such that Θ; Γ ` φ(N) . ∆′′

with ∆′′ balanced, and N �∗ M ′. Now, we can proceed as in case 1,
by applying Lemma 2 and Theorem 2 to obtain Θ; Γ ` φ(M ′) . ∆′

with ∆′ balanced. Again, by Definition 7, we get the thesis. �

Appendix A.3. Proofs of Section 7

Lemma 7. Let M be a ReSπC process. If m ∈ LM then m is not reversible.

Proof The proof proceeds by contradiction. Suppose that there exists a
memory m such that m ∈ LM and m is reversible. By Definition 9, there
exists M ′ such that M  + M ′ and m /∈MM ′ . We have two cases:

1. m = 〈t1−
√

(s)→ t2〉: this case is trivial because no rule is able to revert
this kind of memory (in fact, the forward rule [Commit] is not paired
with a corresponding backward rule). Thus, no process M ′ such that
m /∈MM ′ can be derived from M , which contradicts the hypothesis.

48



2. m 6= 〈t1 −
√

(s)→ t2〉: since m ∈ LM , by Definition 8, there exists a
memory m′ ∈ LM and tag t such that t ∈ tail(m) and t ∈ head(m′). To
revert m, according to rules [bwcon], [bwcom], [bwlab], and [bwif],
for each tag t′ ∈ tail(m) a thread tagged by t′ must be in parallel with
the memory. However, the tag t in tail(m) also belongs to head(m′),
meaning that the thread tagged by t (which, we recall, is unique) has
been already executed (in fact, data concerning such execution is stored
in m′). Thus, no backward rule can be applied to revert m in one step.
The only possibility is to revert m′ before. Now, if m′ is a commit
memory, then we proceed as in case 1, i.e. m′ cannot be reverted and,
hence, m is not reversible, which is a contradiction. Otherwise, we
repeat the same reasoning of case 2 for m′ and proceed in this way
until a commit memory is found. Indeed, this commit memory must
exist by construction of LM (Definition 8, first point). As in case 1, this
memory cannot be reverted and, hence, all involved memories, included
m, are not reversibile, which is a contradiction. �

Theorem 6. Let M be a ReSπC process and s a session committed in M .
Then, all interactions performed along s cannot be reverted.

Proof Since s is committed in M , then there exists a memory m of the
form 〈t1 −

√
(s)→ t2〉 such that m ∈ MM . By Definiton 8, m ∈ LM . Now,

we have to prove that all other interactions performed along s corresponds
to memories in LM . By linearity of sessions (ensured by the type discipline
in Section 6), each interaction in s causally depends on one of the threads
produced by the previous interaction along s. Since m corresponds to the
last interaction along s (as ensured by rule [Commit] of the type system),
m causally depends on all memories corresponding to the interactions along
s. Since m ∈ LM , by Definition 8 (second point), all such memories are
included in LM . Thus, by applying Lemma 7, we obtain the thesis. �
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