
Multiparty Session Types as Coherence Proofs
Marco Carbone1, Fabrizio Montesi2, Carsten Schürmann1, and
Nobuko Yoshida3

1 IT University of Copenhagen
2 University of Southern Denmark
3 Imperial College London

Abstract
We propose a Curry-Howard correspondence between a language for programming multiparty
sessions and a generalisation of Classical Linear Logic (CLL). In this framework, propositions
correspond to the local behaviour of a participant in a multiparty session type, proofs to processes,
and proof normalisation to executing communications. Our key contribution is generalising
duality, from CLL, to a new notion of n-ary compatibility, called coherence. Building on coherence
as a principle of compositionality, we generalise the cut rule of CLL to a new rule for composing
many processes communicating in a multiparty session. We prove the soundness of our model by
showing the admissibility of our new rule, which entails deadlock-freedom via our correspondence.

1998 ACM Subject Classification F1.1 Models of Computation

Keywords and phrases Programming languages, Type systems, Session Types, Linear Logic

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Session types are protocols for communications in concurrent systems [13, 22]. A recent
line of work investigates Curry-Howard correspondences between the type theory of session
types and linear logic, where proofs correspond to processes, propositions to types, and proof
normalisation to communications [4, 23]. An important consequence of such correspondences
is that several notions that usually require complex additional definitions and proofs, e.g.,
dependency relations for deadlock-freedom [9, 19], follow for free from the theory of linear
logic, yielding a succinct formulation of the formal foundations of sessions.

The aforementioned correspondences cover only session types with exactly two participants,
called binary session types. In practice, however, protocols often describe the behaviour of
multiple participants [21]. Multiparty Session Types (MPSTs) have been proposed to capture
such protocols, by matching the communications enacted by many participants with a global
scenario [14]. Unfortunately, MPSTs are more involved than binary session types, since they
include complex analyses on the structure of protocols and a mapping from global types,
which describe multiparty protocols, to local types, which describe the local behaviour of
each single participant. So far, it has been unclear whether a succinct logical formulation of
MPSTs can be developed, as done for binary session types. Therefore, we ask:

Can we design a proof theory for reasoning about multiparty sessions?

A positive answer to our question would lead to a clearer understanding of the principles that
underpin multiparty session programming. The main challenge lies in the foundational notion
of duality found in linear logic, which, in a Curry-Howard interpretation of propositions as
types, checks whether the session types of two respective participants are compatible. It is an

© Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Multiparty Session Types as Coherence Proofs

open question how to generalise the notion of type duality to that of “multiparty compatibility”
found in MPSTs, which allows to compose an arbitrary number of participants [14, 11, 16].
Therefore, differently from previous work, we are in a situation where the existing logic does
not provide us with natural tools for dealing with the types we desire to capture.

The main contribution of this work is the development of Multiparty Classical Processes
(MCP), a proof theory for reasoning on multiparty communications. The key aspect of MCP
is that it generalises Classical Linear Logic (CLL) [12], by building on a new notion of type
compatibility, called coherence, that replaces duality. Using MCP, we can provide a concise
reconstruction of the foundations of MPSTs. In the following, we outline our investigation:

Coherence. We start by formalising a language for local types and global types (§ 3, Types).
As in MPSTs, a local type denotes the I/O actions of a single participant in a session,
whereas a global type denotes the desired interactions among all participants in a session.
We then present coherence, a proof system for determining whether a set of local types
follow the scenario denoted by a global type (§ 3, Coherence). We prove the adequacy
of coherence by showing that global types are proof terms for coherence proofs (§ 3,
Figure 2); equivalences between coherence proofs correspond to the equivalences between
global types originally formulated with an auxiliary definition in [6] (§ 3, Proposition 2);
and, the coherence proof system yields projection and extraction procedures from global
types to local types and vice versa (§ 3, Proposition 3 and Proposition 4). Finally, we
show that coherence generalises the notion of duality in CLL (§ 3, Proposition 7). Our
extraction procedure is the first not requiring auxiliary conditions (e.g., dependency
relations as in [15]) and capturing nested protocols [10].
Multiparty Classical Processes. We present Multiparty Classical Processes (MCP), a proof
theory that is in a Curry-Howard correspondence with a language for multiparty sessions
(§ 4). The key aspect of MCP is using coherence as a new principle for compositionality
in order to generalise the standard cut rule of linear logic, by allowing an arbitrary
number of proofs to be composed (§ 4, Figure 6). Such a generalisation allows for the
first time to specify cyclic inter-connected networks using (a generalisation of) linear logic
whilst preserving its normalisation properties (§ 7). From the proof theory of MCP, we
derive logically-founded notions of structural equivalences and reductions for multiparty
processes (§ 4, Figure 7 and Figure 8). Driven by the correspondence between processes
and proofs, we show that: communications among processes always follow their session
types (§ 5, Theorem 10); communications never get stuck (§ 5, Corollary 12), improving
on previous techniques for analysing progress with multiparty session types (§ 7); and
that protocols used to type processes are always eventually executed (§ 5, Theorem 13).

2 Preview

We give an informal introduction to MCP with the 2-buyer protocol [14], where two buyers
buy a book together from a seller. This can be described by the following global type:

1. B1 -> S : 〈str〉; S -> B1 : 〈int〉; S -> B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2 -> S : N(B2 -> S : 〈addr〉; end, end) (1)

Above, B1 (the first buyer), B2 (the second buyer) and S (the seller) are roles. In Line 1, B1
sends the book title to S, then S sends a quote to B1 and B2. At this point, B1 sends to B2
the fraction of the price it wishes to pay. In Line 2, B2 communicates to S whether (N) to
proceed with the purchase and, if so, also an address for the delivery.

In multiparty session types, each role in a global type is implemented by a different

M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 3

process. For example, the following three programs implement the roles in (1):

Buyer1 def= x B1 S(title); xB1 S(quote); x B1 B2(contr)

Buyer2 def= xB2 S(quote); xB2 B1 (contr);
(

xB2 S.inl; x B2 S(addr) + xB2 S.inr
)

Seller def= xS B1(title); x S B1(quote); x S B2(quote); xS B2N.case
(

xS B2(addr), 0
)

The three processes above are defined in the π-calculus with multiparty sessions [9], and
communicate using the session (or channel) x. In term Buyer1, xB1 S(title) means “as role B1,
send the book title over channel x to the process implementing role S”; x B1 S(quote) means
“as role B1, receive a quote over channel x from the process implementing role S”; finally,
xB1 B2(contr) means “as role B1, send to the process implementing role B2, over channel x,
the amount the first buyer is willing to contribute with”. Note that Buyer2 makes a choice
after receiving the contribution from Buyer1, i.e., it either accepts or rejects the purchase by
respectively selecting the left or right branch of the case construct in the code of Seller.

Following the approach in [23], we can type channel x using CLL propositions (differently
from [23], we use O to type outputs and ⊗ to type inputs, see § 7):

usage of x in Buyer1: str O int⊗ int O end
usage of x in Buyer2: int⊗ int⊗

(
(addr O end)⊕ end

)
usage of x in Seller: str⊗ int O int O

(
(addr⊗ end) N end

) (2)

Above, each proposition states how x is used by each process. For instance, Buyer1 outputs
(O) a string, receives (⊗) an integer, sends another integer and finally terminates (end).

CLL cannot compose our three processes using the above specifications, since its compos-
ition rule Cut can only compose two processes, which communicate over a same channel x
with compatible binary session types A and A⊥: P ` ∆, x :A Q ` ∆′, x :A⊥

(νx :A) (P | Q) ` ∆, ∆′
Cut

Using the same channel among our three processes is essential for tracking the dependencies
expressed by the global type in (1): for example, we need to ensure that Seller sends a quote
to Buyer2 only after it has received a request for a book from Buyer1. Such constraints
cannot be tracked by binary session types [14]. To overcome this issue, we annotate each
connective in propositions with roles. For example, the type of x for Buyer1 would become:

annotated usage of x in Buyer1: str OS int⊗S int OB2 end
annotated usage of x in Buyer2: int⊗S int⊗B1 ((addr OS end)⊕S end

)
annotated usage of x in Seller: str⊗B1 int OB1 int OB2 ((addr⊗B2 end) NB2 end

) (3)

Annotations identify the dual role for each action, e.g., the usage for Buyer1 now reads:
send a string to S (OS); receive an integer from S (⊗S); send an integer to B2 (OB2); and,
terminate (end). We can then reformulate rule Cut as: Pi ` Γi, xpi :Ai G � {pi :Ai}i

(νx :G)
(∏

i
Pi

)
` {Γi}i

MCut

In our new multiparty cut rule MCut, if some processes Pi use session x as role pi (denoted
xpi), each according to some respective types Ai, and such types coherently follow a global
type specification G (formalised by the judgement G � {pi :Ai}i), then we can compose them
in parallel within the scope of session x, written (νx :G) (P1 | . . . | Pn). In our example,
for i ranging from 1 to 3, {pi :Ai}i would correspond to the types in (3), where p1, p2 and
p3 would be, respectively, Buyer1, Buyer2 and Seller. In § 6, we will show that such types
coherently follow the global type given in (1).

4 Multiparty Session Types as Coherence Proofs

A, B, . . . ::= 1 (unit for ⊗) | ⊥ (unit for O)
| AOp̃B (send A to p̃, then B) | A⊗p B (receive A from p, then B)
| A⊕p̃ B (select A or B in p̃) | ANpB (offer A or B to p)
| !A (client request) | ?A (server accept)

G ::= p -> q̃ : 〈G′〉; G | p -> q̃ : N(G1, G2) | ?p -> !q̃ : 〈G〉 | endpq̃

Figure 1 Local Types (A, B, . . .) and Global Types (G).

MCP goes beyond the original multiparty session types [14], capturing also multicasting
and nested protocols [9, 10]. For example, we can enhance the 2-buyer protocol as:

1. B1 -> S : 〈str〉; S -> B1, B2 : 〈int〉; B1 -> B2 : 〈int〉;

2. B2->B1, S : N
(

B2->S : 〈addr〉; end, B1->S : 〈Gsub〉; B1->S : 〈str〉; B2->S : 〈str〉; end
) (4)

Above, S multicasts the price to both B1 and B2; and B2 multicasts its decision to B1 and S.
We have also updated the right branch of the choice using a nested protocol Gsub, which is
private to B1 and S, where B1 tells S whether it wants to purchase the product alone:

Gsub = B1->S : N
(

B1->S : 〈addr〉; end, B1->S : 〈str〉; end
)

In MCP, nested protocols can proceed in parallel to their originating protocols. For example,
the last two communications, where B1 and B2 inform S of their respective reasons for not
completing the purchase, can be executed in parallel to Gsub. We will formalise this in § 5.

3 Coherence

We give a proof-theoretical reconstruction of coherence, from [14]. Our theory generalises
duality, from CLL, to checking the compatibility of multiple types. We define coherence as a
proof system for deriving sets of (compatible) local types, which describe the local behaviours
of participants in a multiparty session. Global types are proof terms for coherence proofs,
yielding a correspondence between sets of compatible local types and their global descriptions.

Types. The syntax of local and global types is given in Figure 1, where p, q range over a
set of roles. Global types are highlighted, to distinguish them as proof terms. Highlighting
is also used in our syntax of local types, to show the difference with CLL. We will adopt
the same convention in § 4 when we present more terms. A local type A describes the local
behaviour of a role in a session. Types 1 and ⊥ denote session termination, respectively
representing the request and the acceptance for closing a session (which were informally
abstracted by end in our previous examples). A type AOp̃B denotes a multicast output of a
session with type A to roles p̃, with a continuation B. A type A⊗p B represents an input of
a session with type A from role p, with continuation B. Types A⊕p̃ B and ANpB denote,
respectively, the output of a choice between the continuations A and B to roles p̃ and the
input of a choice from role p. The replicated type !A offers behaviour A as many times as
requested. Finally, type ?A requests the execution of a replicated type and proceeds as A.

A global type G describes the behaviour of many participants. In p -> q̃ : 〈G′〉;G, role p
sends to roles q̃ a message to create a new session of type G′, and then the protocol proceeds
as G. In p -> q̃ : N(G1, G2), role p communicates to roles q̃ its choice of either branch G1

M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 5

G � Θ, p :B, {qi :Di}i G′ � p :A, {qi :Ci}i

p -> q̃ : 〈G′〉; G � Θ, p :AOq̃B, {qi :Ci ⊗p Di}i

⊗O
endpq̃ � p :⊥, q1 :1, . . . , qn :1

1⊥

G1 � Θ, p :A, {qi :Ci}i G2 � Θ, p :B, {qi :Di}i

p -> q̃ : N(G1, G2) � Θ, p :A⊕q̃ B, {qi :CiNpDi}i

⊕N
G � p :A, {qi :Bi}i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi}i
!?

Figure 2 Coherence.

or G2. A type ?p -> !q̃ : 〈G〉 denotes that role p may ask roles q̃ to execute G many times.
Finally, in endpq̃, role p asks roles q̃ to terminate the session (for brevity, we often write end).

Judgements. A role typing p :A states that role p behaves as specified by type A. Our
judgements for coherence have the form G � p1 :A1, . . . , pn :An which reads as “the types
A1, . . . , An of the respective roles p1, . . . , pn are compatible and follow the global type G”.
We use Θ to range over sets of role typings, and make the standard assumption that we can
write Θ, p :A only if a role typing for p does not appear in Θ. Given some roles p̃, we use the
notation {pi :Ai}i to denote the set of role typings p1 :A1, . . . , pn :An, assuming p̃ = p1, . . . , pn
and i ranging from 1 to n. Given G, we say that G is valid if there exists Θ such that G � Θ.
Conversely, given Θ, we say that Θ is coherent if there exists G such that G � Θ.

We report the rules for deriving coherence judgements in Figure 2. Rule ⊗O matches the
output type from role p to roles q̃ with the input types of roles q̃, whenever (i) the types
for the newly created session are coherent and (ii) the types of all continuations are also
coherent. Rule ⊕N checks that both possibilities in a choice are coherent, where all roles
participating in the communication are allowed to have different behaviour and the other
roles are not (a multicast generalisation of [14]). In rule !?, we check that a client requests
the creation of a coherent session only from replicated services. Finally, rule 1⊥ checks that
all participants agree on the termination of a protocol. As in CLL, we interpret type 1 as a
terminated process and ⊥ as a process that has terminated its behaviour in a session and
proceeds with other sessions. Therefore, we read rule 1⊥ as “a protocol terminates when one
participant waits (type ⊥) for the termination of all the others (type 1), which execute in
parallel”. This design choice simplifies our development; we discuss a generalisation in § 7.

I Example 1 (2-Buyer Protocol). We can revisit the local types for the 2-buyer protocol in
§ 2 (1), where now data types are abstracted by 1’s and ⊥’s.

A
def= ⊥OS1⊗S⊥OB2⊥ B

def= 1⊗S1⊗B1((⊥OS1)⊕S 1
)

C
def= 1⊗B1⊥OB1⊥OB2

(
(1⊗B2 1) NB2 1

)
Let G be the global type in (1) with end instead of data types; then, G � B1 :A,B2 :B, S :C.

3.1 Properties of Coherence
Swapping. Immediately from our correspondence between global types and coherence
proofs, we can reconstruct the standard notion of swapping 'g for global types from [6].
Intuitively, two communications involving different roles can always be swapped, capturing
the fact that separate roles execute concurrently. For example, the following coherence proof
(for p, q, r, s different):

G � Θ, p :A′, q :B′, r :C′, s :D′ G′′ � Θ̃, r :C, s :D
r -> s : 〈G′′〉;G � Θ, p :A′, q :B′, r :COsC′, s :D ⊗r D′

⊗O
G′ � p :A, q :B

p -> q : 〈G′〉; r -> s : 〈G′′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :COsC′, s :DOrD′,
⊗O

6 Multiparty Session Types as Coherence Proofs

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : 〈G〉; r -> s̃ : 〈G′〉;G′′ 'g r -> s̃ : 〈G′〉; p -> q̃ : 〈G〉;G′′

(→→)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : 〈G〉;G1, r -> s̃ : 〈G〉;G2) 'g r -> s̃ : 〈G〉; p -> q̃ : N(G1, G2)

(→⊕)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : N(r -> s̃ : N(G1, G2), r -> s̃ : N(G3, G4)) 'g r -> s̃ : N(p -> q̃ : N(G1, G3), p -> q̃ : N(G2, G4))

(⊕⊕)

Figure 3 Swapping relation 'g for global types.

(g⊗O) { p -> q̃ : 〈G′〉; G } { G, G′ } (g!C) { ?p -> !q̃ : 〈G〉 } { G, ?p -> !q̃ : 〈G〉 }
(g⊕N1) { p -> q̃ : N(G1, G2) } { G1 } (g⊕N2) { p -> q̃ : N(G1, G2) } { G2 }

(g!?) { ?p -> !q̃ : 〈G〉 } { G } (g!W) { ?p -> !q̃ : 〈G〉 } ∅ (g1⊥) { endpq̃ } ∅
(gctx) G̃1 G̃2 ⇒ G̃ ∪ G̃1 G̃ ∪ G̃2 (geq) G̃0 'g G̃1, G̃1 G̃2, G̃2 'g G̃3 ⇒ G̃0 G̃3

Figure 4 Global Types, reduction semantics.

is equivalent to ('g) G � Θ, p :A′, q :B′, r :C′, s :D′ G′ � Θ̃, p :A, q :B
p -> q : 〈G′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :C′, s :D′

⊗O
G′′ � r :C, s :D

r -> s : 〈G′′〉; p -> q : 〈G′〉;G � Θ, p :AOqA′, q :B ⊗p B′, r :COsC′, s :DOrD′
⊗O

proving that p -> q : 〈G′〉; r -> s : 〈G′′〉;G is equivalent to r -> s : 〈G′′〉; p -> q : 〈G′〉;G. Fig-
ure 3 reports all cases for ≡, derived from the proof system in Figure 2. In general, two global
types are proof terms for the same set of local typings if and only if they are equivalent.
I Proposition 2 (Swapping). Let G � Θ. Then, G 'g G′ if and only if G′ � Θ.

Projection and Extraction. The hallmark of the theory of multiparty session types is
projection: developers can write protocols as global types, and then automatically project a
global type onto a set of local types that can be used to modularly verify the behaviour of
each participant. As there is only one possible rule application for each production in the
syntax of global types, we can construct an algorithm that traverses the structure of G:
I Proposition 3 (Projection). For G valid, Θ such that G � Θ is computable in linear time.

We can also use coherence for the inverse procedure, i.e., the extraction of a global type
from a set of local typings Θ. If Θ is coherent, we can just apply the first applicable coherence
rule, noting that the sizes of the local types in the premises always get smaller:
I Proposition 4 (Extraction). For Θ coherent, G such that G � Θ is computable.

I Example 5. In the 2-buyer protocol, G � B1 :A,B2 :B, S :C implies: (i) we can infer A, B
and C from G (proposition 3) and (ii) we can extract G from B1 :A,B2 :B, S :C (proposition 4).

Global reductions. We define reductions for global types, denoted G̃ G̃′, where G̃ is a
set {G1, . . . , Gn}. Global type reductions are just a convention (recalling [6]), which we use
in § 5 to concisely formalise how processes follow their protocols. Formally, is the smallest
relation satisfying the rules in Figure 4. Rule g⊗O models a communication that creates a
new session of type G′, which will then proceed in parallel to the continuation G. Rule g1⊥
models session termination. Rules g⊕N1 and g⊕N2 model the execution of a choice. In rules
g!?, g!C and g!W , a replicated protocol can be respectively executed exactly once, multiple,

M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 7

P,Q,R ::= xpq̃(y);P (send) | xpq(y); (P | Q) (recv)
| xpq.inl;P (left sel) | xpq.inr;P (right sel)
| xpq.case(P,Q) (case) | (νx :G)

(∏
i Pi
)

(res)
| closexp (close) | waitxp;P (wait)
| !xp(y);P (service) | ?xp(y);P (client)
| P +Q (choice)

Figure 5 MCP, syntax of processes.

or zero times. Rule gctx lifts the behaviour of a protocol to a set of protocols executing
concurrently. Finally, rule gswap allows for swappings in a global type, where G̃ 'g G̃′ is the
point-wise extension of the swapping relation 'g to sets. Our semantics preserves validity:

I Theorem 6 (Coherence Preservation). If G̃ is valid and G̃ G̃′, then G̃′ is valid.

I Remark. Rule g!? can be derived from rules g!C and g!W . Including it simplifies our
presentation, since each global type reduction corresponds to a communication in MCP (§ 5).

Coherence as generalised duality. Coherence is a generalisation of duality (from CLL [12]):
in the degenerate case of a session with two participants, the two notions coincide. We recall
the definition of duality X⊥, defined inductively on the syntax of linear logic propositions:

(X ⊗ Y)⊥ = X⊥OY ⊥ (XOY)⊥ = X⊥ ⊗ Y ⊥ 1⊥ = ⊥ ⊥⊥ = 1
(X ⊕ Y)⊥ = X⊥NY ⊥ (XNY)⊥ = X⊥ ⊕ Y ⊥ (!X)⊥ = ?X⊥ (?X)⊥ = !X⊥

We define a partial encoding [[·]] from local types into linear logic propositions:

[[1]] = 1 [[⊥]] = ⊥ [[!A]] =![[A]] [[?A]] =?[[A]] [[A⊗B]] = [[A]]⊗ [[B]]
[[AOqB]] = [[A]]O[[B]] [[A⊕p B]] = [[A]]⊕ [[B]] [[ANpB]] = [[A]]N[[B]]

The encoding [[·]] is defined only when O and ⊕ are annotated with a single role. We get:
I Proposition 7 (Coherence as Duality). Let A,B be propositions where all subterms of the
form COp̃D or C ⊕p̃ D are such that p̃ = q for some q. Then, G � p :A, q :B iff [[A]] = [[B]]⊥.

4 Multiparty Classical Processes

In this section, we present Multiparty Classical Processes (MCP). MCP captures dependencies
among actions performed by different participants in a multiparty session, whereas, in previous
work, actions among different pairs of participants must be independent [4, 23].

Environments. Let Γ,∆ range over typing environments: Γ,∆ ::= · | Γ, xp :A .
Intuitively, xp :A means that role p in session x follows behaviour A. We write ?∆ whenever
∆ contains only types of the form ?A, and write ∆, xp :A only when xp does not appear in ∆.

Processes. We report the syntax of processes in Figure 5. In MCP, both input and output
names are bound, as in [23]. Term (send) creates a new session y and sends it, as role p,
to the processes respectively playing roles q̃ in session x; then, the process proceeds as P .

8 Multiparty Session Types as Coherence Proofs

P ` Γ, yp :A Q ` ∆, xp :B
xpq(y); (P | Q) ` Γ, ∆, xp :A⊗q B

⊗
P ` Γ, yp :A, xp :B

xpq̃(y); P ` Γ, xp :AOq̃B
O

Pi ` Γi, xpi :Ai G � {pi :Ai}i

(νx :G)
(∏

i
Pi

)
` {Γi}i

MCut P ` Γ, xp :A Q ` Γ, xp :B
xpq.case(P, Q) ` Γ, xp :ANqB

N

P ` Γ Q ` Γ
P + Q ` Γ +

P ` Γ, xp :A
xpq̃.inl; P ` Γ, xp :A⊕q̃ B

⊕1
P ` Γ, xp :B

xpq̃.inr; P ` Γ, xp :A⊕q̃ B
⊕2

close xp ` xp :1 1 P ` Γ
wait xp; P ` Γ, xp :⊥ ⊥

P ` Γ
P ` Γ, xp : ?A

Weaken

P ` ?Γ, yp :A
!xp(y); P ` ?Γ, xp : !A !

P ` Γ, yp :A
?xp(y); P ` Γ, xp : ?A

?
P ` Γ, yp : ?A, zp : ?A

P [x/y][x/z] ` Γ, xp : ?A
Contract

Figure 6 MCP, typing rules.

The dual operation (recv) receives, as role p in session x, a fresh session y from the process
playing role q; the process then proceeds as the parallel composition of P (dedicated to
session y) and Q (dedicated to continuing session x). Similarly, terms (left sel) and (right
sel) multicast a selection of a left or right branch respectively to the processes playing roles q̃
in session x, as role p. A selection is received by term (case), which offers the two selectable
branches. Terms (close) and (wait) terminate a session. Term (choice) is the standard
non-deterministic choice. In a restriction (res), x is bound in the processes Pi; we use the
standard type annotation (as in [23]) to show the relation between the semantics of processes
and global types in § 5. In term xp q(y); (P | Q), y is bound in P but not in Q. In terms
x p q̃(y)P , !xp(y);P , and ?xp(y);P , y is bound in P .

Judgements. Judgements in MCP have the form P ` xp1
1 :A1, . . . , x

pn
n :An, meaning that

process P implements roles pi in the respective session xi with behaviour Ai.

Rules. We report the rules of MCP in Figure 6. Intuitively, a process is typed with local
types; then, we use coherence to check that the local types of composed processes (rule MCut)
coherently implement a global type. All rules are defined up to context exchange.

Rule MCut is central: it extends the Cut of CLL to composing in parallel an arbitrary
number of Pi that communicate using session x. The rule checks that the composition of
the respective local behaviours of the composed processes is coherent (G � {pi :Ai}i). In the
conclusion, {Γi}i is the disjoint union of all Γi in the premise.

Rule ⊗ types an input xpq(y); (P | Q), where the subprocess P plays role p with
behaviour A in the received multiparty session y; session x then proceeds by following
behaviour B for role p in Q. Observe that the ⊗ is annotated with the role q that p wishes
to receive from. The multicast output xpq̃(y);P in rule O creates a new session y and sends
it, as role p in session x, to roles q̃. The new session y is used by P as role p with type A,
assuming that the other processes receiving it implement the other roles (this assumption
is checked by coherence in MCut, when processes are composed). We discuss in § 7 how to
relax the constraint that the role p played in session y is the same.

Rules ⊕1 and ⊕2 type, respectively, the multicast of a left and right selection, by checking
that the process continuation follows the expected local type. Similarly, rule N types a

M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 9

branching by checking that the continuations implement the respective expected local types.
Rule + types the nondeterministic process P +Q, by checking that both P and Q

implement the same local behaviours. Observe that P and Q may still be substantially
different, since they may (i) perform different selections on some sessions (as rules ⊕1 and
⊕2 can yield the same typing), and (ii) have different inner compositions of processes whose
types have been hidden by rule MCut.

Rules 1 and ⊥ type, respectively, the request and the acceptance for closing a multiparty
session. Rules ! and ? type, respectively, the replicated offering of a service and its repeated
usage (a client). Since a service typed by ! may be used multiple times, we require that
its continuation does not use any linear behaviour (?∆). Rules Weaken and Contract type,
respectively, the absence of clients or the presence of multiple clients. In rule Contract,
sessions y and z are contracted into a single session x with a standard name substitution,
provided that they have the same type ?A.
I Remark. Removing proof terms from MCP yields a pure logic that differs from CLL only for
rule MCut. Since we will prove in § 5 that MCut is admissible, just like Cut in CLL, the two
systems subsume the same set of valid judgements. Nevertheless, as shown in next section,
MCP yields a different operational meaning: reductions of MCut correspond to multiparty
communications, whereas reductions of Cut in CLL correspond to binary communications.

5 Semantics

In this section, we demonstrate the consistency of MCP, by establishing a cut-elimination
result that yields an operational semantics and important properties, e.g., deadlock-freedom.

5.1 Structural Equivalences as Commuting Conversions
MCP supports commuting conversions, permutations of applications of MCut that maintain
the validity of judgements. As an example, consider the following proof equivalence (≡):

P ` ∆, yp :A, xp :B, zr :C
xpq̃(y);P ` ∆, xp :AOq̃B, zr :C

O

Qi ` Γi, z
si :Di G � r :C, {si :Di}i

(νz :G)
(
xpq̃(y);P |

∏
i
Qi

)
`{Γi}i,∆, xp :AOq̃B

MCut

≡

P ` ∆, yp :A, xp :B, zr :C

Qi ` Γi, z
si :Di G � r :C, {si :Di}i

(νz :G)
(
P |

∏
i
Qi

)
`{Γi}i,∆, yp :A, xp :B

MCut

xpq̃(y); (νz :G)
(
P |

∏
i
Qi

)
`{Γi}i,∆, xp :AOq̃B

O

Above, an output is moved out of a restriction of a different session (or in it, reading in the
other direction), as in [23]. In this example, the output process is the first in the parallel
under the restriction; in general, this is not always the case since the process may be any of
those in the parallel composition. In order to represent equivalences independently of the
position of processes in a parallel, we use process contexts [20]. A context, denoted by C,
is a parallel composition with a hole: C[·] ::= · | C[·] | P | P | C[·]. All equivalences
are reported in Figure 7. The equivalence κpar permutes processes in a parallel, since the
premises of rule MCut can be in any order. In κcut, we can swap two restrictions, which
corresponds to swapping two applications of rule MCut. The equivalence κO shows that
a restriction can always be swapped with an output on a different session. Similarly, the
equivalence κ⊗ swaps a restriction with an input, requiring that the restricted name (z in
this case) occurs free in P . In the case of ⊕, we have two equivalences, corresponding to
the right and left selection respectively. For κ&, we can move a restriction to each branch
of a case construct, also duplicating the context C. Equivalences κ! and κ? allow to swap a

10 Multiparty Session Types as Coherence Proofs

(κpar) (νz :G)
(∏

i∈k̃
Pi

)
≡ (νz :G)

(∏
j∈k̃′

Pj

)
(k̃ is a permutation of k̃′)

(κcut) (νx :G)
(
C
[
(νy :G′) C′[P]

])
≡ (νy :G′)

(
C′
[
(νx :G) C[P]

])
(if x, y ∈ fn(P))

(κO) (νz :G)
(
C
[
xpq̃(y);P

])
≡ xpq̃(y); (νz :G) C[P]

(κ⊗) (νz :G)
(
C
[
xpq(y); (P | Q)

])
≡ xpq(y); (P | (νz :G) (C[Q])) (if z 6∈ fn(P))

(κ⊕1) (νz :G) C[xpq.inl;P] ≡ xpq.inl; (νz :G) C[P] (κ⊕2) (νz :G) C[xpq.inr;P] ≡ xpq.inr; (νz :G) C[P]
(κN) (νz :G) C[xpq.case(P,Q)] ≡ xpq.case((νz :G) C[P], (νz :G) C[Q])
(κ!) (νz :G) C[!xp(y);P] ≡ !xp(y); (νz :G) C[P] (κ?) (νz :G) C[?xp(y);P] ≡ ?xp(y); (νz :G) C[P]
(κ⊥) (νz :G) C[wait xp;P] ≡ wait xp; (νz :G) C[P]

Figure 7 MCP, Structural Equivalences.

(β⊗O) (νx :p-> q̃ : 〈G′〉;G)
(∏

i
xqi p(y); (Pi | Qi) | xpq̃(y);R |

∏
j
Pj

)
→ (νy :G′)

(∏
i
Pi | (νx :G) (

∏
i
Qi | R |

∏
j
Pj)
)

(β⊕N1) (νx:p-> q̃ : N(G1, G2))
(
xpq̃.inl;P |

∏
i
xqip.case(Qi, Ri) |

∏
j
Pj

)
→ (νx :G1)

(
P |

∏
i
Qi |

∏
j
Pj

)
(β⊕N2) (νx:p-> q̃ : N(G1, G2))

(
xpq̃.inr;P |

∏
i
xqip.case(Qi, Ri) |

∏
j
Pj

)
→ (νx :G2)

(
P |

∏
i
Ri |

∏
j
Pj

)
(β!?) (νx :?p -> !q̃ : 〈G〉)

(
?xp(y);P |

∏
i
!xqi (y);Qi

)
→ (νy :G)

(
P |

∏
i
Qi

)
(β!W) (νx :?p -> !q̃ : 〈G〉)

(∏
i
!xqi (y);Qi | P

)
→ P if x 6∈ fn(P)

(β!C) (νx :?p -> !q̃ : 〈G〉)
(∏

i
!xqi (w);Qi | P [x/y][x/z]

)
→ (νy :?p -> !q̃ : 〈G〉)

(∏
i
!yqi (w);Qi | (νz :?p -> !q̃ : 〈G〉)

(∏
i
!zqi (w);Qi | P

))
(β1⊥) (νx :endpq̃)

(
wait xp;P |

∏
i

close xqi
)
→ P

(β+) (νx :G)
(

(P1 + P2) |
∏

i
Qi

)
→ (νx :G)

(
Pj |

∏
i
Qi

)
j ∈ {1, 2}

Figure 8 MCP, Cut Reductions.

restriction with a service and a client respectively. Finally, κ⊥ is the case for waitxp. There
is no equivalence for the process closexp since it is only typable with the axiom 1.

5.2 Process Reductions as MCut Reductions
As for equivalences, we use our proof theory to derive reductions for processes, given in
Figure 8. In the reduction β⊗O, the output from role p to roles q̃ on session x is matched with
the inputs at such roles, creating a new session y, following the global type of x. Reductions
β⊕N1 and β⊕N2 capture the left and right multicast selection of a branching, respectively. In
β!?, a set of services with a single client is reduced to the composition of the bodies of such
services with that of the client; the type ?p -> !q̃ : 〈G〉 of x is correspondingly reduced to G.
Reduction β!W garbage collects a set of unused services. In β!C , instead, a set of services is
replicated to handle multiple clients. Finally, reduction β1⊥ terminates a session x.

5.3 Properties
In the remainder, we abuse the notation P → P ′ to refer to process reductions closed up to
our structural equivalence ≡, as in standard process calculi.

M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 11

Processes and Types. Since both equivalences and reductions are derived from judgement-
preserving proof transformations, we immediately obtain the following two properties:

I Theorem 8 (Subject Congruence). P ` ∆ and P ≡ Q imply that Q ` ∆.

I Theorem 9 (Subject Reduction). P ` ∆ and P → Q imply that Q ` ∆.

In Figure 8, global type annotations should not be mistaken for a requirement of our
reductions; they are rather a guarantee given by our proof theory: if a process is reducible,
then its sessions are surely typed with the respective global types reported in the rule. We use
this property to reconstruct the result of session fidelity from multiparty session types [14].
In the following, gt(P) denotes the set of global types used in the restrictions inside P .

I Theorem 10 (Session Fidelity). P ` ∆ and P → P ′ imply that either gt(P) gt(P ′) or
gt(P) 'g gt(P ′).

Deadlock Freedom. Processes in MCP are guaranteed to be deadlock-free. We use the
standard methodology from [4, 23]. First, we prove that the MCut rule in MCP is admissible:

I Theorem 11 (MCut Admissibility). Pi ` Γi, xpi :Ai, for i ∈ [1, n], and G � {pi :Ai}i imply
that there exists Q such that Q ` {Γi}i.

The admissibility of MCut gives us a methodology for removing cuts from a proof,
corresponding to executing communications in a process until all restrictions are eliminated:

I Corollary 12 (Deadlock-Freedom). P `∆ and P has a restriction imply P→Q for some Q.

Protocol Progress. Our correspondence between process and global type reductions goes
both ways, a novel result for Multiparty Session Types. Below, →+ denotes one or more
applications of →:

I Theorem 13 (Protocol Progress). P ` ∆ and gt(P) G̃ imply P →+ P ′ and G̃ = gt(P ′).

6 The 2-Buyer Protocol Example

We now formalise the 2-buyer protocol from § 2 and expand it further.

Processes and Types. Roles B1, B2 and S are implemented as the processes:

xB1 S(title); wait titleB1; xB1 S(quote);
(

close quoteB1 | xB1 B2(contrib); wait contribB1; wait xB1; close zZ
)

xB2 S(quote);
(

close quoteB2 | xB2 B1(contrib);
(
close contribB2 | PB2

))
xS B1(title);

(
close titleS | x S B1(quote); wait quoteS; x S B2(quote); wait quoteS; PS)

)
The first process is the first buyer Buyer1. In the second process, the second buyer Buyer2,
subterm PB2 implements the choice of whether to accept or reject the purchase:(

xB2 S.inl; x B2 S(addr); wait addrS; closexB2) +
(
xB2 S.inr; closexB2

)
Finally, in the third process, the implementation of the seller, PS is the process:

xS B2.case
(

xS B2(addr);
(
close addrS | close xS), close xS)

At the level of types, the local types in Example 1 from § 3 can be used to type the three
processes above: Buyer1 ` xB1 :A, zZ :1, Buyer2 ` xB2 :B and Seller ` xS :C. If we apply our
new cut rule, we obtain (νx : G)

(
Buyer1 | Buyer2 | Seller

)
` zZ :1 where the global

type G, corresponding to equation (1) in § 2, is such that G � B1 :A, B2 :B, S :C.

12 Multiparty Session Types as Coherence Proofs

Nested Multiparty Sessions. We can extend the example above by implementing the global
type (4) in § 2, where the first buyer creates a sub-session with the seller if the second buyer
decides not to contribute to the purchase. Below, we give an excerpt of the new seller:

...xS B1,B2(quote); wait quoteS; xS B2.case
(

..., xS B1(y);
(

Psub | xS B1(why);
(
closewhyS | xS B2(why); ...

)))
where Psub = yS B1.case

(
yS B1(addr); (close addrS | close yS), yS B1(why); (closewhyS | close yS)

)
.

Hence, the type of channel x, from the seller’s viewpoint, becomes:

1⊗B1 ⊥ OB1,B2
(

(1⊗B2 1) NB2
((

(1⊗B1 1) NB1 (1⊗B1 1)
)
⊗B1 1⊗B1 1⊗B2 1

))
We can then use coherence to infer the global type (4) in § 2.

Services. We extend the example to support multiple clients on a replicated session a:

(νa :?B1 -> !B2, S : 〈G〉) (Buyers | !aB2(x); Buyer2 | !aS(x); Seller)

where Buyers consists of two buyers: (νz :end) (?aB1(x);Buyer1 | ?aB1(x);Buyer1′). Process
Buyer1′ initially behaves as Buyer1, but we replace close zZ with wait zZ; closewW. By
applying β!C once, β!? twice, and commuting conversions, the process above can be reduced
to the parallel composition of two sessions that follow the 2-buyer protocol:

(νx :G)
(

Buyer2 | Seller | (νz : end)
(
Buyer1 | (νx :G) (Buyer2 | Seller | Buyer1’)

))
7 Related Work and Discussion

Curry-Howard correspondences for session types. The works closest to ours are the Curry-
Howard correspondences between binary session types and linear logic [4, 23]. We extended
this line of work considerably by introducing multiparty sessions, which required general-
ising the notion of type compatibility in linear logic to address multiple types (coherence).
Coherence reconstructs the standard relationship between the global and local views found
in multiparty session types. We then used coherence to develop a new proof theory that
conservatively extends linear logic to capture multiparty interactions (all derivable judge-
ments in linear logic are derivable also in our framework, and vice versa). Furthermore, our
work provides, for the first time, a notion of session fidelity in the context of a Curry-Howard
correspondence between linear logic and session types (§ 5, Theorem 10). In this work we
have not treated polymorphism and existential/universal quantification, which we believe
can be naturally added to MCP following the lines presented in [23, 3] for binary sessions.

Our work inverts the interpretation of ⊗ as output and O as input given in [2]. This makes
our process terms in line with previous developments of multiparty session types, where
communications go from one sender to many receivers [9]. Using the standard interpretation
would yield a join mechanism where multiple senders synchronise with a single receiver; note
that there would be no need to re-prove our results, since the proof theory would not change.

The standard cut rule in CLL forces the graph of connections among processes to be
a tree [1], a known sufficient condition for deadlock-freedom in session types [5]. A multi-
cut rule is proposed in [1] to allow two processes to share multiple channels. This enables
reasoning on networks with cyclic inter-connections, but breaks the deadlock-freedom property
guaranteed by linear logic, since duality is no longer a sufficient condition when multiple
resources are involved (also noted in [23]). For the first time, MCP processes can have cyclic

M. Carbone, F. Montesi, C. Schürmann, and N. Yoshida 13

inter-connections (e.g., our example in § 2), but they are still guaranteed to be deadlock-free.
The key twist is to use coherence as a principle to check that the inter-connections are
safely resolved by communications. This suggests that coherence may be useful also in other
settings related to linear logic, for reasoning about the sharing of resources among multiple
entities (in our case, sessions). We leave this investigation as interesting future work.

Multiparty Session Types (MPSTs). Our work concisely unifies many of the ideas found
in separate developments of multiparty session types. Our global types with multicasting
are inspired from [9], to which we added nested and replicated types; both additions arise
naturally from our proof theory. Our nesting of global types can be seen as a logical
reconstruction of (a simplification of) those originally presented in [10], while repetitions in
global types reconstruct the concept presented in [8].

Our proof system for coherence is inspired by the notion of well-formedness found in
MPSTs [14, 9]. Since coherence is a proof system, projection and extraction are derived from
proof equivalences, rather than being defined separately as in [14, 15]. A benefit is that our
projection and extraction are guaranteed to be correct by construction, whereas in previous
works they have to be proven correct separately wrt the auxiliary notion of well-formedness.

In [9], MPSTs are combined with an ordering on session names to guarantee deadlock-
freedom. Our deadlock-freedom result, instead, is based on the structure of our proofs. In
some cases, our technique is more precise; for example, consider the deadlock-free system:

?ap(xa); ?br(xb); xa
pq(w1); xb

rs(w2); (xa
pt(w3); P1 | P2)

!aq(xa); xa
qp(w1); (P3 | P4) !at(xa); xa

tp(w3); (P5 | P6) !bs(xb); xb
sr(w2); P7

If we compose these processes in parallel, restricting sessions a and b accordingly, we obtain
a typable MCP process. Instead, the system in [9] rejects it, since the actions performed by
the first process create a cycle between the names xa and xb. In [19], the approach in [9] is
refined to type processes such as the one above by ordering the I/O actions of each session.

We conjecture that MCP can be used to naturally extend the work in [7], where linear
logic is used to type choreography programs, obtaining a Curry-Howard correspondence for
the calculus of compositional choreographies typed with multiparty session types [18].

Coherence. Coherence can be generalised, e.g., in Figure 2: (i) rule !? could allow for more
than one client; (ii) similarly, rule 1⊥ could be relaxed to allow for more than one ⊥ type; (iii)
rule ⊗O could allow the involved participants to play different roles in the nested session they
create, as in [10] (adding such roles as an extra annotation to each type respectively). We
leave these extensions as interesting future work. Point (ii) influences greatly the complexity
of the cut admissibility proof for MCP (Theorem 11), because it would imply that the cut
reduction of a terminated session could lead to having more than one process in the reductum
(all the processes typed with ⊥), whereas now we have only one. This means that we would
have to type a parallel composition of processes without restriction, requiring to extend our
framework in the fashion of the logic presented in [7]. While extending the proof theory
of MCP would be easy, (extending coherence to allow for missing participants to be added
later, as in [18]), it would also cause an explosion in the number of cases to consider in the
proof [7]. As future work, we will investigate how our rule MCut and the notion of coherence
can affect the mapping from the functional language GV [23, 17].

Acknowledgements. Montesi was supported by CRC, grant no. DFF–4005-00304 from the
Danish Council for Independent Research. Schürmann was partly supported by DemTech,

14 Multiparty Session Types as Coherence Proofs

grant no. 10-092309 from the Danish Council for Strategic Research. Yoshida was partially
sponsored by the EPSRC EP/K011715/1, EP/K034413/1, EP/L00058X/1, and EU project
FP7-612985 UpScale. This work is also supported by the COST Action IC1201 BETTY.

References
1 Samson Abramsky, Simon J. Gay, and Rajagopal Nagarajan. Interaction categories and the

foundations of typed concurrent programming. In NATO ASI DPD, pages 35–113, 1996.
2 Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. Theor. Comput.

Sci., 135(1):11–65, 1994.
3 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral poly-

morphism and parametricity in session-based communication. In ESOP, pages 330–349,
2013.

4 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, pages 222–236, 2010.

5 Marco Carbone and Søren Debois. A graphical approach to progress for structured com-
munication in web services. In Proc. of ICE’10, 2010.

6 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchron-
ous global programming. In POPL, pages 263–274, 2013.

7 Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, logically. In
CONCUR, pages 47–62, 2014.

8 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types
and multi-party session. LMCS, 8(1), 2012.

9 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
Global progress for dynamically interleaved multiparty sessions. MSCS, 760:1–65, 2015.

10 Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR,
pages 272–286, 2012.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP (2), pages
174–186, 2013.

12 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
13 Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type discip-

lines for structured communication-based programming. In ESOP, pages 22–138, 1998.
14 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session

types. In Proc. of POPL, volume 43(1), pages 273–284. ACM, 2008.
15 Julien Lange and Emilio Tuosto. Synthesising choreographies from local session types. In

CONCUR, pages 225–239, 2012.
16 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to

graphical choreographies. In POPL 2015, pages 221–232. ACM, 2015.
17 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In ESOP,

pages 560–584, 2015.
18 Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In CONCUR, pages

425–439, 2013.
19 Luca Padovani, Vasco Thudichum Vasconcelos, and Hugo Torres Vieira. Typing liveness

in multiparty communicating systems. In COORDINATION, pages 147–162, 2014.
20 D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge

University Press, 2001.
21 Scribble project home page. http://www.scribble.org.
22 Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
23 Philip Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012.

http://www.scribble.org

	Introduction
	Preview
	Coherence
	Properties of Coherence

	Multiparty Classical Processes
	Semantics
	Structural Equivalences as Commuting Conversions
	Process Reductions as MCut Reductions
	Properties

	The 2-Buyer Protocol Example
	Related Work and Discussion

