
Global Principal Typing in
Partially Commutative Asynchronous Sessions

Dimitris Mostrous1, Nobuko Yoshida1, and Kohei Honda2

1 Department of Computing, Imperial College London
2 Department of Computer Science, Queen Mary, University of London

Abstract. We generalise a theory of multiparty session types for the π-calculus
through asynchronous communication subtyping, which allows partial commuta-
tivity of actions with maximal flexibility and safe optimisation in message chore-
ography. A sound and complete algorithm for the subtyping relation, which can
calculate conformance of optimised end-point processes to an agreed global spec-
ification, is presented. As a complementing result, we show a type inference al-
gorithm for deriving the principal global specification from end-point processes
which is minimal with respect to subtyping. The resulting theory allows a pro-
grammer to choose between a top-down and a bottom-up style of communication
programming, ensuring the same desirable properties of typable processes.

1 Introduction

Programs which communicate by asynchronous message passing are abundant in criti-
cal computing scenes, from a simple web-service application between two parties to a
global financial network hosting thousands of nodes and billions of messages per year.
The design of such programs, which may be developed in geographically disparate sites,
demands a clear high-level specification of their conversation structure, against which
participating programs can be validated (conformance). Further such specifications may
change during development (refinement), and might even need to be synthesised from
individual endpoint programs, against which updated programs can be further validated
(synthesis of global specifications).

This paper develops a new theory of multiparty session types [1, 2, 4, 5, 13, 23],
which can handle uniformly these three concerns by seamlessly integrating the top-
down and bottom-up strategies for the development of communication-centred soft-
ware. The methodology for distributed programming put forward in [1, 13] centres on
the concept of a global type which plays the role of type signature for distributed com-
munications, presenting an abstract high-level description of the protocol that all the
participants have to honour when an actual conversation takes place. Building on this
framework, we propose the following two strategies for communication programming:
Top-Down Approach: Once this signature G is agreed upon by all parties as a global
protocol, a local protocol from each party’s viewpoint (local type Ti) is generated as a
projection of G to each party. Then each local type Ti can be locally refined to, say, T ′i ,
possibly giving a more optimised protocol, realised as a program, say, Pi. If all the re-
sulting local programs P1, ..,Pn can be type-checked against refined T ′1 , ..,T

′
n , then they

are automatically guaranteed to interact properly, without communication mismatch or
getting stuck inside a session, precisely following the intended scenario.
Bottom-Up Approach: In this case the programmers may work based on an informal
understanding of shared conversation structures, which, after appropriate development,
will get reified into a formal global protocol by synthesis of local behaviours of all end-
point programs: first, a type Ti is inferred from each program Pi, then a new global spec-
ification is synthesised from T1, ..,Tn. If this specification is validated to satisfy certain
conditions, P1, ..,Pn are guaranteed to interact properly. This process can be repeated
incrementally, using a succession of synthesised types as globally refined protocols.
This paper presents a general and rigorous foundation for these two approaches and
their seamless integration, based on multiparty session types. For the automatic refine-
ment, we introduce asynchronous communication subtyping over local types, which
allows permutation of actions to increase efficiency, while ensuring type-soundness and
communication-safety. As an example, suppose we are using an asynchronous commu-
nication transport where the message order is preserved but the sending is non-blocking,
as in TCP. Let us assume the following three simple processes:

P1
def= t?(y1);s!〈5〉;s!〈apple〉;Q1 P2

def= b?(y2); t!〈7〉;Q2 P3
def= s?(z1);s?(z2);Q3

where s?(y) is an input and s!〈5〉 is an output via channel s; and “;” is sequential com-
position. Then first P2 gets the value at b; then P2 sends 7 to P1; finally P1 sends 5 and
“apple” to P3 preserving the order. We note that P3 is blocked until b is fired at P2. To
execute P3 ahead, P1 might be locally optimised since y1 does not bind the subsequent
outputs at s. We can similarly optimise P2. The resulting processes given below still
preserve linearity and proper communication structures.

P′1
def= s!〈5〉;s!〈apple〉; t?(y1);Q1 P′2

def= t!〈7〉;b?(y2);Q2 P3
def= s?(z1);s?(z2);Q3

Asynchronous communication subtyping specifies safe permutations of actions, by which
we can refine a local protocol to maximise asynchrony without violating the global pro-
tocol. For example, in the above case, P′1 is given local type s!〈nat〉;s!〈string〉; t?〈nat〉;T
which is a subtype of t?〈nat〉;s!〈nat〉;s!〈string〉;T projected from the global type.
Hence optimisations can be checked locally. The idea of this subtyping is intuitive,
but it requires delicate formal formulations due to the presence of recursive types and
branching/selection session types, whose combinations are vital for typing many prac-
tical protocols [12, 22]. This subtlety is because type-permutations affect the structures
of session types, which makes straightforward constructions following the preceding
literature [10, 20] inapplicable. Intuitively, because partial commutativity is defined be-
tween a sequence of actions, it may require more than one unfolding of recursive types
to find a match. However, this calculation can be made automatic by an algorithmic
subtyping which completely characterises the semantic notion of subtyping and can be
used to effectively (in)validate conformance of an optimised local type to a global type.

For the bottom-up strategy, we formulate principal global typing by which we can
synthesise the most general global type from untyped endpoint programs, or can check
they can have no global type, i.e. their protocols are incompatible. The framework
uses graph-shaped global types which generalise the original syntactic global types,

extending typability. Asynchronous communication subtyping plays a central role in
the synthesis process. We demonstrate the use of the theory for the two strategies by
providing correctness arguments for the development of a distributed parallel algo-
rithm. A full version, containing more examples and detailed proofs, is available from
http://www.doc.ic.ac.uk/˜mostrous/asyncsub.

2 Asynchronous Multiparty Sessions

Syntax. We use the π-calculus for multiparty sessions from [13], omitting polyadicity
and delegation for simplicity. We use the following base sets: shared names or names,
written a,b,x,y,z, . . . ; session channels or channels, written s, t, ...; labels (functioning
like labels in labelled records), written l, l′, . . . ; and process variables, written X ,Y,
For hiding, we use n for either a single shared name or a vector of session channels.
Then processes (P,Q . . .) and expressions (e,e′, . . .) are given below:

P ::= a[2..n](s̃).P request
| a[p](s̃).P acceptance
| s!〈e〉;P sending
| s?(x);P reception
| s� l;P selection
| s�{li : Pi}i∈I branching
| if e then P else Q conditional

e ::= v | e and e′ | not e · · · expressions
v ::= a | true | false · · · values

| P | Q parallel
| 0 inaction
| (ν n)P hiding
| def D in P recursion
| X〈ẽs̃〉 process call
| s : h̃ message queue

h ::= l | v message values
D ::= {Xi(x̃is̃i) = Pi}i∈I declaration

a[2..n](s̃).P initiates, through a shared name a, a new session with other participants,
each of shape a[p](s̃).Q with 2≤ p≤ n. The (bound) si in vector s̃ are session channels
used in the session. We call p, q,... (natural numbers) the participants of a session.
Session communications (which take place inside an established session) are performed
by the sending and receiving of a value; and by selection and branching (the former
chooses one of the branches offered by the latter). s : h̃ is a message queue representing
ordered messages in transit h̃ with destination s (which may be considered as a network
pipe in a TCP-like transport). The rest of the syntax is standard from [13]. We often
omit 0, and unimportant arguments of sending/receiving, e.g. s!〈〉 and s?();P.

Operational semantics. Some selected rules of reduction P→ P′ are given below:

a[2..n](s̃).P1 | a[2](s̃).P2 | · · · | a[n](s̃).Pn → (ν s̃)(P1 | P2 | ... | Pn | s1 : /0 | ... | sm : /0)
s!〈e〉;P | s : h̃→ P | s : h̃ · v (e ↓ v) s?(x);P | s :v · h̃ → P[v/x] | s : h̃

s� l;P | s : h̃→ P | s : h̃ · l s�{li : Pi}i∈I | s : l j · h̃ → Pj | s : h̃ (j ∈ I)

The first rule describes the initiation of a new session among n participants that syn-
chronise over the shared name a. After the initiation, they will share the private m fresh
session channels si and the associated m empty queues (/0 denotes the empty string). The
output rules enqueue a value and a label, respectively (e ↓ v denotes the evaluation of e
to v). The input rules perform the complementary operations. Processes are considered
modulo structural equivalence, ≡, defined by the standard rules [13].

Global types. A global type, written G,G′, .., describes the whole conversation sce-
nario of a multiparty session as a type signature [13].

Global G ::= p→ p′ : k 〈U〉;G′ values | µt.G recursive
| p→ p′ : k {l j : G j} j∈J branching | t variable
| G,G′ parallel | end end

Value U ::= bool | nat | · · · | G

Type p→ p′ : k 〈U〉;G′ says that participant p sends a message of type U to channel k
(represented as a finite natural number) received by participant p′ and then interactions
described in G′ take place. Value types range over U , and are either global types for
shared names, or base values. Type p→ p′ : k {l j : G j} j∈J says that participant p in-
vokes one of the li labels on channel k (at participant p′), then interactions described in
G j take place. Type µt.G is for recursive protocols, assuming type variables (t, t′, . . .)
are guarded in the standard way, i.e. they only occur under values or branches. We as-
sume G in value types is closed, i.e. without free type variables. Type end represents the
termination of a session. We often omit end and identify “G,end” and “end,G” with G.
We stipulate that each channel can only be used among two parties (but maybe repeat-
edly), one party using it for input/branching while the other party for output/selection.3

Local types. Local session types type-abstract sessions from each endpoint’s view.

Local T ::= k!〈U〉;T send | k&{li : Ti}i∈I branching
| k?〈U〉;T receive | µt.T | t recursion
| k⊕{li : Ti}i∈I selection | end end

Type k!〈U〉 expresses the sending to k of a value of type U . Type k?〈U〉 is its dual
input. Type k⊕{li : Ti}i∈I represents the transmission to k of a label li chosen in the
set {li | i ∈ I}, followed by the communications described by Ti. Type k&{li : Ti}i∈I
is its dual. The remaining types are standard. We say a type is guarded if it is neither
a recursive type nor a type variable. (An occurrence of) a type constructor not under
a recursive prefix in a recursive type is called top-level action (for example, k1!〈U1〉
and k2!〈U2〉 in k1!〈U1〉;k2!〈U2〉; µt.k3!〈U3〉; t are top-level, but k3!〈U3〉 in the same
type is not). k is the head of T if k appears at the left-most occurrence of the top-
level actions in T (e.g. k1!〈U1〉 is the head of the above type). The relation between
global and local types is formalised by projection, written G � p (called projection of
G onto p), defined as in [13]. For example, (p→ p′ : k 〈U〉;G′) � p = k!〈U〉;(G′ � p),
(p→ p′ : k 〈U〉;G′) � p′ = k?〈U〉;(G′ � p′) and (p→ p′ : k 〈U〉;G′) � q = (G′ � q). We
write Type for the collection of all closed local types.

3 Asynchronous Partially Commutative Sessions

3.1 Asynchronous Communication Subtyping: Top-Level Actions

This section introduces and studies a basic theory of asynchronous session subtyping.
Figure 1 defines the axioms for partial permutation of top-level actions for closed types,

3 This condition dispenses with the need for linearity-check to ensure well-formedness [1].

(OI) k!〈U〉;k′?〈U ′〉;T � k′?〈U ′〉;k!〈U〉;T

(OB) k!〈U〉;k′&{l j :Tj} j∈J � k′&{l j :k!〈U〉;Tj} j∈J

(SI) k⊕{l j :k′?〈U〉;Tj} j∈J � k′?〈U〉;k⊕{l j :Tj} j∈J

(SB) k⊕{li :k′&{l′j :Ti j} j∈J}i∈I � k′&{l′j :k⊕{li :Ti j}i∈I} j∈J

(OO) k!〈U〉;k′!〈U ′〉;T � k′!〈U ′〉;k!〈U〉;T

(II) k?〈U〉;k′?〈U ′〉;T � k′?〈U ′〉;k?〈U〉;T

(SO) k⊕{li :k′!〈U〉;Ti}i∈I � k′!〈U〉;k⊕{li :Ti}i∈I

(OS) k′!〈U〉;k⊕{li :Ti}i∈I � k⊕{li :k′!〈U〉;Ti}i∈I

(SS) k⊕{li :k′⊕{l′j :Ti j} j∈J}i∈I � k′⊕{l′j :k⊕{li :Ti j}i∈I} j∈J

(Tr)
T1� T2 T2� T3

T1� T3
(CO)

T � T ′

k!〈U〉;T � k!〈U〉;T ′
(CI)

T � T ′

k?〈U〉;T � k?〈U〉;T ′

(CB)
∀i ∈ I. Ti� T ′i

k&{li :Ti}i∈I � k&{li :T ′i }i∈I
(CS)

∀i ∈ I. Ti� T ′i
k⊕{li :Ti}i∈I � k⊕{li :T ′i }i∈I

(E) end� end

(M) µt.T � µt.T

Fig. 1. Action Asynchronous Subtyping Rules ((BI, IB,BB) are omitted)

denoted �. We assume k 6= k′ for all the axioms. T � T ′ is read: T is an action-
asynchronous subtype of T ′, and means T is more asynchronous than (or more opti-
mised than) T ′. We write T � T ′ for T ′� T .

A partial permutation is applied only to finite parts of the top-level actions (with-
out unfolding recursive types); see Proposition 7. Note that we cannot exchange an
input and output in the reverse direction of (OI) even for different channels. Con-
sider: P = s?();r!〈〉 and Q = s!〈〉;r?(). These processes interact correctly. If we per-
mute the output and input of Q, we get Q′ = r?();s!〈〉. Then the parallel composition
(P | Q′) causes deadlock, losing progress. For the same reason, the reverse direction of
(OB,SI,SB) is not allowed. By combining these input and output permutation rules, we
can achieve a flexible local refinement for communications. For example, suppose R =
s?(x);r?(y); t!〈1〉; t ′!〈y〉 typed by TR = s?〈file〉;r?〈bool〉; t!〈nat〉; t ′!〈bool〉;end. We might
wish to receive the (small) value via r first, and immediately forward to t ′, then receive
the (larger) file at s in the end: we can obtain S = r?(y); t ′!〈y〉; t!〈1〉;s?(x) typed by
TS = r?〈bool〉; t ′!〈bool〉; t!〈nat〉;s?〈file〉;end, transformed from TR (i.e. TS � TR) by
using a combination of (OO,OI, II).

3.2 Asynchronous Communication Subtyping: Recursive Types

For handling recursive types in asynchronous subtyping, we extend the coinductive
method in [20, § 2.3] and [10, § 3.3]. In particular, we need to modify the unfolding
function for recursive types since � might be applicable to a sequence of types after
unfolding of recursions under guarded prefixes. The resulting definition integrates �
with the traditional session subtyping [10, 13]. For any recursive type T , unfoldn(T) is

the result of inductively unfolding the first recursion (even under guarded types) up to
a fixed level of nesting.

Definition 1 (n-time unfolding).
unfold0(T) = T for all T unfold1+n(T) = unfold1(unfoldn(T))
unfold1(k!〈U〉;T) = k!〈U〉;unfold1(T) unfold1(k⊕{li : Ti}i∈I) = k⊕{li : unfold1(Ti)}i∈I
unfold1(k?〈U〉;T) = k?〈U〉;unfold1(T) unfold1(k&{li : Ti}i∈I) = k&{li : unfold1(Ti)}i∈I
unfold1(µt.T) = T [µt.T/t] unfold1(t) = t unfold1(end) = end

We also use unfoldn(U) which is defined as unfoldn(T) above. 4

For example, unfold2(k?〈U〉; µt.k′!〈U ′〉; t)= k?〈U〉;k′!〈U ′〉;k′!〈U ′〉; µt.k′!〈U ′〉; t. Note
that, because our recursive types are contractive, unfoldn(T) terminates. We can now
introduce the central notion of asynchronous communication subtyping.

Definition 2. A relation ℜ∈Type×Type is an asynchronous type simulation if (T1,T2)∈
ℜ implies the following conditions:

- If T1 = end, then unfoldn(T2) = end.
- If T1 = k!〈U1〉;T ′1 , then unfoldn(T2)� k!〈U2〉;T ′2 , (T ′1 ,T

′
2) ∈ℜ and (U1,U2) ∈ℜ.

- If T1 = k?〈U1〉;T ′1 , then unfoldn(T2)� k?〈U2〉;T ′2 , (T ′1 ,T
′

2) ∈ℜ and (U2,U1) ∈ℜ.
- If T1= k⊕{li : T1i}i∈I , then unfoldn(T2)� k⊕{l j : T2 j} j∈J , I⊆ J and ∀i ∈ I.(T1i,T2i) ∈ℜ.
- If T1= k&{li : T1i}i∈I , then unfoldn(T2)� k&{l j : T2 j} j∈J , J⊆ I and ∀j ∈ J.(T1 j,T2 j) ∈ℜ.
- If T1 = µt.T , then (unfold1(T1),T2) ∈ℜ.

where a type simulation of (U1,U2)∈ℜ is defined as the standard bisimulation (since U
is invariant).5 The coinductive subtyping relation T1 6c T2 (read: T1 is an asynchronous
subtype of T2) is defined when there exists a type simulation ℜ with (T1,T2) ∈ℜ.

An output of T1 can be simulated after applying asynchronous optimisation � to
the unfolded T2. We also need to ensure object type U1 is a subtype of U2. For the input,
we ensure U2 is a subtype of U1. The definitions of selection and branching subsume
the traditional session branching/selection subtyping.6 In selection a label appearing in
T1 must be included in T2; dually, in branching a subtype T1 must cover all branches
declared in T2. For a value type, U1 6c U2 implies U2 6c U1 by definition. We show
examples to justify our subtyping.

Example 3. Below we write k! for k!〈U〉 and k? for k?〈U〉, omitting U .

1. Let T1 = µt.k?;k′!; t, T2 = µt.k′!;k?; t. Then we can prove T2 6c T1 using the sim-
ulation ℜ = {(T2,T1), (k′!;k?;T2,T1), (k?;T2,k?;T1)}. T2 represents more optimal
communications than T1 since it can output messages at k′ without waiting.

2. Let T ′2 = k′!;T1 which means first sending a signal at k′ then repeating input-output
actions. Then T ′2 6c T1 by taking ℜ = {(T ′2 ,T1), (T1,k?;T1), (k?;T ′2 ,k?;T1)} as a
simulation closure. Note also T2 6c T ′2 and T ′2 6c T2.

4 In [10], unfold(T) repeatedly unfolds consecutive top-level recursion until a guarded type is
obtained. In our definition, unfold1(T) expands a single recursion, not only top-level but also
under guarded types.

5 Note that G is invariant like standard channel types ˆ[T̃] [10].
6 We follow the subtyping relation in [7, 13] whose ordering is reversed from [10] since in our

judgement the session environment is declared on the right-hand side of a process.

3. Let T ′4 = k1!;k2!;T3 with T3 = µt.k3?;k1!;k4?;k2!; t and T4 = µt.k1!;k3?;k2!;k4?; t.
These types are extended from T ′2 ,T1 and T2 with two signal messages at the top
level. Then T ′4 6c T3. To simulate T ′4 , we require nested unfold for T3. More exactly,
the intermediate type k1!;k4?;k2!;T3 can be simulated by k4?;T3 if T3 unfolds and
k1! under recursion appears at the top-level. Similarly for T ′4 6c T4.

4. Take T5 = µt1.k1!; µt2.k1!;&{l1 : k2?;k1!; t1, l2 : k1!; t2} and let T6 = µt1.µt2.&{l1 :
k2?;k1!; t1, l2 : k1!; t2}. Then T5 6c T6. This example is proved similarly to (3).

Note that none of the above subtyping relations, except T2 6c T ′2 and T ′2 6c T2, can be
derived without including� in the typed simulation.

Before we prove that6c is a preorder, we show that there are connecting simulations
relating the components of two subtyping relations. We write T1 ℜ1 T2 for (T1,T2)∈ℜ1.

Lemma 4. If T1 ℜ1 T2 and T2 ℜ2 T3 for type simulations ℜ1 and ℜ2 then there exists a
type simulation ℜ3 such that if unfoldn(T2)� T ′2 , then T ′2 ℜ3 T3.

Definition 5 (Transitivity connection). For simulations ℜ1 and ℜ2, we say ℜ3 (from
the condition in Lemma 4) is a transitivity connection of T1 ℜ1 T2 and T2 ℜ2 T3. We write
trc(T1 ℜ1 T2 ℜ2 T3) for ℜ3. We define trc(ℜ1,ℜ2) as the smallest relation such that if
(T1,T2) ∈ℜ1 and (T2,T3) ∈ℜ2, then trc(T1 ℜ1 T2 ℜ2 T3)⊆ trc(ℜ1,ℜ2).

From the definition, trc(ℜ1,ℜ2) only contains type simulations, and as the union of
these it is also a type simulation. Note that the smallest relation exists, by set inclusion
of relation pairs, containing all the transitivity connections of elements in ℜ1/ℜ2. For
example, ℜ3 = trc(T1 ℜ1 T2 ℜ2 T3) does not contain (k!〈U〉;end,k?〈U〉;end), which
cannot be a member of any type simulation; and by set inclusion, it is smaller than
ℜ3∪ (k!〈U〉;end,k?〈U〉;end).

Theorem 6. The relation 6c is a preorder.

Proof. Using as standard the relation {(T,T) |T ∈ Type}, we prove 6c is reflexive. For
transitivity of 6c, suppose T1 6c T2 6c T3 and let ℜ1 and ℜ2 be type simulations with
(T1,T2) ∈ℜ1 and (T2,T3) ∈ℜ2. To show T1 6c T3 we need to find a type simulation ℜ

such that (T1,T3)∈ℜ. Define ℜ as (ℜ1 ·ℜ2)∪ (ℜ1 · trc(ℜ1,ℜ2)). Clearly (T1,T3)∈ℜ,
and it remains to show that ℜ is a type simulation. For any (T,T ′′) ∈ℜ, there are two
cases (relations above), and six subcases (simulation rules). For (U,U ′) ∈ℜ, the result
is easy as U types are invariant. We only show one of the most interesting cases.

Suppose (T,T ′′) ∈ ℜ1 ·ℜ2 and T = k!〈U1〉;T1. Then there exists (T,T ′) ∈ ℜ1 and
(T ′,T ′′) ∈ℜ2. By the definition of type simulation, we have unfoldn(T ′)� k!〈U ′1〉;T ′1
and (U1,U ′1)∈ℜ1 and (T1,T ′1)∈ℜ1. Let trc(T ℜ1 T ′ℜ2 T ′′) = ℜ3 ⊆ trc(ℜ1,ℜ2), then
by Lemma 4 we obtain (k!〈U ′1〉;T ′1 ,T

′′) ∈ ℜ3, and by the definition of simulation we
have unfoldm(T ′′)� k!〈U ′′1 〉;T ′′1 and (U ′1,U

′′
1) ∈ℜ3 and (T ′1 ,T

′′
1) ∈ℜ3. Finally, by the

definition of ℜ1 · trc(ℜ1,ℜ2), (U1,U ′′1) ∈ℜ and (T1,T ′′1) ∈ℜ as required. Other cases
are similar. ut

3.3 Algorithmic Asynchronous Subtyping

The algorithmic subtyping of session types is studied in [10, § 5.1]. Due to the incor-
poration of asynchronous permutation and n-time unfolding in the type simulation, we
need the bound of unfolding for constructing a terminating algorithm. We first list some
selected rewriting rules k7→ which move the types with channel k to the head applying
the rules of� in Figure 1 in the reverse direction.

(OI) k′?〈U ′〉;k!〈U〉;T k7→ k!〈U〉;k′?〈U ′〉;T (Tr) T1
k7→ T2 T2

k7→ T3

T1
k7→ T3

(CO) T k7→ T
k′!〈U〉;T k7→ k′!〈U〉;T ′

(CB)
Tj

k7→ T ′j
k′&{l1 :T1, .., l j :Tj, ..}

k7→ k′&{l1 :T1, .., l j :T ′j , ..}

We omit the similar rules for (OB–SS), (CI,CS), which are defined similarly to (OI) and
(CO,CB). Note that we do not define k7→ for (E) and (M). (CO,CB) are for congruency.
For a simple example, let T0 = k⊕{l1 : k1?〈U1〉;k2!〈U2〉;end, l2 : k2!〈U2〉;end}. Then

T0
k27→ k⊕{l1 : k2!〈U2〉;k1?〈U1〉;end, l2 : k2!〈U2〉;end} k27→ k2!〈U2〉;k⊕{k1?〈U1〉;end, l2 :

end} by (CS,OS). We can easily show k7→ is confluent and terminates, and T k7→ T ′ im-

plies T ′ � T . We can also prove if T � T ′, then we always have T ′
k17→ · k27→ · · · kn7→ T

where k1k2..kn are a (possibly empty) subsequence of channels occurring at the top-
level in T with this order (e.g., k1k2k3k4 if k1!;k2⊕{l1 : k3!, l2 : k4!}). Hence:

Proposition 7. Given T and T ′, T � T ′ is decidable.

The derivability of judgement Σ ` T 6 T ′ is defined in Figure 2 where Σ is a se-
quence of assumed instances of the subtyping relation. We use n-hole type contexts
(T ,T ′, ...) where []h∈H denotes a hole with index h.

T ::= []h∈H | k!〈U〉;T | k?〈U〉;T | k⊕{li : Ti}i∈I | k&{li : Ti}i∈I

For example, with H = {1,2} and T = k⊕{l1 : k1?〈U1〉; []1∈H , l2 : []2∈H}, we have
T [Ti]i∈H = k⊕{l1 : k1?〈U1〉;T1, l2 : T2}. A hole in T does not appear under recursion
since� permutes top-level actions only. We also use (1) function top(T) which returns
the channel at the head of T and (2) function depth〈k,T 〉 to calculate how many unfold-
ings are needed for k to appear at the top-level. If k does not appear in T , depth〈k,T 〉 is
undefined. When depth〈k,T 〉 is defined, depth〈k,T 〉 is finite.

top(end) = • top(k?〈U〉;T) = top(k!〈U〉;T) = top(k&{li : Ti}i∈I) = top(k⊕{li : Ti}i∈I) = k
depth〈k,T 〉= 0 if top(T) = k depth〈•,end〉= 0
depth〈k,k′?〈U〉;T 〉= depth〈k,k′!〈U〉;T 〉= depth〈k,T 〉 k 6= k′

depth〈k,k′&{li : Ti}i∈I〉= depth〈k,k′⊕{li : Ti}i∈I〉= maxi∈I(depth〈k,Ti〉) k 6= k′

depth〈k,µt.T 〉= depth〈k,T [µt.T/t]〉+1 depth〈•,µt.T 〉= depth〈•,T [µt.T/t]〉+1

In Figure 2, [ASMP,END] are standard. In [OUT], we fix the subtype and apply k7→ to
place k!〈U〉 to the top level. Then we check the tail of the result of rewriting T [T ′2h]

h∈H

is a subtype of T1 (the rule subsumes the case k!〈U〉 already at the top level). Rule [SEL]

[ASMP]T 6 T ′ ∈ Σ

Σ ` T 6 T ′
[END] −

Σ ` end6 end

[OUT]
Σ `U1 6U2 Σ ` T1 6T [T ′2h]

h∈H T [k!〈U2〉;T2h]h∈H k7→ k!〈U2〉;T [T ′2h]
h∈H

Σ ` k!〈U1〉;T1 6T [k!〈U2〉;T2h]h∈H

[SEL]
∀i ∈ I.Σ ` Ti 6T [T ′′ih]h∈H T [k⊕{li : T ′ih}i∈J]h∈H k7→ k⊕{li : T [T ′′ih]h∈H}i∈J I ⊆ J

Σ ` k⊕{li : Ti}i∈I 6T [k⊕{li : T ′ih}i∈J]h∈H

[RECL]
Σ ,µt.T 6 T ′ ` unfold1(µt.T)6 T ′

Σ ` µt.T 6 T ′
[RECR]

n = depth〈top(T),T ′〉 n≥ 1
Σ ,T 6 T ′ ` T 6 unfoldn(T ′)

Σ ` T 6 T ′

Fig. 2. Algorithmic Subtyping Rules

is similarly defined. Rule [RECL] is standard. Rule [RECR] unfolds T ′ until a type with
the same channel as the top of T appears at the top-level. The rule for input/branching
is defined like [OUT]/[SEL], respectively.

The rules give an algorithm for checking the algorithmic subtyping relation 6 (by
reading these rules from upwards). As usual, [ASMP] should always be used if it is
applicable, and when both [RECL] and [RECR] are applicable, [RECL] is used in pref-
erence to [RECR]. Similarly, other rules are applied in preference to [RECR], which can
only be applied if the top of T does not appear at the top level of T ′. As an example, let
T1 = k⊕{l1 : k1?〈U1〉;end}. Then we can derive k2!〈U2〉;T1 6 T0 (T0 is given above)
by using [OUT]. At the top level, the algorithm is applied to the initial goal /0 ` T 6 T ′

(which we often write T 6 T ′).

Lemma 8. 1. The subtyping algorithm always terminates.
2. If T 6c T ′ then the algorithm does not return false when applied to Σ ` T 6 T ′.

The proof uses techniques related to those developed in [10]; the main differences are,
for the proof of (1), we have to take the subterms up to � with the finite number of
unfolding when we argue the size of Σ cannot increase without bound. However since
� does not change the size of the judgement (defined in [10, Lemma 10]), we can prove
(1). The proof of (2) is standard from (1).

Theorem 9 (Soundness and Completeness of the Algorithmic Subtyping). For all
closed types T and T ′, T 6c T ′ if and only if T 6 T ′.

The if-direction is by Lemma 8 (2) and the only-if direction by constructing a relation
following [10, Theorem 4].

3.4 Local Asynchronous Commutative Session Typing

The type judgement for end-point processes is of the shape Γ ` P . ∆ which reads:
“under the environment Γ , process P has typing ∆” where environments are defined as:

Γ ::= /0 | Γ ,u : U | Γ ,X : ŨT̃ ∆ ::= /0 | ∆ , s̃ : {Tp@p}p∈I

A sorting (Γ ,Γ ′, ..) is a finite map from names to value types and from process variables
to sequences of value types and session types. Typing (∆ ,∆ ′, ..) records linear usage of
session channels. T @p is called located type which means T is a session type of the
participant p. In multiparty sessions, it assigns a family of located types to a vector
of session channels. The typing system is identical with [13]: we only have to add the
subsumption rule: i.e. Γ ` P . ∆ and ∆ 6 ∆ ′ then Γ ` P . ∆ ′ where ∆ 6 ∆ ′ is defined
by pointwise application of 6.

Theorem 10 (Subject Congruence and Reduction). Γ ` P . /0 and P ≡ Q imply Γ `
Q. /0; and Γ ` P. /0 and P−→ Q imply Γ ` Q. /0.

The proof follows the same routine as in [13], but we must take care that all per-
mutations defined by � do not affect the input-output causal dependencies of the
global types. We can also obtain the other three key proprieties, communication-safety,
session-fidelity and progress as stated in [13, § 5]. The rest of the paper can be read
without knowing the details of a typing system.

4 Principal Global Typing through Graph-based Types

Why graph-based types. Let P def= a[p](s̃).s1!〈3〉;s2?(x) and Q def= a[p](s̃).s2!〈true〉;s1?(y)
where P is a participant named by p and Q is an initiator named by q. Then P and Q are
typable under essentially only two global types, G = p→ q : k〈int〉; q→ p : h〈bool〉; end
and G′ = q→ p : h〈bool〉; p→ q : k〈int〉; end. Note the projection of G to p is 6-
minimal for P (i.e. other local types of P can be derived by subsumption): but this is not
true for its projection to q. Similarly G′ does not give a minimal type for P. Thus there
is no “best” global type for P|Q: this is because interactions between P and Q take place
in a criss-crossing way: the syntax of global types, which can only represent tree-like
causality, is too rigid to represent such a situation.

Local and global graphs. A local graph is a (finite or infinite) directed graph where
each node, called action, is labelled by one of k?〈U〉 (input), k!〈U〉 (output), k&[li]i∈I
(branching), k⊕ [li]i∈I (selection) and k⊕ l (label-output [1]); and, for edges: (1) each
edge from k&[li]i∈I or k⊕ [li]i∈I is labelled by one of {li}; and (2) k⊕ l (resp. k!〈U〉)
has a unique outgoing edge, and its target is always an output/selection/label-output at
k. A global graph for participants {p1, ..,pn}, written G ,G ′, . . ., is a disjoint union of
an {p1, ..,pn}-indexed family of local graphs. Given G for {p1, ..,pn}, its pi-component
is the local graph in G indexed by pi. A node is active if it has no incoming edges.

p q

h!<bool>

h?<bool>

k!<nat>

k?<nat>

p q

k!<nat> h!<bool>

k?<nat>h?<bool>

(a) (b)

In (a) above, we show a global graph for P and Q given above, consisting of two local
graphs (balloons labelled by p and q), each with an output, an input and no edges. If we

add an edge from input to output in each local graph, we get the global graph (b) for
a[p](s̃).s2?(x);s1!〈3〉 and a[p](s̃).s1?(y);s2!〈true〉, which now deadlocks.

Linearity, progress and coherence. We equip global graphs with a notion of reduction
which abstracts that of processes. Below we write E [·]..[·] for a global graph with
one or more holes, each of which is to be filled with a sub-graph of a local graph, such
that all holes are active, i.e. have no incoming edges.

E [k?〈U〉][k!〈U〉] −→ E [/0] E [k&[li : Gi]i∈I][k⊕ l j] −→ E [G j][/0] (j ∈ I)

E [k⊕ [li : Gi]i∈I] −→ E [k⊕ li;Gi]

Above /0 is the empty graph. In each rule, the replacement in the hole(s) entails taking
off both the old graph and all the outgoing edge(s) from it and filling the hole with the
new graph. A reduction by the first two rules is called communication at k. In the second
rule, k&[li : Gi]i∈I is the disjoint union of k&[li]i∈I and {Gi}i∈I together with, for each
i ∈ I, li-labelled edges from k&[li]i∈I to all the active actions in Gi. In the third (from
[1]), k⊕ [li : Gi]i∈I is as k&[li : Gi]i∈I while k⊕ li;Gi is the disjoint union of k⊕ li and
Gi with edges from the former to the active output/selection/label-outputs at k in Gi. A
global graph G is linear when for each G ′ such that G −→∗ G ′, if G ′ has two active
actions at k, a reduction at k is possible, and no other active action shares k. A global
graph G has progress when for each G ′ such that G −→∗ G ′, either G ′ reduces or it is
empty. Finally we say G is coherent when it is linear and has progress.

Coherent global graphs from local types. A local graph is constructed from a local
type as the latter’s regular tree representations. Given ∆ = {Ti@pi}i∈I , this immedi-
ately gives the global graph for {pi}i∈I , which we write [[∆]]. The coherence of [[∆]] is
decidable, as we outline below.

We first check ∆ is well-directed in the sense that each channel in ∆ is used by two
and only two participants and moreover one of them uses it only for input/branching
and the other only for output/selection/label-output, which can be checked by going
through ∆ once. For well-directed ∆ , there is an algorithm to ensure linearity of [[∆]],
by checking if each pair of participants in ∆ are compatible in their type structures,
closely following the algorithmic subtyping in § 3.2.

Through the validation of compatibility of ∆ , we can equip [[∆]] with the addi-
tional communication edges, from each output/selection/label-output to its potentially
interacting action(s), representing potential redexes. Using this added set of edges, we
reduce the progress of [[∆]] to the acyclicity of its paths consisting of its local and com-
munication edges, completely characterising progress under linearity. The acyclicity of
[[∆]] is then reducible to that of its initial finite sub-graph. Because linearity and com-
patibility are equivalent under progress, we obtain:

Theorem 11 (complete algorithmic characterisation of coherence). Let ∆ = {Ti@pi}i∈I
be well-directed. Then the coherence of [[∆]] with ∆ given as input is decidable.

Principal global typing through global graphs. Any projectable global type G for
participants say {pi}i∈I is equivalent to its projections ∆ = {(G �pi)@pi}i∈I , and be-
cause such ∆ is immediately compatible and acyclic, we can regard G as a coherent

global graph. This motivates the use of coherent global graphs instead of global types
in the type discipline, presenting [[∆]] as ∆ itself.7 By replacing global types with co-
herent global graphs in types and typing rules, we obtain a new type discipline. We
write Γ `g P . ∆ for typability in this new discipline (subsumption is consistent be-
cause if [[∆]] is coherent and ∆ ′ is point-wise 6-smaller than ∆ then [[∆ ′]] is also coher-
ent). By identifying G as the corresponding coherent global graph, Γ ` P . ∆ implies
Γ g̀ P . ∆ . Further, since linearity and progress of [[∆]] are reflected onto the dynam-
ics of typed processes (precisely following the arguments in [13]), the typability in g̀

ensures communication safety and progress.
For the principal typing property, we add the 6-least element ⊥ to the set of local

types; ⊥ is also used as local graph occurring in global graphs (where intuitively ⊥
denotes a placeholder for a local behaviour). The coherence and other notions for global
graphs are defined ignoring ⊥. Without loss of practical generality we assume each
shared name say a has a fixed arity which is the number of participants for a potential
session established through a; and that processes are type-annotated on bound variables
and free object names in the standard way. Through local type inference [6, 15] using
the point-wise join of coherent global types (calculated as in algorithmic subtyping),
together with Theorem 11, we obtain a principal global typing property. Below we
write Γ ′ 6 Γ for dom(Γ ′)⊂ dom(Γ) and Γ ′(a)6 Γ (a) for each a ∈ dom(Γ ′). We say
P is closed if it has no free session channels nor free variables.

Theorem 12 (principal global typing). Let P be closed. (1) The typability of P with
respect to g̀ is decidable. (2) If P is typable then P has a principal global typing Γ0 in
the sense that Γ0 g̀ P. /0 holds and moreover Γ g̀ P. /0 implies Γ0 6 Γ .

5 Application: Double-Buffering Algorithm

This section illustrates the use of our type theory using the double-buffering algorithm
[21], a basic distributed algorithm widely used in stream/media processing and high-
performance and multicore computing, presenting how the two strategies discussed in
Introduction can be applied through the theories presented in the previous sections.

The purpose of the double-buffering algorithm is to transform a large amount of
data, where a series of chunks of data are transferred from a source (Source) to a
transformer (called Kernel), gets processed there and delivered to a sink (Sink). Un-
der potential temporal variations in processing and communication time, it is necessary
to synchronise among these three parties through message passing. However a naive,
and obviously safe, protocol leads to a highly sequential, non-optimal distributed algo-
rithm. Thus it is beneficial to increase asynchrony of local programs without violating
the shared protocol. We show the outline of an application of our theories to achieve
this goal, starting from a sequential and safe global protocol to optimised local proto-
cols through asynchronous communication subtyping, with a formal safety guarantee.

7 To be precise, we regard ∆ up to the type isomorphism corresponding to 6; and we take off,
from each branching type, its branches (if any) which never get invoked in any reduction path:
such “garbage” branches are precisely identified during the validation of coherence.

Global Type : G =
µt.(
K→ So : r1〈〉;
So→ K : s1〈U〉;
Si→ K : t1〈〉;
K→ Si : u1〈U〉;

K→ So : r2〈〉;
So→ K : s2〈U〉;
Si→ K : t2〈〉;
K→ Si : u2〈U〉; t)

Pro jected Local Type o f Kernel :
T =
µt.r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;

r2!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉; t

Local Type o f Kernel :
T ? =
r1!〈〉;r2!〈〉;

µt.s1?〈U〉; t1?〈〉;u1!〈U〉;r1!〈〉;
s2?〈U〉; t2?〈〉;u2!〈U〉;r2!〈〉; t

Source:
a[1](r1r2s1s2t1t2u1u2).
µX .(

.. // assign data to y[1..n]
r1?(()); s1!〈y[1..n]〉;
.. // assign data to y[1..n]
r2?(()) ;s2!〈y〉;X)

Sink:
a[2](r1r2s1s2t1t2u1u2).
µX .(

t1!〈〉; u1?(z);
.. // print z[1..n]
t2!〈〉; u2?(z);
.. // print z[1..n]
X)

Kernel:
a[1,2](r1r2s1s2t1t2u1u2).

r1!〈〉; r2!〈〉;
µX .(

s1?(xA);
.. // repeat:
.. // xA[i] ::= xA[i]⊕key
.. // key::= xA[i]
t1?(()); u1!〈xA〉; r1!〈〉;
s2?(xB);
.. // repeat:
.. // xB[i] = xB[i]⊕ key
.. // key = xB[i]
t2?(()); u2!〈xB〉; r2!〈〉; X

)

Fig. 3. Double-Buffering Algorithm: Processes and Types

Top-down approach (1): global type. The development of programs starts from the
global type G on the left-most column in Figure 3. So, K and Si denote participant
names for Source, Kernel and Sink. U denotes a large int-array type. Assuming Kernel
will use two channels and the associated arrays for potential parallelism, the global type
G starts from a recursion, describing an infinite loop. In the loop, Kernel first notifies
Source via r1,2 that it is ready to receive data in its two channels (s1,2, with signal at ri
saying si is ready); Source complies, sending two chunks of data sequentially via s1,2.
Then Kernel (internally processes data and) waits for Sink to inform (via t1,2) that Sink
is ready to receive data via u1,2: upon receiving the signals, Kernel sends the two chunks
of processed data to Sink. This protocol is sequential but is safe and deadlock-free.

Top-down approach (2): local type and its refinement. Just below the global type
G, Figure 3 gives the local type T of Kernel as directly projected from the global type.
Our purpose is to refine T so that (1) the new local protocol is more asynchronous,
allowing overlap of communication and computation [9, 11]; and (2) it still conforms to
G — Kernel with the new optimised protocol will safely interact with Source and Sink
who conform to the original global type G. For this purpose the developer may come
up with a more asynchronous T ?, given in Figure 3 after T . In this refined protocol,
Kernel notifies Source via both r1,2, but only once before entering the loop, allowing
Source to start its work. Now inside the loop, the refined protocol dictates Kernel first
receives data via its first channel s1 with Source, processes the data and sends out the
result to Sink via its first channel u1 with Sink and immediately notifies Source via r1
that it’s ready in its first channel, allowing Source to start sending data early. Kernel
then repeats the same work for its second channels with Source and Sink. In this way,
Kernel can process data it has already received in one channel while it is receiving data
in the other, noting it can take time for large data to sent, transferred and received.

We now show this optimised local protocol is safe w.r.t. other participants conform-
ing to G, through the asynchronous communication subtyping. The justification uses

nested unfolding.We start from unfolding T once to match r1,r2 of T ? as unfold1(T) =
r1!〈〉;s1?〈U〉; t1?〈〉;u1!〈U〉;r2!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;T. Then r1!〈〉 matches T ?. To
simulate r2!〈〉 of T ?, r2!〈〉 is permuted by�. Let T ? = r1!〈〉;r2!〈〉;T ?

R . Thus unfold1(T ?
R)

must be simulated by T ′ = s1?〈U〉; t1?〈〉;u1!〈U〉;s2?〈U〉; t2?〈〉;u2!〈U〉;T. However to
simulate r1!〈〉 in unfold1(T ?

R), T must be unfolded again since the types in the guarded
position of T ′ do not include r1!〈〉. By [RECR], it now suffices to solve the following:

r1!〈〉;s2?〈U〉; t2?〈〉;u2!〈U〉;r2!〈〉;T ?
R 6 s2?〈U〉; t2?〈〉;u2!〈U〉;unfold1(T).

For this we apply [IN,OUT] of 6 with�, reaching the assumption in Σ in [ASMP].

Top-down approach (3): code development. Figure 3 depicts the skeleton of the three
(final) programs which conform to the global type. All participants initiate the session
at a in the first line. We only illustrate the behaviour of Kernel, considering a simple
transformation for stream encryption. Kernel, after initialising its variables including
the initial key value, signals to Source that its buffers are both empty, via r1 and r2:
then enters the main loop, where it does the following: it first receives the datum at
xA via s1, goes through the buffer taking the XOR element-wise with key, after which
it waits for Sink’s cue via t1 (which may have already arrived asynchronously), and
finally sends out the buffer content to Sink via u1, and tells Source it’s ready at A via
r1: then similarly works for the second buffer (given in the next column). Unlike Source
and Sink, the behaviour of Kernel does not conform to the projection of G to Kernel
(T): however T ? does type-abstract its behaviour directly and because T ? 6 T by the
argument above, Kernel does type-check under T with subsumption, hence under G.

Integration with bottom-up approach. The development process described above
can be effectively and seamlessly integrated with the “bottom-up” strategy discussed in
Introduction through the type inference (synthesis) of global types in § 4, which allows
developers to directly refine programs and to synthesise a new global protocol reflecting
the refinement, incrementally validating compatibility. This added flexibility is useful
since, in actual development, programmers may often directly work on programs rather
than starting from refinement of local protocols.

Further examples showing the applicability of permutation of branching/selections
to parallel algorithms [14] can be found in the full version.

6 Related Work

Branching/selection subtyping in session types is first studied in [10] for binary session
types. We use their syntactic approach for defining a type-simulation, but a significant
extension from their technique is needed due to the incorporation of� and nested un-
foldings, which makes the proof of transitivity delicate and challenging. An initial idea
of asynchronous communication subtyping for binary sessions is presented in an unpub-
lished manuscript [18], where the treatment for recursive types and branching/selection
types is left open. A recent work in a technical report [17] demonstrates a subtyping
rule similar to our (OI) rule is useful for an object calculus with asynchronous binary
sessions, with an iso-recursive system. It is an interesting future work to extend to the

HOπ-calculus [16] where a careful formulation for the algorithmic subtyping would
be required in the presence of arrow types. The top-down approach in multiparty ses-
sion types is first studied in [13], but a local refinement (asynchronous subtyping) is
not proposed there. The problem of synthesising a global specification from endpoint
behaviours has been a lingering question since the inception of the notion of global
descriptions for business protocols [24], being posed as an open problem in [1, 2, 13].
Inference of principal types is studied in [15] for binary session types (note in binary
sessions the issue of global synthesis does not arise). The present work gives clear and
general solutions to these extant technical problems.

In the context of multiparty session types, a typing system for a strong progress
property is studied in [1]. Asynchronous communication subtyping can be smoothly
applied to [1]. For delegations, the main definitions of�, 6c and 6 stay as the same,
but proofs need to be revised to treat nesting types; and for the principal typing, ⊥
should be added into a carried type in global graphs. The study of formal theories of
contracts are studied in [8] using CCS-like processes as a type representation. The work
[19] extends [8] with the treatment of asynchronous behaviours using orchestrators,
through the use of bounded buffers that control message flows between a client and
servers. Our own system in [7] developed a theory in which a global specification arises
as a programming language itself.

Conformance and refinement based on agreement of service specifications is stud-
ied in [3], using a synchronous CCS-based calculus as a contract language, and testing-
preorders to check subcontract compliance. Neither type-checking of end-point pro-
cesses using projected contracts (in our case, Theorem 9) nor a bottom-up strategy is
presented there. The work [5] proposes a distributed calculus with sessions, incorporat-
ing the merging of running sessions. Another work [23] presents a calculus for service
orientations by extending the π-calculus with context-sensitive interactions, equipped
with service and request primitives and local exceptions. These preceding works do not
treat the main technical problems addressed in the present work – the asynchronous
communication subtyping, type-based local refinement/conformance, and a derivation
of the minimum global types, backed-up by the efficient type-checking and inference
algorithms, ensuring strong safety properties based on the session type discipline.

Acknowledgements. We thank the reviewers for their useful comments, Gary Brown
and Steve Ross-Talbot for discussions on the potential applications of the presented
framework for software development, and Matthew Rawlings for discussions on the
practical significance of asynchrony in financial protocols. We generalised�with input
commutativity following a suggestion by Raymond Hu. The work is partially supported
by EPSRC GR/T03208, GR/T03215, EP/F002114, EP/F003757 and IST2005-015905
MOBIUS.

References

1. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433, 2008.

2. E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Calculus. In
TGC’07, volume 4912 of LNCS, pages 240–256, 2008.

3. M. Bravetti and G. Zavattaro. A theory for strong service compliance. In COORDINA-
TION’07, volume 4467 of LNCS, pages 96–112. Springer, 2007.

4. M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography conformance and
contract compliance. In Software Composition, volume 4829 of LNCS, pages 34–50, 2007.

5. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty Sessions in SOC. In COORDI-
NATION’08, volume 5052 of LNCS, pages 67–82. Springer, 2008.

6. M. Carbone, K. Honda, and N. Yoshida. A theoretical basis of communication-centered
concurrent programming. To appear as a WS-CDL working report, www.dcs.qmul.ac.
uk/˜carbonem/cdlpaper/workingnote.pdf.

7. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.

8. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. In POPL,
pages 261–272, 2008.

9. D. Culler et al. Logp: towards a realistic model of parallel computation. SIGPLAN Not.,
28(7):1–12, 1993.

10. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,
42(2/3):191–225, 2005.

11. M. Gschwind. The cell broadband engine: Exploiting multiple levels of parallelism in a chip
multiprocessor. International Journal of Parallel Programming, 35(3):233–262, 2007.

12. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

13. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

14. T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison
Wesley, 2005.

15. L. G. Mezzina. How to infer finite session types in a calculus of services and sessions. In
COORDINATION, volume 5052 of LNCS, pages 216–231. Springer, 2008.

16. D. Mostrous and N. Yoshida. Two Sessions Typing Systems for Higher-Order Mobile Pro-
cesses. In TLCA’07, volume 4583 of LNCS, pages 321–335. Springer, 2007.

17. D. Mostrous and N. Yoshida. A Session Object Calculus for Structured Communication-
Based Programming. Technical report, Imperial College London, 2008. www.doc.ic.
ac.uk/˜mostrous.

18. M. Neubauer and P. Thiemann. Session Types for Asynchronous Communication. Univer-
sität Freiburg, 2004.

19. L. Padovani. Contract-directed synthesis of simple orchestrators. In CONCUR, volume 5201
of LNCS, pages 131–146, 2008.

20. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Journal of Mathe-
matical Structures in Computer Science, 6(5):409–454, 1996.

21. J. C. Sancho and D. J. Kerbyson. Analysis of Double Buffering on two Different Multicore
Architectures: Quad-core Opteron and the Cell-BE. In International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, April 14–18, 2008.

22. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.
In PARLE’94, volume 817 of LNCS, pages 398–413. Springer, 1994.

23. H. T. Vieira, L. Caires, and J. C. Seco. The conversation calculus: A model of service-
oriented computation. In ESOP, volume 4960 of LNCS, pages 269–283, 2008.

24. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage. http://www.w3.org/2002/ws/chor/.

