
Global Escape in Multiparty Sessions∗

Sara Capecchi1, Elena Giachino2, and Nobuko Yoshida3

1 Dipartimento di Informatica, Università di Torino
Corso Svizzera 185, Torino, Italy
capecchi@di.unito.it

2 Focus Reasearch Team, Università di Bologna/INRIA
Mura Anteo Zamboni 7, Bologna , Italy
giachino@cs.unibo.it

2 Imperial College London
South Kensington Campus, London SW7 2AZ, Great Britain
yoshida@doc.ic.ac.uk

Abstract
This paper proposes a global escape mechanism which can handle unexpected or unwanted conditions
changing the default execution of distributed communicational flows, preserving compatibility of the mul-
tiparty conversations. Our escape is realised by a collection of asynchronous local exceptions which can
be thrown at any stage of the communication and to any subsets of participants in a multiparty session.
This flexibility enables to model complex exceptions such as criss-crossing global interactions and fault
tolerance for distributed cooperating threads. Guided by multiparty session types, our semantics automat-
ically provides an efficient termination algorithm for global escapes with low complexity of exception
messages.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.338

1 Introduction

In multiparty distributed conversations, a frequent communication pattern is the one that provides that
some unexpected condition may arise forcing the conversation to abort or to take suitable measures
for handling the situation, usually by moving to another stage. Such a global escape may be not a
computational error but rather a controlled, structured interruption requested by some participant.
This paper proposes a structured global escape mechanism based on multiparty session types, which
can control multiple interruptions efficiently, and guarantee deadlock-freedom without additional
overheads. Our main focus is on interactional exceptions, which perform not only local management
of the interrupted flows but also explicitly coordinate a set of collaborating and communicating peers.
Interactional exceptions based on multiparty sessions provide the following contributions (in which
relies the novelty of our approach w.r.t. [4, 6]):

an extension of multiparty sessions [9] to flexible exception handling: we allow asynchronous
escape at any desired point of a conversation, including nested exceptions;
a flexible exceptions representation for modelling both “light” exceptions, representing a con-
trol flow mechanism rather than an error (such as time-outs), and “heavy” exceptions such as
component or system crashes;
a compositional model where nested exception contexts are not a refinement of the outer ones
but inner isolated contexts involving only a subset of participants who can handle an unexpected
situation without affecting the unrelated communications among other cooperating peers;
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exception signals modelled as natural linguistic constructs with a corresponding behaviours;
applications to large scale protocols among multiple peers, automatically offering communication
safety and deadlock-freedom. We apply our theory for well-known distributed protocols for
exception handling and resolutions (CAs) [13], and prove our method offers the lower complexity
w.r.t. a number of message exchanges than the previously studied algorithms.

As in [4] our extension is consistent (since despite synchrony and nesting of exceptions, com-
munications in default and exception handling conversations do not mix) and safe (since linearity
of communications inside sessions and absence of communication mismatch are enforced carrying
out fundamental properties of session types). We ensure these properties using: (i) an asynchronous
linguistic construct for exceptions signalling; (ii) multi-level queues: the different levels are used to
avoid the mix of messages belonging to standard conversations and exception handling ones, which
belong to different nesting levels; (iii) a type discipline based on the known technique of defining
global types that describe the whole conversation behaviour, and projected end-point types classifying
single peers behaviours.

The paper is organised as follows: in Section 2 we describe the syntax of our calculus and present
an example. In Sections 3, 4 we present semantics, typing and properties of our extension; Section 5
shows how a known distributed object model can be encoded with our calculus. Finally Section 6
closes the paper. Detailed definitions, proofs and more examples can be found in [3].

2 Multiparty Session Processes with Exceptions

We introduce the syntax of processes using the π−calculus with multiparty sessions [9]. The syntax is
given in Figure 1, where we use P and Q to range over process names, s over private channels, r over
indexed private channels (of the form sϕ), a over public channels, v over values, e over expressions,
x,y,z over variables, X, Y over term variables and l, li over labels. We adopt the notation s̃ as a
shorthand for s1, . . . , sn.

The session connection is performed by a multicast request a[2..n](s̃).P (over the public channel
a, specifying the number n of participants invited) and n accept operations a[p](s̃).P (over the same
channel a). In both cases s̃ are the private channels that will be used in the continuation. A process
engaged in a session can perform an output action r!〈e〉, sending on r the evaluation of the expression
e, an input action r?(x).P, receiving a value on r, bound by x in P. More than one labelled behaviour
may be offered on the channel r (rB {li : Pi}i∈I), so that it is possible for a partner to select a behaviour
by sending on r the corresponding label (rCl.P). The try-catch construct try(r̃){P} catch {Q} describes
a process P (called default process) that communicates on the private channels r̃. If some exception is
thrown on r̃ before P has ended, the compensation handler Q is going to take over. The construct
throw(r̃) throws the exception on the channels r̃. Try-catch blocks can be nested, but internal blocks
must involve a proper subset of the set of argument channels of the outer try block (this is enforced
by the type system). The idea behind this condition is that internal try blocks involve smaller sets
of participants using a subset of channels. The exception raised inside these blocks can be resolved
by the involved peers without affecting the whole system (or in general a wider sets of participants).
If something goes wrong during the execution of the handler, that is the exception cannot be solved
“internally” anymore, the control can be passed to the handler of the outer try block by throwing an
exception on r (see example 2).

As in [9], in order to model TCP-like asynchronous communications (with non-blocking send
but message order preservation between a given pair of participants), we use queues of messages L.
Queues have a bidimensional structure, this is necessary to guarantee communication consistency:
when performing an action on a channel sϕ, a process is going to write or read at the level ϕ of the
queue associated to s. However in the user written code the level is always zero (ϕ = 0), namely the
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340 Global Escape in Multiparty Sessions

P,Q ::= a[2..n](s̃).P Multicast Request
| a[p](s̃).P Accept
| r!〈ẽ〉 Output
| r?(x̃).P Input
| r C l.P Select
| r B {li : Pi}i∈I Branch
| try(r̃){P} catch {P} Try-Catch
| throw(r̃) Throw

| if e then P else P Conditional
| P | P Parallel
| P; P Sequencing
| 0 Inaction
| (νn)P Hiding
| def D in P Recursion
| X〈ẽs̃〉 Process call
| s : L Named queue

v ::= a | true | false Value
e ::= v | x| e and e′ | not e . . . Expression

D ::= {Xi(x̃i s̃i) = Pi}i∈I Declaration
L ::= l · L | ṽ · L | � Queue

Figure 1 Syntax

programmer is not responsible of managing the queue levels, which are increased automatically at
runtime during the evaluation (for more detail see Section 3). For a consistent semantics we require
that a service can never occur in a try-catch block (this is enforced by the type system), otherwise if an
exception is captured and the handler is executed, the session inside the default process will disappear
while having still some pending communications. We believe this is only an apparent limitation,
because all the practical examples we encountered can be easily implemented in our language.

I Example 1. We present here a three-party use case that models criss-crossing global interaction [5],
which can be coded as in Figure 2 where we use different fonts for variables and values.

The Seller receives an order from a Client, then, inside a try block, he processes the order and
then sends back the confirmation. The Client waits for the order confirmation until, at some point,
he decides he has waited too long by throwing an exception. The handler of the Seller checks if the
confirmation has been sent by the Seller: if it has not (i.e., conf = false) then the interaction is aborted
by the Seller; otherwise conf = true means that the Client has raised the exception before receiving
the confirmation from the Seller; in this case execution goes on with POK and P′OK respectively. Thus
conf = true corresponds to order completion: from this moment on the interaction must proceed even
if the Client has decided differently (this is quite standard in business protocol specifications: when a
client aborts too late the transaction he is often compelled either to conclude the payment or to pay
some penalty fees). The above interaction contains an escape for the Client who has the right to abort
the transaction if the Seller is late for delivery. In P′OK the Client sends the code of his Bank account
to the Bank. The Bank checks if there is enough money then, according to the result of the test, sends
OK or NEM ( Not Enough Money) to the Client. If the answer is OK, the Bank sends OK also to the
Seller who sends the delivery date to the Client. If the answer is NEM, the Client and the Bank start to
deal for a loan. Now let us concentrate on the Client-Bank deal. The Bank refreshes the offer every
n-seconds, where n is the value of timeout. The process iterates until an agreement is reached. The
time intervals are modelled through a timer construct ( let h = timer(0) in . . .). Thus there are two
iterations in the process: one related to the deal (def X) and the other used by the Bank to iterate
on time intervals (def Y). The Client examines the Bank offer and, if he agrees on it, he throws an
exception to exit the iteration (this is implemented as a inner try-catch block involving only s2: when
the throw is raised the Seller is not involved) otherwise he waits for another offer and iterates the
negotiation. Dually the Bank sets the timer to 0 at each deal iteration; the internal recursion iterates
until the time-out is reached and then the loan offer is updated. The Bank calculates another offer
then iterates the outer recursive process sending the new loan to the Client. An interesting scenario
is when the time-out and the acceptance of the loan from the Client rise concurrently. It can then
happen that the Client has accepted an offer while the Bank was updating his offer after a time-out:
the Bank and the Client agreed on different amounts of money. This is resolved by the handlers P1
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Seller = BS[1](s1, s2).s1?(order).try(s1, s2){ elaborate order ; conf = true; s1!〈true〉; POK}
catch {try(s1, s2){if conf then POK else throw(s1, s2)} catch {abort}}

POK = s1 B {OK : s1!〈date〉, NOK : throw(s1, s2)}

Client = BS[2](s1, s2).s1!〈order〉; try(s1, s2){s1?(conf ).P′OK | throw(s1, s2))}
catch {try(s1, s2){P′OK} catch {abort}}

P′OK = s1!〈code〉; s1 B {OK : s1?(date).0, NEM : s1!〈rf〉; s1?(f ).
try(s2){defX(s2) = if OK(f ) then throw(s2) else s2?(f ).X < s2 > inX < s2 > catch{P1}}

P1 = s2!〈f〉; s1 B {OK : s2?(date), NOK : 0)}

Bank = BS[3](s1, s2).try(s2){0} catch {try(s1, s2){P′′OK} catch {abort}}

P′′OK = s1?(code). if enoughmoney then s1 C OK.s1 C OK.
else s1 C NEM.s1?(rf ).s1!〈f〉; try(s2){defX(s2) = let h = timer(0) in defY(s2) =

if h = timeout then calculate{f}; s2!〈f〉; X < s2 > else
Y < s2 > inY < s2 > inX < s2 >} catch {P2}

P2 = s2?(f ).if OK(f ) then s1 C OK.s1 C OK. else s1 C NOK.s1 C NOK.

Figure 2 Client-Seller-Bank code

and P2: after the exception has been thrown the Bank sends to the Client the latest value of the loan.
The Client checks it and decide whether to accept it or not. In the latter case, being out of money, he
sends a NOK label to the Seller who aborts the transaction by throwing an exception.

3 Operational Semantics for Multiparty Exceptions

We extend the semantics of multiparty sessions with exception handling. Exceptions can be raised
inside try-catch blocks by means of the throw construct. We ensure that conversations are properly
carried on by increasing the level of involved channels in case of exception: handlers communicate
on a level ϕ+1 while pending messages (i.e. that are sent by main processes before passing the
execution to the handlers) are sent via channels of level ϕ. Reduction rules are defined in Figure 3.
The reduction system uses an Exception Environment Σ, which keeps track of the raised exceptions.
This will be used in rules [Thr], [RThr],[ZThr].

Reduction rules use evaluation contexts defined by the following grammars:

C := [ ] | def D in C | C; P E := C | E | P | (νn)E | try(r̃){E} catch {Q}

with the usual semantics: if a process P reduces to P′, then E[P] reduces to E[P′].
Rule [Link] establishes the connection among n peers on the private channels s̃, to be used for the

communications within the session. One queue for each private channel is produced.
Rules [Send], [Sel], [Recv], [Branch] are defined as usual, except for the fact that they put and get

values/labels from the ϕth level of the queue. At first the processes read and write at the first level
of the queue (ϕ = 0). When a process catches an exception, the indexes of all the occurrences of
channels involved are increased by one and the exception is propagated to the other peers, which can
safely continue to modify the queues at the previous level until they receive the exception. Those
messages delivered to the out-of-date level of the queues will be ignored by the peers that have already
caught the exception and increased their queue levels.

Rule [Thr] applies when the exception is thrown locally. In this rule a throw(r̃) is added to the
environment in order to acknowledge all the try-catch blocks on the same set of channels r̃. This
environment update is performed unless some other throw(r̃′), with r̃ ⊆ r̃′ is already in Σ, because this
would mean that an exception may be caught by an embedding block, causing the current try-catch
block to disappear. In that case throwing the exception on channels r̃ would be useless and possibly
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342 Global Escape in Multiparty Sessions

Σ ` C1[a[2..n](s̃).P1] | C2[a[2](s̃).P2] | ... | Cn[a[n](s̃).Pn]
−→ Σ ` (νs̃) (C1[P1] | C2[P2] | ... | Cn[Pn] | s1 : � | ... | sm : �)

[Link]

Σ ` E[sϕ!〈ẽ〉] | s[ϕ] : L −→ Σ ` E | s[ϕ] : (L :: ṽ) (ẽ ↓ ṽ) [Send]

Σ ` E[sϕ C l.P] | s[ϕ] : L −→ Σ ` E[P] | s[ϕ] : (L :: l) [Sel]

Σ ` E[sϕ?(x̃).P] | s[ϕ] : (ṽ :: L) −→ Σ ` E[P{ṽ/x̃}] | s[ϕ] : L [Recv]

Σ ` E[sϕ B {li : Pi}i∈I] | s[ϕ] : (li0 :: L) −→ Σ ` E[Pi0 ] | s[ϕ] : L (i0 ∈ I) [Branch]

Σ ` try(r̃){C[throw(r̃)] | P} catch {Q} −→ Σ ] throw(r̃) ` try(r̃){C | P} catch {Q} [Thr]

Σ, throw(r̃) ` try(r̃){P} catch {Q} −→ Σ, throw(r̃) ` Q{sϕ+1/sϕ}sϕ∈r̃ (throw(r̃′) ∈ Σ implies try(r̃′) . . . < P, r̃′ ⊆ r̃) [RThr]

Σ ` (νs̃)(
∏

i Ei[try(r̃){0} catch {Qi}])i∈1..n −→ Σ ` (νs̃)(
∏

i Ei)i∈1..n (throw(r̃) < Σ) [ZThr]

Figure 3 Reduction rules

dangerous (leading to some inconsistency on the queue levels).
The operation of environment update is defined as follows:

Σ ] throw(r̃) =

Σ if throw(r̃′) ∈ Σ, \(r̃) ⊆ r̃′

Σ ∪ throw(\(r̃)) otherwise.

where, throw(r̃) is added to the environment only if there are no other throw on a bigger or equal set
of channels. We use \(r̃) to level down the indexes of the channels in r̃, as we can see in the following
definition: \(sϕ1

1 , . . . , s
ϕn
n ) = sϕ1 , . . . , s

ϕ
n , where ϕ = min(ϕ1, . . . , ϕn).

The need of this operation is made clear by Example 2.
Rule [RThr] applies when an exception has been thrown and therefore it can be found in Σ. In

this case, the try block reduces to the handler, where all the queue levels are updated. Now let us
explain the side condition. The try block reduces only if no inner exception can be caught (i.e., if
throw(r̃′) ∈ Σ): this would mean that another peer could be executing the internal handler. In order to
be consistent with it, the current process must catch the same internal exception before catching the
external one. Then, when all the internal exceptions have been caught, even if a throw(r̃′) does occur
in Σ, it can be ignored, and the handler corresponding to the exception on r̃ can take over.

Rule [ZThr] deals with the cases in which the default process in a try block has been reduced to
0 and no pending exception occurs in Σ. No such completed try-catch block can be reduced to the
inaction, until every other peer has completed the corresponding try-block and are ready to continue
the execution. The reason is that even if one try-block has terminated, one among its communicating
peers could throw an exception and then the handlers have to interact. So we consider the try-catch
blocks in each peer at the same level, when every peer has terminated then they all can go on. Since
we consider only well-typed processes, and every process is type-checked with respect to the same
global type, it is safe to assume that if we have n communicating peers, then there will be n try-catch
blocks to be synchronized.

Rules for conditionals and recursive definitions are standard. Moreover, as usual, we consider
processes modulo structural congruence. Besides the standard structural rules, we define the following
one: try(r̃){(νn)P} catch {Q} ≡ (νn)try(r̃){P} catch {Q} if n < fn(Q).

The complete set of rules can be found in [3].

I Example 2. Let us consider the reduction of the following process:
∅ ` try(s1, s2){try(s1){throw(s1) | P} catch {throw(s1, s2)}} catch {Q} |

try(s1, s2){throw(s1, s2) | try(s1){P} catch {Q′}} catch {Q′′}
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In the first line, in the inner try-catch block both the default process and the handler contain a throw
and the latter’ is on (s1, s2). In this way we can model a situation in which if the handling of the
enclosed exception fails, the outer block is alerted to handle the failure. The default process in the
second line contains a throw on (s1, s2).
Case 1 Let us suppose that throw(s1) is raised first, by applying rule [Thr]:

throw(s1) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){throw(s1, s2) | try(s1){P} catch {Q′}} catch {Q′′}

Then throw(s1, s2) is raised and we apply [Thr] again:

throw(s1), throw(s1, s2) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){try(s1){P} catch {Q′}} catch {Q′′}

Then, by rule [RThr], the only exception that can be thrown is the one corresponding to throw(s1),
since, because of the side condition, the external try-blocks on (s1, s2) cannot reduce:

throw(s1), throw(s1, s2) ` try(s1, s2){throw(s1
1, s2) | P′{s1

1/s1}} catch {Q} |
try(s1, s2){Q′{s1

1/s1}} catch {Q′′}

Notice that, because of the queue level updating, the throw that was part of the inner handler is now
throw(s1

1, s2). If something goes wrong in handling the inner exception, throw(s1
1, s2) must reduce

even if the level of the channel arguments and of the outer try block do not match: this example shows
that the mismatch is due to the fact that some of the channels were involved in a failed exception
handling. To balance the levels of the channels in the throw we use the operation \ which flats all
levels to the minimum.
Now we apply rule [Thr] again. Since throw(\(s1

1, s2)) = throw(s1, s2), the environment Σ does not
change:

throw(s1), throw(s1, s2) ` try(s1, s2){P′{s1
1/s1}} catch {Q} | try(s1, s2){Q′{s1

1/s1}} catch {Q′′}

Finally, by rule [RThr], the try blocks on s1, s2 can reduce:

throw(s1), throw(s1, s2) ` Q{s2
1, s

1
2/s1

1, s2} | Q′′{s2
1, s

1
2/s1

1, s2}

Notice that the channels in Q and Q′′ are all at the same level.

Case 2 Now let us suppose that throw(s1, s2) is raised first:

throw(s1, s2) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){try(s1){P} catch {Q′}} catch {Q′′}

We apply rule [Thr] again to the inner throw(s1). Notice that throw(s1) is not added to the environment
since an enclosing throw is already present.

throw(s1, s2) ` try(s1, s2){try(s1){P} catch {throw(s1, s2) | P′}} catch {Q} |
try(s1, s2){try(s1){P} catch {Q′}} catch {Q′′}

then rule [RThr] is applied twice:

throw(s1, s2) ` Q{s1
1, s

1
2/s1, s2} | Q′′{s1

1, s
1
2/s1, s2}

.

4 Typing Structured Global Escapes

This section extends the type system in [9] to exception handling constructs. In particular the goals of
the system are:
(i) to check that the enclosed try-catch block is listening on a smaller set of channels. We want

to enforce this condition to enable the independence of the components w.r.t. exceptions: if an
exception is captured by an inner component, this is not going to affect the enclosing ones.
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344 Global Escape in Multiparty Sessions

(ii) to check that no session request or accept occurs inside a try-catch block as we explained in
Section 2.

(iii) to check that throws were written by the programmer in the right position, that is a throw(r̃)
must be at the top level of the default process in a try block on the channels r̃.

For lack of space we cannot be self contained w.r.t. the original system so we just describe the new
features. The full type system can be found in [3].

Types. In defining the syntax of our types, we distinguish between global types, ranged over by G,
which describe the whole communication of a multiparty session, and end-point types, ranged over
by A, which describe the communication from the point of view of a single participant.

The grammar of a global type is as follows:

Partial γ ::= p1 → p2 : k〈S̃ 〉 | p1 → p2 : k{li : γi}i∈I | {[k̃, γ, γ]} | γ; γ | γ ‖ γ | µt.γ | t | ε

Global G ::= γ; end

Sorts S ::= bool | . . . | 〈G〉

A global type G is an ended partial type γ. The type p1 → p2 : k〈S̃ 〉 says that participant p1 sends
values of sort S̃ to participant p2 over the channel k (represented as a natural number). The type
p1 → p2 : k{li : γi}i∈I says that participant p1 sends one of the labels li to participant p2 over the
channel k. If the label l j is sent, the conversation continues as the corresponding γ j describes. The
type {[k̃, γ, γ′]} says that the conversation specified by γ is performed, unless some exception involving
channels k̃ arises. In this case the conversation γ′ takes over. Moreover, types can be composed by
sequential and parallel composition, and they can be recursively defined.

The grammar of an end-point type is as follows:

Partial action α, β ::= k!(S̃ )| k?(S̃ ) send and receive
| k⊕{li : αi}i∈I | k&{li : αi}i∈I selection and branching
| {[k̃, α, α]} try-catch
| µt.α | t recursion and type variable
| ε | α;α inaction and sequencing

Action A, B ::= α | α; end | end

As in [9], a session type records the identity number of the session channel it uses at each action type,
and we use the located type A@p to represent the end-point type A assigned to participant p.
Types k!(S̃ ) and k?(S̃ ) represent output and input of values of type S̃ at sk. Types k ⊕ {li : αi}i∈I and
k&{li : αi}i∈I describe selection and branching: the former selects one of the labels provided by the
latter, say li at k then they behave as αi . The remaining types are a local version of the global ones.

Projection. As usual we define a projection that given a global type G and a participant p returns the
end-point corresponding to the local behaviour of p. We write G � p to denote such a projection.

The projection is defined first over global types and then over partial global types, that is (γ; end) �
p = (γ �� p).end.

The exception type is projected in every participant as a local exception type, even if the participant
has no activity in the try-catch block (we call these inactive blocks dummy try-catch). This to guarantee
that the structure of try-catch blocks is the same in each process.

({[k̃, γ1, γ2]}) �� p = {[k̃, (γ1 �� p), γ2 �� p]} if ch(γi) ⊆ k and
(
{[k̃′, γ′1, γ

′
2]} ∈ γi implies k̃′ ⊂ k̃

)
When the side condition does not hold the map is undefined.

Typing Rules. Type assumptions over names and variables are stored into the Standard environment Γ

that stores type assumptions over names and variables, and is defined by Γ ::= ∅ | Γ, u : S | Γ, X : S̃ Ã,
and into the Session environment ∆ that records session types associated to session channels and is
defined by ∆ ::= ∅ | ∆, k̃ : {A@p}p∈I .
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bNamec
Γ, a : S ` a : S

∆ end only
bInactc

Γ ` 0 . ∆ z̃

Γ, a : 〈G〉 ` P . ∆ z̃
bNResc

Γ `(νa)P . ∆ z̃

Γ ` a : 〈G〉 Γ ` P . ∆ ∪ {s̃ : (G � 1)@1} − |s̃| = |sid(G)|
bMReqc

Γ ` a[2..n](s̃).P . ∆−
Γ ` a : 〈G〉 Γ ` P . ∆ ∪ {s̃ : (G � p)@p} − |s̃| = |sid(G)|

bMAccc
Γ ` a[p](s̃).P . ∆−

∀ j.Γ ` e j : S j
bSendc

Γ ` sϕk !〈ẽ〉 . {s̃ : kϕ!(S̃ )@p} z̃

Γ, x̃ : S̃ ` P . ∆ ∪ {s̃ : A@p} z̃
bRcvc

Γ ` sϕk ?(x̃).P . ∆ ∪ {s̃ : kϕ?(S̃ ); A@p} z̃

Γ ` P . ∆ ∪ {s̃ : A j@p} z̃ j ∈ I
bSelc

Γ ` sϕk C l j.P . ∆ ∪ {s̃ : kϕ ⊕ {li : αi}i∈I@p} z̃

Γ ` Pi . ∆ ∪ {s̃ : Ai@p} z̃ ∀i ∈ I
bBranchc

Γ ` sϕk B {li : Pi}i∈I . ∆ ∪ {s̃ : kϕ&{li : αi}i∈I@p} z̃

Γ ` P . {s̃ : α@p} z̃ Γ `Q . {s̃ : β@p} z̃′

ch(P) ⊆ z̃ (z̃′ , −)⇒ z̃ ⊂ z̃′
bTryc

Γ ` try(z̃){P} catch {Q} . {s̃ : {[z̃, α, β]}@p} z̃′

\(r̃) = \(z̃)
bThrowc

Γ ` throw(r̃) . ∅ z̃

Γ ` P . ∆ z̃ Γ `Q . ∆′ z̃ ∆ � ∆′

bParc
Γ ` P | Q . ∆ ◦ ∆′ z̃

Γ ` P . ∆ z̃ Γ `Q . ∆′ z̃
bSeqc

Γ ` P; Q . ∆ · ∆′ z̃

Γ ` e : bool Γ ` P . ∆ z̃ Γ `Q . ∆ z̃
bIfc

Γ ` if e then P else Q . ∆ z̃

Γ ` ẽ : S̃ ∆ end only
bVarc

Γ, X : S̃ Ã ` X〈ẽs̃1..s̃n〉 . ∆, s̃1 : A1@p1, .., s̃n : An@pn z̃

Γ, X : S̃ Ã, x̃ : S̃ ` P . s̃1 : A1@p1, .., s̃n : An@pn z̃ Γ, X : S̃ Ã `Q . ∆ z̃
bDefc

Γ ` def X(x̃s̃1..s̃n) = P in Q . ∆ z̃

Figure 4 Typing rules

The typing judgement has the form: Γ ` P . ∆ z̃, where P is the process to be typed and z̃ refers
to the channels on which the enclosing try-catch block is listening for an exception. We need to take
track of those channels in order to ensure (i), (ii) and (iii).

The complete set of typing rules is given in Figure 4. All the rules are standard w.r.t. multiparty
sessions theory, except for the two rules bTryc and bThrowc.

In rule bTryc the default process P and the exception handler Q are both typed with a session
environment composed by s̃ channels only, this is to guarantee that no other communications on
channels belonging to some other sessions would be interrupted due to the raising of an exception.
The channels z̃′ refers to the channels on which an eventual external try in listening for exceptions.
Notice that z̃′ may be an empty sequence, that is the try-block that is being type-checked is at the
top level. The default process P considers in its typing the sequence z̃ of the current try-block, while

FSTTCS 2010



346 Global Escape in Multiparty Sessions

the exception handler consider the sequence z̃′ of the external try-catch block: this is because when
executing the exception handler would be directly enclosed in the external try-catch block. Notice
that if z̃′ is different from the empty sequence (z̃′ , −) then z̃ must be a strict subsequence, this is to
guarantee that the current try-catch block is listening on a smaller set of channels w.r.t. the enclosing
one. The rule also checks that the channels on which P is communicating (ch(P)) are included in z̃:
this is to ensure that all the channels involved in some communication in P will be notified of the
exception.

In rule bThrowc we check that a throw(r̃) has been written at the right position: it must be at the
top level of a default process in a try-block on channels r̃. That is the z̃ recorded in the judgement
must be the same as r̃ (up to the \ operation). Note that given closed annotated processes (i.e. bound
variables and names are annotated by types), the type checking is decidable (since checking coherent
of G is polymonial with respect to the size of G [7]).

Properties. The type discipline ensures, as in previous session types literature [8, 9]:
the lack of standard type errors in expressions (Subject Reduction):
communication error freedom (Communication Safety),
the interactions of a typable process exactly follow the specification described by its global type
(Session Fidelity), and
once a communication has been established, well-typed programs will never stuck at communica-
tion points (Progress)

I Theorem 4.1 (Subject Congruence and Reduction). Suppose Γ ` P . ∅. Then (1) P ≡ P′ implies
Γ ` P′ . ∅; and (2) P→ P′ implies Γ ` P′ . ∅.

For the proof, see [3]. From this theorem, Session Fidelity Theorem (the interaction of a typable
process exactly follow the specification described by its global type) is straightforward. We also state
the two theorems which are derived following the technique developed in [9]; see [3] for the proofs.

Below we write P〈〈r!〉〉 (resp. P〈〈r?〉〉) if P contains an emitting (resp. receiving) active prefix at r
up to ≡, and we say that P has a redex at r if it has an active prefix at r among its redexes (Section 5
in [9] gives further details for the redexes). The reduction context E is defined in Section 3.

I Theorem 4.2 (Communication Safety). Suppose Γ ` P .r̃ ∆ s.t. ∆ is coherent and P has a redex at
free sϕ. Then:

1. (linearity) P ≡ E[s[ϕ] : h̃] such that either

a. P〈〈sϕ?〉〉, sϕ occurs exactly once in E and h̃ , ∅; or
b. P〈〈sϕ!〉〉 and sϕ occurs exactly once in E; or
c. P〈〈sϕ?〉〉, P〈〈sϕ!〉〉, and sϕ occurs exactly twice in E.

2. (error-freedom) if P ≡ E[R] with R〈〈sϕ?〉〉 being a redex:

a. If R ≡ sϕ?(ỹ); Q then P ≡ E′[s[ϕ] : ṽ · h̃] for some E′ and |ṽ| = |ỹ|.
b. If R≡ sϕ B {li : Qi}i∈I then P≡E′[s[ϕ] : l j ·h̃] for some E′ and j∈ I.

The type discipline ensures also the progress property. A process is simple when each prefixed
subterm in it has only a unique session.

I Definition 4.3 (simple). A process P is simple when it is typable with a type derivation where the
session typing in the premise and the conclusion of each prefix rule is restricted to at most a singleton.

In a simple well-linked P, each session is never hindered by other sessions nor by a name prefixing:

I Definition 4.4 (well-linked). We say P is well-linked when for each P→∗ Q, whenever Q has an
active prefix whose subject is a (free or bound) shared name, then it is always part of a redex.
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Figure 5 The coordinated action remove-plate.

Then the following theorem states that a progress holds for a simple process with a queue for each
session channel, such that each prefixed subterm in it has only a unique session and such that each
session is never hindered by other sessions nor by a name prefixing.

I Theorem 4.5 (Progress). Let P be a simple and well-linked program and Γ ` P . ∅. Then P has
the progress property in the sense that P→∗ P′ implies either P′ ≡ 0 or P′ → P′′ for some P′′.

5 Coordinated Exception Handling and Resolution: an Example

Coordinated Atomic Actions. In the context of distributed object systems, Coordinated Atomic
Actions (CAs) [13] represent conversation units w.r.t. resource access and recovery activities, in
the sense that when an exception is thrown inside a CA the handling is confined within the CA
participants, unless something goes wrong during exception handling. Namely two kind of exceptions
may be raised: internal exceptions E which can be handled locally and external exceptions ε that
must be signalled to the environment (the enclosing action or the whole system). Disjoint subsets of
participants may join nested CAs and, consequently, nested exception contexts. Exceptions can be
propagated along chains of nested actions: if the local handling of an exception E is not successful,
then a corresponding exception ε will be thrown to the enclosing action. When one or more exceptions
are raised in a CA the following actions are performed: (i) the cooperating threads are informed, (ii)
nested actions are aborted because E has been thrown outside them, (iii) during abortion the handler
may signal other exceptions, (iv) an algorithm determines which exception must be covered.

CAs have been adapted in [14] to model fault tolerant Web Services: the resulting Web Service
Composition Actions (WSCA) relax transactional requirements over external objects since they
cannot always be enforced in open systems. In the case of web services these transactional properties
can be abstracted and left optional in the various services.

We model the cooperating threads in a CA as a set of participants {p}{i∈I} performing a [Link]:
the established session represents the outermost CA while nested CAs are implemented by try-catch
blocks involving only a subset of threads/channels. For each (nested) CA we implement of an
“exception resolver“ participant. This process is inactive during normal execution, but when one or
more exceptions are thrown it collects the corresponding messages from the cooperating threads,
decides which exception must be covered, and then sends the corresponding label to all participants.
In the following we assume the resolver uses channel 1.
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Let {Eh}h∈H and {εk}k∈K be sets of internal and external exception respectively and

(νs̃′)
(
... | try(s̃){0} catch {Q1} | try(s̃){P2} catch {Q2} |

... | try(s̃){Pn} catch {Qn} | s1 : � | ... | sm : �

)
represent a CA where s̃ ⊂ s̃′ = {s1, ...sm}: s̃′ is the set of channels involved in the enclosing action
while s̃ are the channels involved in the nested one (remember that nested actions, i.e. nested try-catch
blocks can only involve proper subsets of channels).
The handler of the resolver process is:

Q1 = try(s̃){s1?(x2). . . . s1?(xn).} catch {0}; Q1
G (1)

where Q1
G = try(s̃){ algorithm determining h ∈ H. s1!〈(h)〉 . . . s1!〈(h)〉} catch {0} (2)

The handlers Q j for j ∈ {2, . . . , n} have the shape:

Q j=try(s̃){if test then s1!〈h〉 else s1!〈0〉} catch {0}; Q j
G (3)

and Q j
G=try(s̃){s1?(x).; P j} catch {throw(s̃′)}, (4)

where test checks whether exception h has been raised by the current component.
Production Cell. We now implement a part of a case study modelling an industrial Production
Cell. This example was proposed as a challenging case study by the FZI in 1993 [12]. The pro-
duction cell consists of some devices (belts, elevating rotary table, press and rotary robot with
two orthogonal extensible arms) associated with a set of sensors, and its task is to get a metal
plate from its “environment” via the feed belt, transform it into the forged plate by using a press,
and return it to the environment via the deposit belt. For a detailed explanation of the model see
[16]. Here we just model the part of the system responsible of removing the plate from the press.
The components we are considering are Robot, RobotSensor, Press and PressSensor abbreviated
respectively as R, RS, P, PS. They are cooperating in the remove-plate action. There are two nested
actions: turn-robot-and-extend-arm abbreviated as TR and grab-plate-from-press abbreviated as
GP. For the sake of simplicity we assume that the exceptions that can be raised are Robot-failure,
Robot-sensor-failure, Press-failure, Press-Sensor-failure abbreviated respectively as RF, RSF,
PF, PSF. The handlers Q are indexed by the participants: QRS corresponds to the handler associated to
the robot-sensor. In case of problems during exception handling the control is passed to the enclosing
action by signalling one of the following exceptions: BadRobotRecovery, BadRobotSensorRecovery,
BadPressRecovery and BadPressSensorRecovery abbreviated respectively as BR, BRS, BP, BPS.

The enclosing action remove-plate uses channels s1, s2. Concerning nested actions channel s1 is
used in action turn-robot-and-extend-arm while channel s2 is used in action grab-plate-from-press.
We recall that we write s as a shorthand for s0. The action remove-plate is then implemented as in
the following (where we omit dummy try-catch):
ResolverTR | Robot | RobotSensor | Press | PressSensor | ResolverGP | s1 : L1 | s2 : L2 | s3 : L3

where
ResolverTR = try(s1, s2){try(s1){0} catch {RTR}} catch {0}
ResolverGP = try(s1, s2){try(s1){0} catch {RGP}} catch {0}
Robot = try(s1, s2){try(s1){PR} catch {QR}} catch {Q′R}
RobotSensor = try(s1, s2){try(s1){PRS } catch {QRS }; try(s2){P′RS } catch {Q′RS }} catch {Q′′RS }

Press = try(s1, s2){try(s2){PP} catch {QP}} catch {Q′P}
PressSensor = try(s1, s2){try(s2){PS } catch {QPS }} catch {Q′PS }.

Let us notice that each nested action has a corresponding resolver. Let us focus on Robot | RobotSensor
(where we put P′ = try(s2){P′RS } catch {Q′RS }) and suppose there is a failure in the Robot and concur-
rently in the Robot-sensor, that is:
ResolverTR | Robot | RobotSensor −→∗

ResolverTR | try(s1, s2){try(s1){throw(s1); P′′} catch {QR}} catch {Q′R} |
try(s1, s2){try(s1){throw(s1); P′′′} catch {QRS }; P′} catch {Q′RS }

We apply rule bThrc and bRThrc twice obtaining:
throw(s1) ` ResolverTR | try(s1, s2){QR{s1

1/s1}} catch {Q′R} |
try(s1, s2){QRS {s1

1/s1}} catch {Q′RS }
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After the substitution {s1
1/s1} we have:

throw(s1) ` try(s1, s2){try(s1
1){s1

1?(x1); s1
1?(x2)} catch {0}; QG{s1

1/s1}} catch {0} |
try(s1, s2){try(s1

1){if . . .} catch {0}; QR
G{s

1
1/s1}} catch {Q′R} |

try(s1, s2){try(s1
1){if . . .} catch {0}; QRS

G {s
1
1/s1}; P′} catch {Q′RS } | s1[1] : (∅),

we apply both rule bSendc and rule bRecc twice:
throw(s1) ` try(s1, s2){try(s1

1){0} catch {0}; QG{s1
1/s1}} catch {0} |

try(s1, s2){try(s1
1){0} catch {0}; QR

G{s
1
1/s1}} catch {Q′R} |

try(s1, s2){try(s1
1){0} catch {0}; QRS

G {s
1
1/s1}; P′} catch {QRS } | s1[1] : (∅).

Now the execution goes on with the general handlers processes:
try(s1, s2){try(s1

1){ algorithm determining h ∈ H. s1!〈(h)〉} catch {0}} catch {0} |
try(s1, s2){try(s1

1){s1?((x)); informing external objects} catch {throw(s1
1, s2)}} catch {QR} |

try(s1, s2){try(s1
1){s1?((x)); informing external objects; P′} catch {throw(s1

1, s2)}} catch {QRS } | s1[1] : (∅),

the resolver reads the value of the received labels, calculates which exception must be covered
and sends the corresponding label to the other processes. As explained above the handler of QG’s
processes is a throw on the outer set of channels: the reason is that if an exception is raised during the
general handler execution, the exception must be recovered by the enclosing action. Now there are
two cases:

1. the execution of the general handlers terminates without problems. In this case the execution
goes on with the next nested action grab-press-from-plate in which RobotSensor, Press and
PressSensor cooperate:

throw(s1) ` try(s1, s2){0} catch {Q′R} | try(s1, s2){P′} catch {Q′RS }

Press | PressSensor | s1 : . . .

2. something goes wrong during the general handlers execution (for instance QR
G −→

∗ throw(s1
1)).

Then the corresponding handler alerts the enclosing action by signalling a throw on channels
s1

1, s2:

throw(s1) ` try(s1, s2){try(s1
1){throw(s1

1)} catch {throw(s1
1, s2)}} catch {Q′R} |

try(s1, s2){try(s1
1){QRS

G } catch {throw(s1
1, s2)}; P′} catch {Q′RS },

we apply rule bThrc:
throw(s1), throw(s1

1) ` try(s1, s2){try(s1
1){0} catch {throw(s1

1, s2)}} catch {Q′R} |
try(s1, s2){try(s1

1){QRS
G } catch {throw(s1

1, s2)}; P′} catch {Q′RS },

we apply rule bRThrc twice:
throw(s1), throw(s1

1) ` try(s1, s2){throw(s1
1, s2)} catch {Q′R} |

try(s1, s2){throw(s1
1, s2); P′} catch {Q′RS }

we apply rule bThrc twice with:
throw(\(s1

1, s2)) = throw(s1, s2)
throw(s1), throw(s1

1), throw(s1, s2) ` try(s1, s2){0} catch {Q′R} | try(s1, s2){P′} catch {Q′RS },

Coming back to the complete action remove-plate:
throw(s1), throw(s1

1), throw(s1, s2) ` QR{s2
1, s

1
2/s1

1, s2} | QRS {s2
1, s

1
2/s1

1, s2} |

QP{s2
1, s

1
2/s1

1, s2} | QPS {s2
1, s

1
2/s1

1, s2}.

In this case the execution goes on handling an external exception i ∈ {BR,BRS,BP,BPS}. Let
us notice that the following nested action, grab-plate-from-press, is not executed because of a
failure involving the enclosing action.

Correctness and complexity. Let N the number of interacting participants, Tnmax be the maximum
time of message passing between participants, Treso be the upper bound of the time spent in resolving
current exceptions, Tabort be the maximum possible time for a thread to abort one nested CA, Tthrow

the cost for signalling the throw (namely to put it in the Σ), nmax be the maximum number of nesting
levels of CAs (if no nesting, then nmax = 0), ∆nmax be maximum possible time of handling an
(resolving) exception. We share with [16] the following results:
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1. Any participant p, will complete exception handling ultimately in at most T , where T = (nmax +

3)Tnmax + nmax · Tabort + (nmax + 1)(Treso + ∆nmax) + Tthrow.
2. For a given CA A, if no exception is raised in any enclosing action of A, then no more new

exceptions will be raised within A once the exception resolution starts.
3. If multiple exceptions are raised concurrently, an ultimate resolving exception that covers all the

exceptions will be generated by the proposed algorithm.
4. The number of messages is independent of the number of concurrent exceptions. Taking the

nesting of actions into account, in the worst case, our approach requires exactly nmax(N − 1)
messages+ N throws. (Let us notice that in [16] the algorithm performs in O(N2) messages).

6 Conclusions

We have introduced a type-safe global escape mechanism for handling unexpected or unwanted
conditions changing the default execution of distributed communicational flows, by means of a
collection of asynchronous local exceptions. All the involved conversation parties are guaranteed of
the communication safety even after an unforeseen event has been encountered. We have defined a
calculus and a type discipline based on the multiparty session [9], and show that the multiparty session
types provide a rigorous discipline which can describe and validate complex exception scenarios
such as criss-crossing global interactions and fault tolerance for distributed cooperating threads. The
flexibility was actually realised allowing local exceptions to be thrown at any stage of the conversation
and to any subset of participants. Concerning the criss-cross example our implementation of the
protocol never moves to the situation where the Seller sends a confirmation to the Client but the Client
aborts the interaction or the Client accepts the wrong loan offer from the Bank.

Related work. Exception handling has been studied for many programming languages including
communication-based ones: in distributed object-oriented programming [13, 16], in particular [16]
presents the algorithm we implemented as an example in Section 5; several service-oriented calculi
(e.g. [2, 11, 15]) include mechanisms for compensation or termination handling, but none of those
mechanisms provide a means for coordinating all involved peers that move together to a new stage
of the conversation when the unexpected condition is encountered. The paper [10] compares the
expressive power of different approaches to compensation; w.r.t. their classification our approach has
a static compensation definition, is nested, and has no protection operator. In the context of session
types theory, [4, 6] proposed interactional exceptions, which inspired our work, for binary sessions
and for web service choreographies. The approach described in [4, 6] is significantly different from
ours, due to the fact that: (i) exceptions are modelled as special messages exchanged by the parties;
(ii) try-catch blocks cannot be at any point in the program but only after a session connection: this
means that for a conversation a default behaviour and an exceptional one are defined, while in our
calculus try-catch blocks can occur at any point, even nested; and (iii) in those calculi nested try-catch
blocks come from nested session connections, and inner exception handlers are refinements of outer
ones, while in our case nested try-catch blocks always belong to the same conversation (we forbid
session connections inside a try block) and inner exceptions always involve less peers than outer
exceptions.

Future work. For the sake of simplicity, so far we have not included in the calculus an important
mechanism in the context of session types: session delegation. Even if session delegation seems to
be less interesting in the multiparty sessions context than in the binary sessions one, because of the
presence of several participants instead of just two, we believe this mechanism is worth of further
investigation. Another feature that seems promising w.r.t. practical examples is the capability of
distinguishing among different kinds of exceptions (with corresponding different kinds of handlers):
the calculus can be easily extended in this direction by putting the right constraints (i.e. all participants
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must be able to handle the same set of exceptions). Finally we plan to integrate with multiparty logic
work [1] by which we can write a wide range of global escape scenarios which require fine-grained
behavioural specifications given by logical assertions, and still ensure communication safety and
progress.

Acknowledgments. We thank the FSTTCS reviewers for useful comments. The members of WS-
CDL (http://www.w3.org/2002/ws/chor/) and Scribble (http://www.jboss.org/scribble) (in particular,
Gary Brown, Kohei Honda and Nickolas Kavantzas) provided many use cases which motivated us to
study this subject: we used some of them as the main examples of this paper.
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