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Abstract. We introduce a concise pi-calculus with directed choices and develop
a theory of subtyping. Built on a simple behavioural intuition, the calculus offers
exact semantic analysis of the extant notions of subtyping in functional program-
ming languages and session-based programming languages. After illustrating the
idea of subtyping through examples, we show type-directed embeddings of two
known subtyped calculi, one for functions and another for session-based com-
munications. In both cases, the behavioural content of the original subtyping
is precisely captured in the fine-grained subtyping theory in the pi-calculus. We
then establish full abstraction of these embeddings with respect to their standard
semantics, Morris’s contextual congruence in the case of the functional calculus
and testing equivalence for the concurrent calculus. For the full abstraction of
the embedding of the session-based calculus, we introduce a new proof method
centring on non-deterministic computational adequacy and definability. Partially
suggested by a technique used by Quaglia and Walker for their full abstraction
result, the new proof method extends the framework used in game-based se-
mantics to the May/Must equivalences, giving a uniform proof method for both
deterministic and non-deterministic languages.

1 Introduction

A subtyping is a form of polymorphism where we can assign to a program a type
which is more inclusive than the original type of the program, called subsumption.
This notion of inclusion forms a partial order on types, where “more inclusive”
may most simply be interpreted as having more inhabitants satisfying the type
specification. In the standard subtyping theories, this inclusiveness is structurally
calculable from the construction of types, such as through the well-known variance
rule for arrow types, records and variants, cf. [2]. The notion of subtyping plays a
key role in the practice of programming languages [20].

In this paper we study a simple theory of subtyping for interacting processes
and show that it subsumes extant notions of subtyping in programming languages
through encoding. We first introduce a concise pi-calculus with directed choices
and linear types, and develop a theory of subtyping purely based on these choices.
The resulting calculus is called π{1,1,ω} for brevity. After illustrating a simple be-
havioural intuition behind the subtyping theory through examples, we show that
the calculus offers exact semantic analysis of the existing notions of subtyping
in functional programming languages and session-based programming languages.
First we introduce type-directed embeddings of two known subtyped calculi, one
for functions [22] (which uses Milner’s encoding [16] but with novelty in the treat-
ment of sums) and another for session-based communications [25, 13]. In both
cases, the behavioural content of the original subtyping is precisely captured in
the fine-grained subtyping theory in the pi-calculus.

We then establish full abstraction of each embedding with respect to a stan-
dard semantics of the target calculus, Morris’s contextual congruence in the case



of the functional calculus and the testing/failure equivalence for the concurrent
calculus. The full abstraction, together with the concision of the encoding, may
offer an exact interactional elucidation of these existing subtyping notions. For
the full abstraction of the embedding of the session-based calculus, we introduce
a new proof method centring on non-deterministic computational adequacy and
definability. Partially suggested by a technique used by Quaglia and Walker for
their full abstraction of the polyadic synchronous π-calculus in the monadic asyn-
chronous π-calculus [23], as well as by those from game-based semantics [15], the
new proof method is uniform (the method for non-deterministic languages spe-
cialises the one for the traditional, deterministic languages), has generality (the
type structure of a meta calculus, here the linear subtyped π-calculus, can be dis-
joint from that of an object language, here the λ-calculus and the session calculus),
and is generic (as far as some key properties hold for adequacy and definability, it
automatically gives full abstraction).

We summarise some of the main technical contributions of the work.

1. A concise subtyped π-calculus with linear typing (π{1,1,ω}), giving rise to a
simple and general theory of subtyping, whose key properties we establish.

2. Type-directed embeddings of a call-by-value λ-calculus with record and vari-
ant subtyping and a concurrent calculus with session subtyping in π{1,1,ω},
obtaining full abstractions. For the latter we use a new proof method centring
on non-deterministic computational adequacy and definability.

To our knowledge, this is the first full abstraction results for these subtyped calculi
in the π-calculus: further, the corresponding results have not been known in game-
based semantics (which is in close corresponding with the π-calculus, cf. [12, 14,
9]). The semantically sound encoding of the session calculus itself looks new. In
another vein, this may be the first full abstraction result for the interactional
representation of a non-trivial, fully non-deterministic concurrent calculus.

In the rest of the paper, Section 2 introduces π{1,1,ω} and develops the theory
of subtyping, illustrating its intuition through examples and establishing its key
properties. Section 3 fully abstractly embeds λΠ,Σ,v in π{1,1,ω}. Section 4 fully ab-
stractly embeds the session-calculus from [13] with subtyping in π{1,1,ω}. Section 5
discusses related works. The full proofs can be found in [7].

2 A concise, subtyped π-calculus

In the following, we use the shortcut ẽ for a vector (e1, . . . , ek) for some integer k.

Processes and Reduction. We use a, b, c, . . . , u, v, . . . , x, y to denote names, or
channels, X,Y, . . . for agent variables, and l, . . . for labels. Syntax for processes of
π{1,1,ω}, our linear-affine π-calculus (cf. [3, 28]), is given by the following grammar.

P ::= (P | P ) | 0 | X〈ṽ〉 | (µX(x̃).P )〈ṽ〉 | u⊕m l〈ṽ〉 | u&m
i∈I{li(x̃i).Pi} | (νu) P

where m ::= 1 | 1 | ω is called a mode. The mode can be either linear 1, affine 1 or
replicated ω. We use a standard recursion (µX(x̃).P )〈ṽ〉. The two prefixes of our
calculus are the asynchronous output (or selection) u⊕m l〈ṽ〉 which is the output
of the values ṽ on the channel u as well as selecting the label l, and the input
(or choice) u&m

i∈I{li(x̃i).Pi} which offers on channel u several branches to choose
from, labelled by the lis, each with continuation Pi. We use a standard structural
congruence ≡ on π{1,1,ω}, described in Figure 1.
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P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3) P | 0 ≡ P

(νa)(νb) P ≡ (νb)(νa) P (νa) (P1 | P2) ≡ ((νa) P1) | P2 if a not free in P2

(µX(x̃).P )〈ṽ〉 ≡ P{ṽ/x̃}{µX(x̃).P/X}

Fig. 1. Structural congruence rules.

(cong)
Q ≡ P P → P ′ P ′ ≡ Q′

Q→ Q′

(comm)
E[u⊕1,1 lj〈ṽ〉 | u&1,1

i∈I{li(x̃i).Pi}]→ E[Pj{ṽ/x̃i}]

(trig)
E[u⊕ω lj〈ṽ〉 | u&ω

i∈I{li(x̃i).Pi}]→ E[Pj{ṽ/x̃i} | u&ω
i∈I{l}i(x̃i).Pi]

Fig. 2. Reduction rules

The rules to generate the reduction relation → are given in Figure 2, using
evaluation contexts (à la Wright-Felleisen) given by: E ::= [ ] | E | P | (νu) E.
Henceforth→+ (resp.→∗) denotes the transitive (resp. reflexive-transitive) closure
of →. We also use 6→ to notify that a process cannot reduce further.

Types. Types consist of base types (integers, booleans and unit), the choice and
selection types (together called interaction types), and recursive types. The choice
types can be seen as a generalisation of input types (as used in [3]); the selection
types as a generalisation of output types. Their branching structure plays a key role
in our subtyping theory. The syntax for types is given by the following grammar:

T ::= &m
i∈I{li(T̃i)} | ⊕mi∈I{li(T̃i)} | µt.T | t | uc | N | B | F

where N, B andF are the types for integers, booleans and the unit, respectively. We
assume recursive types are contractive (type variables occur guarded) [20]. Closed
types are types without free type variables. uc, never occurring in another type,
means a pair of dual linear-affine channels are present and is now“un-composable”.
Types are considered up to the standard tree isomorphisms.

If T has form &m
i∈I{li(T̃i)} (resp. ⊕mi∈I{li(T̃i)}), the mode of T , mod(T ), is m.

For brevity we shall often use shortcuts for prefixes and types when their
branching is reduced to a single branch. Below we set x1 = x, P1 = P and l1 = lone

(lone is a distinguished label we fix).

u(x).P = u&1
i∈{1}{li(xi).Pi} !u(x).P = u&ω

i∈{1}{li(xi).P}

u〈v〉 = u⊕m lone〈v〉 when u has type ⊕mi∈{1} {li(Ti)}

↑m (T ) = ⊕mi∈{1}{li(T )} ↓m (T ) = &m
i∈{1}{li(T )}

Example 1 (Intuitive meaning of types)

1. ↑1 (↓1 (N)) indicates a behaviour at an output channel, through which a process
surely sends a channel exactly once; and through that channel, surely receiving
a natural number (considered to be a constant channel) exactly once.
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2. &1
i∈{1,2}{l1(N), l2(↑1 (↓1 (N)))} indicates a behaviour of exactly once receiving

one of the two options, l1 and l2, in the former with an integer, in the latter
with a channel which the process will use as specified in 1 above.

3. &1
i∈{1,2}{l1(N), l2(↑1 (↓1 (N)))} is the same behaviour as 2 above, except it

receives an initial option at most once, by the modality 1.

The interaction types form a self-contained universe in that base types can be
considered as syntactic sugar, through encodings. There are several faithful (and
semantically isomorphic) encodings, of which we present a simple and convenient
one. We write T ◦, if T is a base type, for the encoding of T as an interaction type.

N◦
def
= ↓ω (⊕1

i∈N{i()}) B◦
def
= ↓ω (⊕1

i∈B{i()}) F◦
def
= ↓ω (⊕1

i∈F{i()})

where we use the labels which represent natural numbers, booleans and the single
element of the unit. Each describes a behaviour which can be enquired about its
content and responds with one. We then extend ( )◦ so that when a base type is
used for output, we use the above encoding, e.g. (↑ (B))◦ =↑ (B◦), and for input,
its dual, e.g. (↓ (B))◦ =↓ (B◦), where T is defined below.

A key idea in interaction types is duality, defined co-inductively [21] to capture
recursion. Note by taking recursive types modulo their tree isomorphism, we can
safely regard each closed type as either a base, choice or selection type.

Definition 2 A relation over closed types R is duality if T1 R T2 implies:

1. either T1 = T2 where T1 ∈ {N, B,F},
2. or (a) T1 = &m

i∈I{li(T̃ 1
i )}, (b) T2 = ⊕mi∈I{li(T̃ 2

i )} and (c) ∀i ∈ I, T 1
i R T 2

i

3. or (a) T1 = ⊕mi∈I{li(T̃ 1
i )} (b) T2 = &m

i∈I{li(T̃ 2
i )} and (c) ∀i ∈ I, T 1

i R T 2
i

There is the largest duality relation denoted ./.

When we encode away base types through ( )◦, we dispense with the first clause.

Fact and Definition 3 (Dualisation) The duality ./ defines a total involution
(i.e. a symmetric total function), which we write T , called the dual of T .

A generalisation of duality is coherence, which we introduce below. Intuitively,
coherence specifies when two types can match: this is not only when two types are
dual, but also when one offers more choices than the options the other wishes to
select. This intuition is the basis of the whole subtyping theory.

Definition 4 A relation R over closed types is a coherence if T1 R T2 implies:

1. either T1 = T2 where T1 ∈ {N, B,F}.
2. or (a) T1 = &m

i∈I{li(T̃ 1
i )}, (b) T2 = ⊕mj∈J{lj(T̃ 2

j )}, and (c) ∀j ∈ J, T 1
j R T 2

j

where J ⊆ I.

3. or (a) T1 = ⊕mi∈I{li(T̃ 1
i )}, (b) T2 = &m

j∈J{lj(T̃ 2
j )}, and (c) ∀i ∈ I, T 1

i R T 2
i

where I ⊆ J

There is the largest coherence relation noted �.

Note ./ ( �. Non-trivial inclusion among base types can be incorporated into co-
herence: however how we can do so is already in �, through the encoding discussed
above. We shall come back to this point later.
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Typing. The typing rules for π{1,1,ω} use typing contexts and compatibility over
them, which we introduce below.

A typing context Γ is a partial map from names to types and from process
variable to vectors of types. When Γ (a) is undefined, we write Γ, a : T to denote
the map Γ ′ defined by Γ ′(a) = T , Γ ′(u) = Γ (u) for u 6= a and Γ ′(Y ) = Γ (Y ) for

all Y . Γ,X : T̃ is defined the same way. We write ∅ for the empty typing context.

Definition 5 We define compatibility � as a partial symmetric function over
pair of typing contexts generated from:

∅ � ∅ = ∅
(Γ1, X : T̃ )� Γ2 = Γ1 � Γ2, X : T̃ (Γ1, u : uc)� Γ2 = Γ1 � Γ2, u : uc
(Γ1, u : T1)� (Γ2, u : T2) = Γ1 � Γ2, u : uc if T1 � T2 and ∀i, mod(Ti) = 1
(Γ1, u : T1)� (Γ2, u : T2) = Γ1 � Γ2, u : uc if T1 � T2 and ∀i, mod(Ti) = 1
(Γ1, u : T1)� (Γ2, u : T2) = Γ1 � Γ2, u : T1 if T1 � T2, mod(T1) = mod(T2) = ω

and T1 = &ω
i∈I{li(T̃i)}

Compatibility stipulates, through its partiality, when a parallel composition of two
typed processes is allowed. Typing rules are presented in Figure 3.

(Nil)
∅ `π 0

(Rec)
Γ,X : T̃ , x̃ : T̃ `π P Γ (ṽ) = T̃

Γ `π (µX(x̃).P )〈ṽ〉

(Res)
Γ, u : T `π P T = uc or &ω

i∈I{li(Ti)}
Γ `π (νu) P

(Par)
Γ1 `π P1 Γ2 `π P2

Γ1 � Γ2 `π P1 | P2

(Var)
X : T̃ , ṽ : T̃ `π X〈ṽ〉

(Sel)
j ∈ I

u : ⊕mi∈I{li(T̃i)}, ṽj : T̃j , Γ `π u⊕m lj〈ṽj〉

(Cho)
(Γ, x̃i : T̃i `π Pi)i∈I

Γ, u : &m
i∈I{li(T̃i)} `π u&m

i∈I{li(x̃i) : Pi}

Fig. 3. Typing rules for π{1,1,ω}

In (Cho), we assume no 1 types occur in Γ when m = 1; and no 1 and 1 types
occur when m = ω. We observe:

Proposition 6 (Subject Reduction) If Γ `π P and P → P ′, then Γ `π P ′.

Example 7 As an example of the expressive power, we present an easy way to
encode references (or states):

Mem =!ref(cell, val).cell&1
l∈{set,get}{

set(r, new). (r〈()〉 | ref〈cell, new〉)
get(s). (s〈val〉 | ref〈cell, val〉) }

Here Mem is a server that create memory cells. Clients can interact with a cell
either to fetch the value store inside or to update it with a new value. Consider:

E1 = Mem | ref〈cell1, 0〉 | ref〈cell2, 3〉
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which reduces in two steps to:

Mem | cell1&1
l∈{set,get}{

set(r1, new1). (r1〈()〉 | ref〈cell1, new1〉)
get(s1). (s1〈0〉 | ref〈cell1, 0〉)

}

| cell2&1
l∈{set,get}{

set(r2, new2). (r2〈()〉 | ref〈cell2, new2〉)
get(s2). (s2〈3〉 | ref〈cell2, 3〉)

}

creating two memory cells, one called cell1 containing 0 and one called cell2 con-
taining 3. Each cell offers an input with two labels, set and get. The former waits
for a return channel r, returns the current value through r and construct the cell
again, the latter waits for a return channel r and a new value new, reconstructs
the updated cell with the new value and return an acknowledgement through r. The
process Mem can be typed by giving to ref the type:

Tref =↓ω (&1
l∈{set,get}{

set(↑1 (F), N)

get(↑1 (N))
}, N)

As another example showing concurrency, consider:

Ex = (νans1, ans2) (E1 | cell1set〈1, ans1〉 | ans1() | cell1get〈ans2〉 | ans2(x)

When reducing Ex, x can be instantiated either by 1 or 0 depending on which
output on cell1 occurs first.

Subtyping theory. As hinted in Definition 4, the framework of π{1,1,ω} lets us
define a notion of subtyping: informally, a type will be a subtype of another if
it “offers more choices” (as input) or if it “selects among less options” (as an
output). Intuitively, a type which is ready to receive no less labels, and which
may potentially sends no more labels, (in other words, a type representing a more
gentle behaviour), is a subtype of another.

Definition 8 A relation R is a subtyping relation if when T1 R T2 then:

1. either T1 = T2 ∈ {N, B,F},
2. or (a) T1 = &m

i∈I{li(T̃ 1
i )}, (b) T2 = &m

j∈J{lj(T̃ 2
j )} and (c) ∀j ∈ J, T 1

j R T 2
j ,

where J ⊆.

3. or (a) T1 = ⊕mi∈I{li(T̃ 1
i )}, (b) T2 = ⊕mj∈J{lj(T̃ 2

j )}, and (c) ∀i ∈ I, T 1
i R T 2

i ,
where I ⊆ J .

v is the largest (for ⊆) subtyping relation.

The subsumption is admissible in our typing system. Below we write Γ v Γ ′ to
denote that the two typing environments have same domain and that for each a
(resp. X) in the domain of Γ , Γ (a) v Γ ′(a) (resp. Γ (X) v Γ ′(X)).

Proposition 9 (Subsumption) If Γ `π P and Γ v Γ ′ then Γ ′ `π P .

That is, if P satisfies Γ and if Γ ′ is more inclusive as a specification then P also
satisfies Γ ′ (noting Γ in Γ `π P specifies the behaviour of P , cf. Example 1).

Now it is known in the literature that subtyping is closely related to compos-
ability of types, cf. [11], which we may call compatibility. In brief, T2 has more
compatibility than T1 if it is coherent with every type with which T1 is coherent: it
is more composable. In the following we show compatibility and subtyping coincide
in our theory, showing its consistency as well as giving useful theoretical tools.
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Definition 10 For T1 and T2 closed, T1 ≤comp T2 when ∀T, T1 � T ⇒ T2 � T .

Below Propositions 11 relates together duality, subtyping and coherence, using
which we show coincidence, Proposition 12.

Proposition 11 (1) T � T . (2) T1 � T2 iff T2 � T1. (3) T1 v T2 iff T2 v T1.
(4) If T ′1 v T1, T ′1 � T ′2, T ′2 v T2 then T1 � T2. (5) T1 v T2 iff T1 � T2

Proposition 12 (Coincidence) T1 v T2 iff T2 ≤comp T1.

Proof (Sketch). First we show ≤comp is a subtyping relation coinductively by in-
specting the shape of T2 and Def. 4 gives information on T1. Then we prove T � T1
implies T � T2 by the form of T2, using Definition 8. �

Example 13 To illustrate our subtyping, recall Tref from section 2 inhabited by
Mem. An obvious subtype of Tref is the following T ′ref :

T ′ref =↓ω (&1
l∈{set,get,del}{

set(↑1 (F), N)

get(↑1 (N))

del(↑1 (F))

}, N)

Since this is a subtype of Tref , there are some processes which live (are typed by)
ref : Tref as well as by ref : T ′ref . The following is such a process:

Mem′ =!ref ′(cell, val).cell&1
l∈{set,get,del}{

set(r, new). (r〈()〉 | ref ′〈cell, new〉)
get(s). (s〈val〉 | ref ′〈cell, val〉)
del(t). (t〈()〉)

}

The process Mem′ performs the same role as Mem but offer one additional choice,
the label del allows one to delete a memory cell, preventing further interactions
with this cell to be performed. One can notice that in every process containing
Mem under ref : Tref , it can be replaced with Mem′: as far as the supertype
Tref goes, they have the same behaviour.

3 Embedding functional subtyping

A subtyped call-by-value functional calculus. For brevity we consider a
typed, PCF-like, call-by-value λ-calculus with F as its base type, which we call
λΠ,Σ,v. The syntax of terms contains both products (or records) {li.Mi}i∈I and
projections, and sums (or variants) and case-branches, and is given, along with
the syntax of types, by the following grammar:

M ::= M M | x | () | λx.M | {li.Mi}i∈I |M.l

| injl(M) | case M of [li(xi).Mi]i∈I | Y V

T ::=F | N | T → T | Π{li : Ti}i∈I | Σ[li : Ti]i∈I

The subtyping relation T1 v T2 on λΠ,Σ,v types is defined as the largest reflexive
and transitive relation satisfying:

1. If T1 = Ta → Tb, then T2 = T ′a → T ′b and Ta v T ′a, T ′b v Tb.
2. If T1 = Π{li : Ti}i∈I , then T2 = Π{li : T ′i}i∈J , J ⊆ I and ∀i ∈ J, Ti v T ′i .
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3. If T1 = Σ[li : Ti]i∈I , then T2 = Σ[lj : T ′j ]j∈J , I ⊆ J and ∀i ∈ I, Ti v T ′i .
The typing system and the call-by-value reduction rules are completely standard:
for reference, below we only list the key rule for subtyping, the subsumption, and
leave the rest in [7].

(Sub)
Γ `M : T1 T1 v T2

Γ `M : T2

Encoding of types. We present the encoding of λΠ,Σ,v into our calculus π{1,1,ω}.
Definition 14 presents how we encode λΠ,Σ,v types into π{1,1,ω} types. A no-
table point of this encoding is the encoding of the arrow type, which is de-
composed in such a way that function application is seen as a choice between
the possible arguments. As a result, the type B → T , for instance, is encoded
into ↑1 (&ω

l∈{true,false}{true(T ); false(T )}). This means that a function having
booleans as domain can be seen as being composed of two terms, one associated
to the argument true, the other for false.

Definition 14 (Encoding of types)

〈F〉 =↑1 (F) 〈Π{li : Ti}i∈I〉 =↑1 (&ω
i∈I{li(〈Ti〉)})

〈Σ[li : Ti]i∈I〉 = ⊕1
i∈I{li(↓ω (〈Ti〉))}

〈T1 → T2〉 =↑1 (&ω
i∈I{li(Ti, 〈T2〉)}) if 〈T1〉 = ⊕1

i∈I{li(Ti)}

The last line is well-defined since 〈T1〉 is always an output type. In the first line,

we can encode F (of π{1,1,ω}) by ( )◦ in Section 2, similarly any base types.
Encoding of terms. Figure 4 gives the encoding of terms following that of types
and using a return channel u and an environment ζ (required to remember encoding
of variables). The former is standard [24]. The latter may be notable, coming from
our arrow type encoding which forces us to remember the association between a
branch label and a variable. An environment ζ maps λΠ,Σ,v each variable to a
choice (li, xi), a pair composed of one label and one π{1,1,ω} variable.

A brief illustration of three key cases: when encoding an application M N
on u, one compute the encoding on M and N with two new return channels
(respectively m and n), then the address of the function y is caught on m and the
possible arguments are decomposed into an address xi and a label li, fetched on
n. Then both of them are sent to the function together with the return channel u.
Symmetrically, to encode the abstraction λx.M , we create a new channel c, send
it on the return channel of the function, then we wait for a label li which will
determine which branch of the function is chosen, an argument xi and a return
channel m, and we proceed to the execution of the encoding of M , with a new
environment where the variable x is associated with the choice (li, xi). Finally,
to encode a variable x on the return channel u, we fetch in the environment the
choice (li, xi) associated with x and send it on the channel u.

As our encoding makes use of environment, we formally define the encoding
for typing contexts accordingly.

〈Γ, x : T 〉ζ,x7→(li,xi) = 〈Γ 〉ζ , xi : Ti if 〈T 〉 = ⊕mi∈I{li(Ti)}

A variable environment ζ is reasonable w.r.t. a term M when ζ maps every free
variable of M to a choice.
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〈()〉ζu = u〈()〉

〈M N〉ζu = (νm, n) (〈M〉ζm | 〈N〉ζn | m(y).n&1
i∈I{li(xi).y ⊕ω li〈xi, u〉})

if M has type T → T ′ with 〈T 〉 = ⊕1
i∈I{li(Ti)}

〈λx.M〉ζu = (νc) (u〈c〉.c&ω
i∈I{li(xi,m).〈M〉ζ,x7→(li,xi)

m })
if λx.M has type T → T ′ with 〈T 〉 = ⊕1

i∈I{li(Ti)}

〈x〉ζ.x7→(li,xi)
u = u⊕1 li〈xi〉 〈{li : Mi}i∈I〉ζu = (νp) u〈p〉.p&ω

i∈I{li().〈Mi〉ζu}

〈M.l〉ζu = (νm) (〈M〉ζm | m(y).y ⊕ω l〈〉)

〈injl(M)〉ζu = (νm) (〈M〉ζm | m&1
j∈J{l′j(yj).(νc) (u⊕1 l〈c〉 | !c(n).n⊕ω l′j〈yj〉)})

〈case M of [li(xi).Mi]i∈I〉ζu =

(νm) (〈M〉ζm | m&1
ı∈I{li(xi).(νp) (xi〈p〉 | p&ω

j∈J{l′j(yj).〈Mi〉
ζ,xi 7→(l′j ,yj)
u })})

〈Y V 〉ζu = µX(x).((νp,m) 〈V 〉ζp | (X〈m〉) | m(f).p(a).f〈a, x〉)〈u〉

Fig. 4. Encoding for λ-terms

Proposition 15 If Γ `M : T , then 〈Γ 〉ζ , u : 〈T 〉 `π 〈M〉ζu for all reasonable ζ.

Example 16 Consider the following λΠ,Σ,v term:

F opt = λx.case x of [
s(x1) (F x1)
n(x2) 0

]l∈{s,n}

F opt : (s : N) + (n : ()) → N is a partial version of the function F : N → N. If its
argument is an actual value injs(3) it will apply F to it. And if its argument is

undefined injn(()) then it will return 0. With 〈N〉 =↑1 (N) and 〈F〉 =↑1 (F), its
encoding 〈F opt〉∅u is given by:

(νv) u〈v〉.v&ω
l∈{s,n}{

s(x, b). (νc) (c⊕1 s〈x〉 | Caseof)

n(x, b). (νc) (c⊕1 n〈x〉 | Caseof)
}

Caseof being c&1
l∈{s,n}{

s(x1). (νp1) (x1〈p1〉 | !p1(n).App)

n(x2) (νp2) (x1〈p2〉 | !p2.b〈0〉)
}

App being (νf, a) (〈F 〉∅f | a〈n〉 | f(y).a(z).y〈z, b〉)

If we look through the several indirections induced by the encoding, we can notice
that the choice induced by the option type will be translated as two choices, one in
the abstraction encoding and one in the case-construct encoding.

Functional subtyping through encoding The following proposition relates the
subtyping for λΠ,Σ,v with the subtyping for π{1,1,ω}. It is proved by showing that
the relation R, defined by TaRTb when there exist T1, T2 s.t. 〈T1〉 = Ta, 〈T2〉 = Tb,
and T1 R T2, is a subtyping according to Definition 8.

Proposition 17 If T1 v T2, then 〈T1〉 v 〈T2〉.

9



The base type encoding in π{1,1,ω} through the operator ( )◦ in section 2 allows
us to extend the above result to λΠ,Σ,v with non-trivial subtyping on base types,
e.g. with the type R of reals. Indeed, for N v R, we get 〈N〉◦ v 〈R〉◦, by ↑1 (↓ω
(⊕1

i∈N{i()})) v ↑1 (↓ω (⊕1
i∈R{i()})).

Full abstraction. In order to obtain a full abstraction result we restrict our π-
calculus, imposing sequentiality to typed processes by controlling the number of
activities compositionally as in [3]. We derive a definability result [7], that is, every
sequential process typable with the encoding a λ-typing context is equivalent to
the encoding of a term typable with that context. Using as the equivalence on the
functional side 'λ Morris congruence [17] and as the equivalence of the concurrent
side 'π the standard reduction-closed barbed congruence [24], we obtain:

Theorem 18 Let M1,M2 be two λΠ,Σ,v terms, then M1 'λ M2 if and only if
〈M1〉∅u 'π 〈M1〉∅u under sequential typing.

4 Embedding communication subtyping

This section is dedicated to the study of the encoding of a session-based concurrent
calculus πsession with synchronous interactions based on session types. Session
types abstract protocols of communicating processes as types, and ensure their
sound communication behaviour through the associated type discipline, see [8] for
a survey.

Our presentation of πsession follows [13]. In this language, names are divided
into channels u, v, . . . and sessions s, k, . . . ; we use a, b, c, . . . to denote names of
any kind. Syntax for terms is given by the following grammar:

P ::= u(x).P | u(x).P | k!l〈v〉.P | k?{li(xi).Pi}i∈I | if e then P else P

| (νa)P | P |P | (µX(x̃).P )〈ṽ〉 | X〈ṽ〉 | 0

The definition of evaluation contexts is straightforward. For brevity, we do not
include delegation, though its encoding follows that of shared name passing. The
semantics is generated from the following two base rules:

E[u(x1).P1 | u(x2).P2]→ E[(νs) (P1{s/x1} | P2{s/x2})]

E[s?{(xi).Pi}i∈I | s!lj〈v〉.P ]→ E[Pj{v/xj} | P ]

We use binary session types given as follows.

T, S ::= &ses
i∈I{li(Ti).Si} | ⊕ses

i∈I {li(Ti).Si} | end | ↓ses (S) | ↑ses (S) | µS.S | N |F

As in π{1,1,ω}, we use shortcuts: when I is a singleton {1}, we use ?(T1).S1 (resp.
!(T1).S1) to denote &ses

i∈I{li(Ti).Si} (resp. ⊕ses
i∈I{li(Ti).Si}). Compatibility and du-

ality for πsession are the straightforward adaptation of those of π{1,1,ω}.

Some of the key typing rules are given in Figure 5. In session types, the type
of a session name s in the prefix s!l〈v〉.P gives information not only on the type
of v but also on how the session s will be used in the continuation P .

10



(SOut)
Γ (u) =↑ses (T ) Γ, x : T `ses P

Γ `ses u(x).P
(SIn)

Γ (u) =↓ses (T ) Γ, x : T `ses P
Γ `ses u(x).P

(SCho)
(Γ, xi : T ′

i , s : Si `ses Pi)i∈I J ⊆ I ∀j ∈ J.T ′
j v Tj

Γ, s : &ses
i∈J{li(Ti).Si} `ses s?{li(xi).Pi}i∈I

(SSel)
Γ (v) = T ′

j Γ, s : Sj `ses P T ′
j v Tj

Γ, s : ⊕ses
i∈I{li(Ti).Si} `ses s!lj〈v〉.P

(SPar)
Γ1 `ses P1 | Γ2 `ses P2

Γ1 � Γ2 `ses P1 | P2

Fig. 5. Some of the main typing rules for πsession

The encodings. The encoding of πsession terms into π{1,1,ω} given in Figure 6.
The main points are that, in π{1,1,ω}, we lack both synchronous outputs and the
way to ensure that sessions behave correctly, that is, how the names in subject
positions in later prefixes of the same session, are used following the stipulated
protocol, i.e. its session type.

First, to encode the synchronous outputs, we use an administrative synchroni-
sation on a linear name. This is standard [23]: we encode a(v).P into (νv, c) a〈v, c〉
| c.P . The new name c is output with the value v and the synchronising party will
emit it after inputting the message, thus activating the guarded continuation P .
Then, to make sure that sessions are encoded following their protocols, we proceed
as follows: if a session name s has type ?(S1).S2, we create a new name k that is
given type JS2K; and replace in the continuations the name s by k. This gives an
equivalent process, and the type of k is now the encoding of the new type S2 of
the session s, after one communication step. The encoding is given by Figure 7.

J(νa) P K = (νa) JP K Ju(x).P K = u(x, c).(c | JP K)

Ju(x).P K = (νx, c) (u〈x, c〉 | c.JP K) Jk!l〈e〉.P K = (νc) (k⊕1 l〈e, c〉 | c(s).JP K{s/k})

Jk?{li(xi).Pi}i∈IK = (νs) k&1
i∈I{li(xi, c).(JPiK{s/k} | c〈s〉)}

Fig. 6. Encoding of πsession terms

J⊕ses
i∈I{li(Ti).Si}K = ⊕ωi∈I{li(JTiK, ↓1 (JSiK))}

J&ses
i∈I{li(Ti).Si}K = ⊕ωi∈I{li(JTiK, ↑1 (JSiK))} J↓ses (S)K =↓1 (JSK, ↑1 (F))

J↑ses (S)K =↑1 (JSK, ↓1 (F)) JFK = F JNK = N

Fig. 7. Encoding of πsession types

Soundness of the encoding is stated in the following proposition and proved by
induction on the typing derivation.

Proposition 19 If Γ `ses P then JΓ K `π JP K.

Example 20 As an example, consider this toy πsession process:

S = a(x).x?(z2).x!〈z2〉 | a(y).(y!〈0〉.y?(z1)

11



S is composed of two subprocesses, one initiates a new session through channel a,
then receives and emits, the other behaves dually. Its encoding is given by:

JSK = (νx, c)(a〈x, c〉 | c.(νk2) (x(z2, c3).(c3〈k2〉 | k2〈z2, c4〉 | c4)))
| a(y, c0).(c0 | (νc1) (y〈0, c1〉 | c1(k1).(νc2) k1(z1, c2).c2))

First, a session initialisation takes place on x (after y has been instantiated to x
with a “channel” synchronisation), but a new name k2 is later created and trans-
mitted in order to continue the session.

For subtyping on session types, we can closely follow π{1,1,ω}: a relation over types
R in πsession is a subtyping relation if, whenever S1 R S2, we have:

1. either S1 = S2 = N or S1 = S2 =F,
2. or (a) S1 =↓ses (S1) (resp. ↑ses (S1)), (b) S2 =↓ses (S2) (resp. ↓ses (S2)), (c)
S1 R S2

3. or (a) S1 = &ses
i∈I{li(T 1

i ).S1
i }, (b) S2 = &ses

j∈J{lj(T 2
j ).S2

j }, (c) I ⊆ J , (c) ∀j ∈
J, T 1

j R T 2
j , (d) ∀j ∈ J, S1

j R S2
j

4. or (a) S1 = ⊕ses
i∈I{li(T 1

i ).S1
i }, (b) S2 = ⊕ses

j∈J{lj(T 2
j ).S2

j }, (c) J ⊆ I, (d) ∀i ∈
I, T 1

i R T 2
i , (e) ∀i ∈ I, S1

i R S2
i

Then v is the largest subtyping relation. We can then show the subsumption is
admissible in the typing rules for πsession.1

Using the fact that branching session prefixes are encoded into branching
π{1,1,ω} prefixes, we prove the following proposition, relating subtyping in πsession

with subtyping in π{1,1,ω}.

Proposition 21 If S1 v S2, then JS1K v JS2K

For full abstraction, we use a testing (may-must) equivalence based on [6], both

for π{1,1,ω} and πsession processes. A maximal reduction sequence starting form
P is a sequence (Pi)i≤n with n ∈ N ∪ {ω} such that P0 = P , ∀i, Pi → Pi+1 and
Pn 6→.

Definition 22 We define the barbs for π{1,1,ω} and πsession as follows:

– If P ∈ π{1,1,ω}, P ⇓ a when P ≡ (νc̃) (a⊕m l〈v〉 | P1) and a /∈ c̃.
– If P ∈ πsession,
• P ⇓ u when P ≡ (νc̃) (u(v).P2 | P1) and u /∈ c̃
• and P ⇓ s when P ≡ (νc̃) (s!l〈v〉.P2 | P1) and s /∈ c̃.

We define the may observation for π{1,1,ω} and πsession as: P ⇓maya when there
exists R, P →∗ R, R 6→ and R ⇓ a. We also define the must observation for
π{1,1,ω} and πsession as P ⇓musta when for all maximal reduction sequences (Pi)i≤n,
n ∈ N ∪ {ω} starting from P , Pj ⇓ a.

Using Definition 22, we define may, must and testing barbed equivalences (con-
sidering only observables from processes), denoted ∼may, ∼must and ∼test; and the
corresponding congruences (considering testers), denoted 'may, 'must and 'test.
In both cases, testing is the conjunction of may and must.

1 In the subtyping, a carried type for a shared channel is covariant in both output and input:
this is because we choose each carried name to be typed as the dual of how the other party

should use it, following π{1,1,ω}. We can use the standard format through dualisation.
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Definition 23 P ∼may Q if for all a, P ⇓maya implies Q ⇓maya and P → P ′ implies
there exists Q′ s.t. Q→∗ Q′∗ and P ′ ∼may Q

′.

P ∼must Q if for all a, P ⇓musta implies Q ⇓musta and P → P ′ implies there
exists Q′ s.t. Q →∗ Q′∗ and P ′ ∼must Q

′. Then, P ∼test Q when P ∼may Q and
P ∼must Q.

For π{1,1,ω} and πsession, we define P 'may Q (resp. P 'must Q) if for all

R ∈ π{1,1,ω}, (R | P ) ∼may (R | Q) (resp. (R | P ) ∼must (R | Q)). Then, P 'test Q
when P 'may Q and P 'must Q.

Full abstraction. Lemma 24 is crucial, it shows how the original process and its
encoding are able to simulate each other. The main difficulty is that the encoding
introduces communications on new linear names.

Lemma 24 Below let P be a well-typed πsession-term.

1. If P → P ′, then there exists R, JP K→ R and R→+ JP ′K
2. If JP K→ R, then there exists P ′, P → P ′ and R→ JP ′K.
3. If (Qi)i≤n is a maximal reduction sequence starting from JP K, there exists a

maximal reduction sequence (Pi)i≤n starting from P and a strictly increasing
function φ : N→ N s.t. JPiK ≡ Qφ(i)

The proof of 3 above concerns infinite reduction sequences. In this case, one has
first to prove that such a reduction sequence contains an infinite number of non-
linear reduction steps.

Lemma 25 (Definability) For all P ∈ π{1,1,ω}, Γ ∈ πsession s.t. JΓ K `π P ,
exists R ∈ πsession s.t. Γ `π R and P 'test JRK.

A key idea of the proof is decoding P into a corresponding πsession-process. First,
for every e.g. output at a hidden name say a which is not hereditarily typed in
JΓ K, we replace it by an encoding of a session type, similarly for a hidden input.
Then all names in P are now typed with the encoding of session types, without
changing behaviour. We now use induction on typing rules for π{1,1,ω} to extract
the shape of encoded processes from P by induction on the size of P .

Now the computational adequacy lemma concludes the full-abstraction proof.

Lemma 26 (Adequacy) For all P ∈ πsession s.t. Γ `π P , P ∼test JP K.

Theorem 27 (Full abstraction) Let P,Q be two πsession processes s.t. Γ `π P
and Γ `π Q, then P 'test Q if and only if JP K 'test JQK.

Proof (Sketch). For both implications, we present only the ’may’ case, the ’must’
one is very similar.

– We take a tester K, from Lemma 26, (P | K) ∼may JP | KK. By hypothesis,
JP | KK ∼may JQ | KK and by Lemma 26, JQ | KK ∼may Q | K, hence done.

– We take a tester R, from Lemma 25, we get K s.t. R 'may JKK and thus
(R | JP K) ∼may JK | P K. By Lemma 26, JK | P K ∼may (K | P ). By hypothesis,
(K | P ) ∼test (K | Q). By Lemma 26, (K | Q) ∼test JK | QK and then,
R | JP K ∼test R | JQK.
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5 Related Work and Further Topics

In [21], the authors present both the idea of distinguishing output and input types
in the π-calculus, and the use of subtyping for controlling the right to perform
actions on a given channel. They show that this notion of subtyping allows them
to state an operational correspondence between λ-terms and the second encoding
into the π-calculus proposed in [16]. The work in [5] addresses the question of the
subtyping in a semantic way: a type T1 is a subtype of a type T2 if the interpretation
of T2 (the set of all processes that can be typed with T2) is included into the
interpretation of T1. They prove that their definition of subtyping is decidable and
present a π-calculus with dynamic type-checks. The work in [10] first introduces
to session types a notion of subtyping based on branching. Through dualisation,
the session subtyping we treated in the present paper is essentially identical. The
present work has embedded the session subtyping in a more fine-grained linear
typing, and has shown that it leads to not only the embedding of the subtyping
but also semantic full abstraction, which may shed light on this ordering relation
and its theory. The author of [18] studies the semantics of session-types, which
contains a notion of subtyping for sessions, called subsession, a session S1 is a
subsession of S2 when for every session S, if (S1 | S) must reach a successful state
(according to a must semantics similar to the one we use) implies that (S2 | S)
must reach a successful state. This notion of subtyping is more related to what we
called compatibility ordering in Section 2.

Our full abstraction proof for the λΠ,Σ,v embedding follows game semantics
except the subtyping and, in the context of the π-calculus, the one found in [3],
which uses both a restriction to a sequential π-calculus and the use of a finite
definability lemma.

Our full abstraction proof for the πsession embedding is inspired by the one in
[23] where the authors prove the full abstraction of a polyadic, output-synchronous
π-calculus into a monadic, output-asynchronous one. They use a computational
adequacy lemma stating that a process and its encoding are barbed bisimilar.
Together with a definability result, it leads to the full abstraction result, with
a barbed congruence as equivalence. As a comparison, in [23], the meta-calculus
(monadic asynchronous π) is a sub-calculus of the target calculus (polyadic syn-
chronous π), which may have facilitated the proof based on barbed bisimilarity.
On the other hand, barbed congruence is in terms of the branching structure finer
than the testing equivalence. It is an interesting future topic how we can obtain a
similar result for such finer equivalences in the present setting.

The calculus we propose in this paper can be easily extended to accommo-
date more features. For instance, we believe we can adapt a standard definition of
polymorphic types [26] in order to include it into our subtyping framework. This
opens the possibility of studying the encoding of subtyped System F [4], together
with the polymorphic subtypes, into our calculus. We are also interested in show-
ing that our subtyping theory can accommodate objects. Though an encoding of
object-oriented calculi into the π-calculus have already been proposed (see [27] for
instance) and subtyping for objects is well-studied [1], we believe the analysis as
we have carried out in this work will shed new light on their nature. Finally, we
are interested in studying how to accommodate other definitions for subtyping for
sessions, as the one presented in [19].
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