
Event structures for the reversible early internal
�-calculus

Eva Graversen, Iain Phillips[0000−0001−5013−5876], and Nobuko
Yoshida[0000−0002−3925−8557]

Imperial College London, UK

Abstract. The �-calculus is a widely used process calculus, which models com-
munications between processes and allows the passing of communication links.
Various operational semantics of the �-calculus have been proposed, which can
be classified according to whether transitions are unlabelled (so-called reductions)
or labelled. With labelled transitions, we can distinguish early and late semantics.
The early version allows a process to receive names it already knows from the en-
vironment, while the late semantics and reduction semantics do not. All existing
reversible versions of the �-calculus use reduction or late semantics, despite the
early semantics of the (forward-only) �-calculus being more widely used than the
late. We define �IH, the first reversible early �-calculus, and give it a denotational
semantics in terms of reversible bundle event structures. The new calculus is a re-
versible form of the internal �-calculus, which is a subset of the �-calculus where
every link sent by an output is private, yielding greater symmetry between inputs
and outputs.

1 Introduction

The �-calculus [18] is a widely used process calculus, which models communications
between processes using input and output actions, and allows the passing of communi-
cation links. Various operational semantics of the �-calculus have been proposed, which
can be classified according to whether transitions are unlabelled or labelled. Unlabelled
transitions (so-called reductions) represent completed interactions. As observed in [25]
they give us the internal behaviour of complete systems, whereas to reason composition-
ally about the behaviour of a system in terms of its components we need labelled transi-
tions.With labelled transitions, we can distinguish early and late semantics [19], with the
difference being that early semantics allows a process to receive (free) names it already
knows from the environment, while the late does not. This creates additional causation
in the early case between those inputs and previous output actions making bound names
free. All existing reversible versions of the �-calculus use reduction semantics [14, 26]
or late semantics [7, 17]. However the early semantics of the (forward-only) �-calculus
is more widely used than the late, partly because it has a sound correspondence with
contextual congruences [13, 20].

We define �IH, the first reversible early �-calculus, and give it a denotational se-
mantics in terms of reversible event structures. The new calculus is a reversible form of
the internal �-calculus, or �I-calculus [24], which is a subset of the �-calculus where

every link sent by an output is bound (private), yielding greater symmetry between in-
puts and outputs. It has been shown that the asynchronous �-calculus can be encoded in
the asynchronous form of the �I-calculus [2].

The �-calculus has two forms of causation. Structural causation, as one would find
in CCS, comes directly from the structure of the process, e.g. in a(b).c(d) the action
a(b)must happen before c(d). Link causation, on the other hand, comes from one action
making a name available for others to use, e.g. in the process a(x)|b(c), the event a(c)
will be caused by b(c)making c a free name. Note that link causation as in this example
is present in the early form of the �I-calculus though not the late, since it is created by the
process receiving one of its free names. Restricting ourselves to the �I-calculus, rather
than the full �-calculus lets us focus on the link causation created by early semantics,
since it removes the other forms of link causation present in the �-calculus.

We base �IH on the work of Hildebrandt et al. [12], which used extrusion histories
and locations to define a stable non-interleaving early operational semantics for the �-
calculus. We extend the extrusion histories so that they contain enough information to
reverse the �I-calculus, storing not only extrusions but also communications. Allowing
processes to evolve, while moving past actions to a history separate from the process,
is called dynamic reversibility. By contrast, static reversibility, as in CCSK [21], lets
processes keep their structure during the computation, and annotations are used to keep
track of the current state and how actions may be reversed.

Event structures are a model of concurrency which describe causation, conflict and
concurrency between events. They are ‘truly concurrent’ in that they do not reduce
concurrency of events to the different possible interleavings. They have been used to
model forward-only process calculi [3, 6, 27], including the �I-calculus [5]. Describing
reversible processes as event structures is useful because it gives us a simple represen-
tation of the causal relationships between actions and gives us equivalences between
processes which generate isomorphic event structures. True concurrency in semantics
is particularly important in reversible process calculi, as the order actions can reverse in
depends on their causal relations [22].

Event structure semantics of dynamically reversible process calculi have the added
complexity of the histories and the actions in the process being separated, obscuring the
structural causation. This was an issue for Cristescu et al. [8], who used rigid families [4],
related to event structures, to describe the semantics of R� [7]. Their semantics require
a process to first reverse all actions to find the original process, map this process to a
rigid family, and then apply each of the reversed memories in order to reach the current
state of the process. Aubert and Cristescu [1] used a similar approach to describe the
semantics of a subset of RCCS processes as configuration structures. We use a different
tactic of first mapping to a statically reversible calculus, �IK, and then obtaining the
event structure. This means that while we do have to reconstruct the original structure
of the process, we avoid redoing the actions in the event structure.

Our �IK is inspired by CCSK and the statically reversible �-calculus of [17], which
use communication keys to denote past actions. To keep track of link causation, keys
are used in a number of different ways in [17]. In our case we can handle link causation
by using keys purely to annotate the action which was performed using the key, and any
names which were substituted during that action.

2

Although our two reversible variants of the �I-calculus have very different syntax
and originate from different ideas, we show an operational correspondence between
them in Theorem 4.6. We do this despite the extrusion histories containing more in-
formation than the keys, since they remember what bound names were before being
substituted. The mapping from �IH to �IK bears some resemblance to the one pre-
sented from RCCS to CCSK in [16], though with some important differences. �IH uses
centralised extrusion histories more similar to rho� [15] while RCCS uses distributed
memories. Additionally, unlike CCS, �I has substitution as part of its transitions and
memories are handled differently by �IK and �IH, and our mapping has to take this into
account.

We describe denotational structural event structure semantics of �IK, partly inspired
by [5, 6], using reversible bundle event structures [10]. Reversible event structures [23]
allow their events to reverse and include relations describing when events can reverse.
Bundle event structures are more expressive than prime event structures, since they al-
low an event to have multiple possible conflicting causes. This allows us to model par-
allel composition without having a single action correspond to multiple events. While
it would be possible to model �IK using reversible prime event structures, using bundle
event structures not only gives us fewer events, it also lays the foundation for adding
rollback to �IK and �IH, similarly to [10], which cannot be done using reversible prime
event structures.

The structure of the paper is as follows: Section 2 describes �IH; Section 3 describes
�IK; Section 4 describes the mapping from �IH to �IK; Section 5 recalls labelled re-
versible bundle event structures; and Section 6 gives event structure semantics of �IK.
Proofs of the results presented in this paper can be found in the technical report [11].

2 �I-calculus reversible semantics with extrusion histories

Stable non-interleaving, early operational semantics of the �-calculus were defined by
Hildebrandt et al. in [12], using locations and extrusion histories to keep track of link
causation. We will in this section use a similar approach to define a reversible variant
of the �I-calculus, �IH, using the locations and histories to keep track of not just cau-
sation, but also past actions. The �I-calculus is a restricted variant of the �-calculus
wherein output on a channel a, a(b), binds the name being sent, b, corresponding to
the �-calculus process (�b)a⟨b⟩.P . This creates greater symmetry with the input a(x),
where the variable x is also bound. The syntax of �IH processes is:

P ∶∶=
∑

i∈I
�i.Pi ∣ P0|P1 ∣ (�x)P � ∶∶= a(b) ∣ a(b)

The forward semantics of �IH can be seen in Table 1 and the reverse semantics can
be seen in Table 2. We associate each transition with an action � ∶∶= � | � and a
location u (Definition 2.1), describing where the action came from and what changes
are made to the process as a result of the action. We store these location and action pairs
in extrusion and communication histories associated with processes, so (H,H,H) ⊢P
means that if (�, u) is an action and location pair in the output history H then � is an
output action, which P previously performed at location u. SimilarlyH contains pairs of

3

input actions and locations andH contains triples of two communicating actions and the
location associated with their communication. We use H as shorthand for (H,H,H).

Definition 2.1 (Location [12]). A location u of an action � is one of the following:

1. l[P][P ′] if � is an input or output, where l ∈ {0, 1}∗ describes the path taken
through parallel compositions to get to �’s origin, P is the subprocess reached by
following the path before � has been performed, and P ′ is the result of performing
� in P .

2. l
⟨

0l0[P0][P ′
0], 1l1[P1][P

′
1]
⟩

if � = �, where l0l0[P0][P ′
0] and l1l1[P1][P

′
1] are the

locations of the two actions communicating.

The path l can be empty if the action did not go through any parallel compositions.

We also use the operations on extrusion histories from Definition 2.2. These (1) add
a branch to the path in every location, (2) isolate the extrusions whose locations begin
with a specific branch, (3) isolate the extrusions whose locations begin with a specific
branch and then remove the first branch from the locations, and (4) add a pair to the
history it belongs in.

Definition 2.2 (Operations on extrusion histories [12]). Given an extrusion history
(H,H,H), forH∗ ∈ {H,H,H} we have the following operations for i ∈ {0, 1}:

1. iH∗ = {(�, iu) ∣ (�, u) ∈ H∗}
2. [i]H∗ = {(�, iu) ∣ (�, iu) ∈ H∗}
3. [ǐ]H∗ = {(�, u) ∣ (�, iu) ∈ H∗}

4. H + (�, u) =

⎧

⎪

⎨

⎪

⎩

(H ∪ {L},H,H) if (�, u) = (a(n), u)

(H,H ∪ {L},H) if (�, u) = (a(x), u)

(H,H,H ∪ {L}) if (�, u) = (a(x), a(n), l⟨u0, u1⟩)

The forwards semantics of �IH have six rules. In [OUT] the action is an output, the lo-
cation is the process before and after doing the output, and they are added to the output
history. The equivalent reverse rule, [OUT−1], similarly removes the pair from the his-
tory and transforms the process from the second part of the location back to the first. The
input rule [IN] works similarly, but performs a substitution on the received name and
adds the pair to the input history instead. In [PARi] we isolate the parts of the histories
whose locations start with i and use those to perform an action in Pi, gettingH′

i ⊢P
′
i . It

then replaces the part of the histories parts of the histories whose locations start with i
withH′

i when propagating the action through the parallel. A communication in [COMi]
adds memory of the communication to the history. The rules [SCOPE] and [STR] are
standard and self-explanatory.

The reverse rules use the extrusion histories to find a location l[P][P ′] such that the
current state of the subprocess at l is P ′, and change it to P .

In these semantics structural congruence, consisting only of �-conversion together
with !P ≡ !P |P and (� a)(�b)P ≡ (� b)(� a)P , is primarily used to create and re-
move extra copies of a replicated process when reversing the action that happened be-
fore the replication. Since we use locations in our extrusion histories, we try to avoid

4

u = [
∑

i∈I
�i.Pi][Pj] �j = a(n) j ∈ I

H ⊢
∑

i∈I
�i.Pi

�j
←←←←←←←←→
u

(H ∪ {(a(n), u)},H,H) ⊢Pj
[OUT]

u = [
∑

i∈I
�i.Pi][Pj] P ′

j = Pj[x ∶= n] �j = a(x) j ∈ I

H ⊢
∑

i∈I
�i.Pi

a(n)
←←←←←←←←←←←←←→
u

(H,H ∪ {(a(n), u)},H) ⊢P ′
j

[IN]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi
�
←←←←←→
u
H′
i ⊢P

′
i P ′

1−i = P1−i if � = a(n) then n ∉ fn(P1−i)

H ⊢P0|P1
�
←←←←←←←→
iu

((H ⧵ [i]H) ∪ iH ′
i , (H ⧵ [i]H) ∪ iH ′

i , (H ⧵ [i]H) ∪ iH ′
i) ⊢P

′
0 |P

′
1

[PARi]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi
�i
←←←←←←←→
vi

H′
i ⊢P

′
i �i = a(n) �j = a(n)

([ǰ]H, [ǰ]H, [ǰ]H) ⊢Pj
�i
←←←←←←←←→
vj

H′
j ⊢P

′
j j = 1 − i n ∉ fn(Pj)

H ⊢P0|P1
�

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(0v0 ,1v1)

(H,H,H ∪ {((�0, �1, ⟨0v0, 1v1⟩)}) ⊢ (�n)(P ′
0 |P

′
1)

[COMi]

H ⊢P
�
←←←←←→
u
H′ ⊢P ′ x ∉ n(�)

H ⊢ (�x)P
�
←←←←←→
u
H′ ⊢ (�x)P ′

[SCOPE]
P ≡ P ′ H ⊢P ′ �

←←←←←→
u
H′ ⊢Q′ Q′ ≡ Q

H ⊢P
�
←←←←←→
u
H′ ⊢Q

[STR]

Table 1. Semantics of �IH (forwards rules)

using structural congruence any more than necessary. However, not using it for parallel
composition would mean that we would need some other way of preventing traces such
asH ⊢!P

�
←←←←←←←→
u

�

u
H ⊢!P |P , which allows a process to reach a state it could not reach via

a parabolic trace. Using structural congruence for replication does not cause any prob-
lems for the locations, as we can tell past actions originating in each copy of P apart by
the path in their location, with actions from the ith copy having a path of i 0s followed
by a 1.

Example 2.3. Consider the process (a(x).x(d)|a(c))|b(y). If we start with empty histo-
ries, each transition adds actions and locations:
(∅, ∅, ∅) ⊢ (a(x).x(d)|a(c))|b(y)

�
←←→
0⟨0[a(x).x(d)][c(d)],1[a(c)][0]⟩

(∅, ∅, {(a(c), a(c), 0
⟨

0[a(x).x(d)][c(d)], 1[a(c)][0]
⟩

}) ⊢ (�c)(c(d)|0)|b(y)
c(d)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
00[c(d)][0]

({(c(d), 00[c(d)][0])}, ∅, {(a(c), a(c), 0
⟨

0[a(x).x(d)][c(d)], 1[a(c)][0]
⟩

}) ⊢ (�c)(0|0)|b(y)
b(d)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
1[b(y)][0]

({(c(b), 00[c(b)][0])}, {(b(d), 1[b(y)][0])}, {(a(c), a(c), 0
⟨

0[a(x).x(d)][c(d)], 1[a(c)][0]
⟩

}) ⊢ (0|0)|0

We show that our forwards and reverse transitions correspond.

Proposition 2.4 (Loop).

1. Given a �IH process P and an extrusion history H, if H ⊢P
�
←←←←←←→
u

H′ ⊢Q, then

H′ ⊢Q
�
u H ⊢P .

5

u = [
∑

i∈I
�i.Pi][Pj] �j = a(n) j ∈ I (a(n), u) ∈ H

H ⊢ Pj
�j

u
(H ⧵

{

(a(n), u)
}

,H,H) ⊢
∑

i∈I �i.Pi
[OUT−1]

u = [
∑

i∈I
�i.Pi][Pj] P ′

j = Pj[x ∶= n] �j = a(x) j ∈ I (a(n), u) ∈ H

H ⊢ P ′
j

a(n)

u (H,H ⧵ {(a(n), u)} ,H) ⊢
∑

i∈I
�i.Pi

[IN−1]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢ Pi
�

u H′
i ⊢ P

′
i P ′

1−i = P1−i if � = a(n) then n ∉ fn(P1−i)

H ⊢ P0|P1

�

iu ((H ⧵ [i]H) ∪ iH ′
i , (H ⧵ [i]H) ∪ iH ′

i , (H ⧵ [i]H) ∪ iH ′
i) ⊢ P

′
0 |P

′
1

[PAR−1
i]

([ǐ]H ∪ {(a(n), vi)}, [ǐ]H, [ǐ]H) ⊢ Pi
a(n)

vi
H′
i ⊢ P

′
i �i = a(n) �j = a(n)

([ǰ]H, [ǰ]H ∪ {(a(n), vj)}, [ǰ]H) ⊢ Pj
a(n)

vj
H′
j ⊢ P

′
j j = 1 − i n ∉ fn(Pj)

H ⊢ (�n)(P0|P1)
�

(0v0 ,1v1)
(H,H,H ⧵ {((�0, �1, ⟨0v0, 1v1⟩)} ⊢P ′

0 |P
′
1

[COM−1
i]

H ⊢ P
�

u H′ ⊢ P ′ x ∉ n(�)

H ⊢ (�x)P
�

u H′ ⊢ (�x)P ′
[SCOPE−1]

P ≡ P ′ H ⊢ P ′
�

u H′ ⊢ Q′ Q′ ≡ Q

H ⊢ P
�

u H′ ⊢ Q
[STR−1]

Table 2. Semantics of reversible �IH (reverse rules)

2. Given a forwards-reachable �IH process P and an extrusion historyH, ifH ⊢P
�
u

H′ ⊢Q, then H′ ⊢Q
�
←←←←←←→
u

H ⊢P .

3 �I-calculus reversible semantics with annotations

In order to define event structure semantics of �IH, we first map from �IH to a stati-
cally reversible variant of �I-calculus, called �IK. �IK is based on previous statically
reversible calculi �K [17] and CCSK [21]. Both of these use communication keys to
denote past actions and which other actions they have interacted with, so a(x)|a(b)

�[n]
←←←←←←←←←←←←←←←→

a(b)[n]|a(b)[n]means a communication with the key n has taken place between the two
actions. We apply this idea to define early semantics of �IK, which has the following
syntax:

P ∶∶= �.P ∣ �[n].P ∣ P0 + P1 ∣ P0|P1 ∣ (�x)P � ∶∶= a(b) ∣ a(b)
The primary difference between applying communication keys to CCS and the �I-

calculus is the need to deal with substitution.We need to keep track of not only which ac-
tions have communicated with each other, but also which names were substituted when.
We do this by giving the substituted names a key, a[n], but otherwise treating them the
same as those without the key, except when undoing the input associated with n.

6

std(P) P ′ = P [x ∶= b[n]]

a(x).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P ′

std(P)

a(b).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P

P
�[m]
←←←←←←←←←←←←←←←→ P ′ m ≠ n if � = a(x) then x ∉ n(�)

�[n].P
�[m]
←←←←←←←←←←←←←←←→ �[n].P ′

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 std(P1)

P0 + P1
�[n]
←←←←←←←←←←←←←←→ P ′

0 + P1

P0
�[n]
←←←←←←←←←←←←←←→ P ′

0 fsh[n](P1) if � = a(b) then b ∉ fn(P1)

P0|P1
�[n]
←←←←←←←←←←←←←←→ P ′

0 |P1

P0
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ P ′

0 P1
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ P ′

1

P0|P1
�[n]
←←←←←←←←←←←←←→ (�b)(P ′

0 |P
′
1)

P
�[m]
←←←←←←←←←←←←←←←→ P ′ a ∉ n(�)

(�a)P
�[m]
←←←←←←←←←←←←←←←→ (�a)P ′

P ≡ Q
�[n]
←←←←←←←←←←←←←←→ Q′ ≡ P ′

P
�[n]
←←←←←←←←←←←←←←→ P ′

Table 3. �IK forward semantics

std(P) x ∉ n(P) P ′ = P [b[m] ∶= x]

a(b)[m].P
a(b)[m]

a(x).P ′

std(P)

a(b)[n].P
a(b)[n]

a(b).P

P
�[m]

P ′ m ≠ n

�[n].P
�[m]

�[n].P ′

P0

�[n]
P ′
0 std(P1)

P0 + P1

�[n]
P ′
0 + P1

P0

�[n]
P ′
0 fsh[n](P1) if � = a(b) then b ∉ fn(P1)

P0|P1

�[n]
P ′
0 |P1

P0

a(b)[n]
P ′
0 P1

a(b)[n]
P ′
1

(�b)(P0|P1)
�[n]

P ′
0 |P

′
1

P
�[m]

P ′ a ∉ n(�)

(�a)P
�[m]

(�a)P ′

P ≡ Q
�[n]

Q′ ≡ P ′

P
�[n]

P ′

Table 4. �IK reverse semantics

Table 3 shows the forward semantics of �IK. The reverse semantics can be seen in
Table 4. We use � to range over input and output actions and � over input, output, and �.
We use std(P) denote that P is a standard process, meaning it does not contain any
past actions (actions annotated with a key), and fsh[n](P) to denote that a key n is fresh
for P . Names in past actions are always free. Our semantics very much resemble those
of CCSK, with the exceptions of substitution and ensuring that any name being output
does not appear elsewhere in the process. The semantics use structural congruence as
defined in Table 5.

We again show a correspondence between forward and reverse transitions.

Proposition 3.1 (Loop).

1. Given a process P , if P
�[n]
←←←←←←←←←←←←←←←←→ Q then Q

�[n]
P .

2. Given a forwards reachable process P , if P
�[n]

Q then Q
�[n]
←←←←←←←←←←←←←←←←→ P .

7

P |0 ≡ P P0|P1 ≡ P1|P0 P0|(P1|P2) ≡ (P0|P1)|P2
P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2
!P ≡ !P |P (�x)(�y)P ≡ (�y)(�x)P (�a)(P0|P1) ≡ ((�a)P0|P1) if a ∉ n(P1)

Table 5. Structural congruence

4 Mapping from �IH to �IK

We will now define a mapping from �IH to �IK and show that we have an operational
correspondence in Theorem 4.6. The extrusion histories store more information than the
keys, as they keep track of which names were substituted, as illustrated by Example 4.1.
This means we lose some information in our mapping, but not information we need.

Example 4.1. Consider the processes (∅, {(a(b), [a(x)][0])}, ∅) ⊢ 0 and a(b)[n]. These
are the result of a(x) receiving b in the two different semantics. We can see that the
extrusion history remembers that the input name was x before b was received, but the
keys do not remember, and when reversing the action could use any name as the input
name. This does not make a great deal of difference, as after reversing a(b), the process
with the extrusion history can also �-convert x to any name.

Since we intend to define a mapping from processes with extrusion histories to pro-
cesses with keys, we first describe how to add keys to substituted names in a process in
Definition 4.2. We have a function, S, which takes a process, P1, in which we wish to
add the key [n] to all those names which were x in a previous state of the process, P2,
before being substituted for some other name in an input action with the key [n].

Definition 4.2 (Substituting in �IK-process to correspond with processes with ex-
trusion histories). Given a �IK process P1, a �I-calculus process without keys, P2, a
key n, and a name x, we can add the key n to any names which x has been substituted
with, by applying S(P1, P2, [n], x), defined as:

1. S (0, 0, [n], x) = 0

2. S
(

∑

i∈I
Pi1,

∑

i∈I
Pi2, [n], x

)

=
∑

i∈I
S
(

Pi1, Pi2, [n], x
)

3. S
(

P1|Q1, P2|Q2, [n], x
)

= S
(

P1, P2, [n], x
)

|S
(

Q1, Q2, [n], x
)

4. S
(

(�a)P1, (�b)P2, [n], x
)

= P ′
1 where:

if x = b then P ′
1 = P1 and otherwise P ′

1 = (�a)S
(

P1, P2, [n], x
)

.

5. S
(

�1.P1, �2.P2, [n], x
)

= �′1.P
′
1 where:

if �2 ∈ {x(c), x(c)} then �′1 = �1[n] and otherwise �′1 = �1;
if �2 ∈ {c(x), c(x)} then P ′

1 = P1 and otherwise P ′
1 = S

(

P1, P2, [n], x
)

.

6. S
(

�1[m].P1, �2.P2, [n], x
)

= �′1[m].P
′
1 where:

if �2 ∈ {x(c), x(c)} then �′1 = �1[n] and otherwise �′1 = �1;
if �2 ∈ {c(x), c(x)} then P ′

1 = P1 and otherwise P ′
1 = S

(

P1, P2, [n], x
)

.

8

7. S
(

!P1, !P2, [n], x
)

= !S
(

P1, P2, [n], x
)

8. S
(

P1|P ′
1 , !P2, [n], x

)

= S
(

P1, !P2, [n], x
)

|S
(

P ′
1 , P2, [n], x

)

9. S
(

!P1, P2|P ′
2 , [n], x

)

= S
(

!P1, P2, [n], x
)

|S
(

P1, P ′
2 , [n], x

)

where a(b)[n] = a[n](b) and a(b)[n] = a[n](b)

Being able to annotate our names with keys, we can define a mapping, E, from
extrusion histories to keys in Definition 4.4. E iterates over the extrusions, having one
process which builds �IK-process, and another that keeps track of which state of the
original �IH process has been reached. When turning an extrusion into a keyed action,
we use the locations as key and also give each extrusion an extra copy of its location
to use for determining where the action came from. This way we can use one copy
to iteratively go through the process, removing splits from the path as we go through
them, while still having another intact copy of the location to use as the final key. In
E(H ⊢P , P ′), H is a history of extrusions which need to be turned into keyed actions,
P is the process these keyed actions should be added to, and P ′ is the state the process
would have reached, had the added extrusions been reversed instead of turned into keyed
actions.

IfE encounters a parallel composition in P (case 2), it splits its extrusion histories in
three. One part, Hshared contains the locations which have an empty path, and therefore
belong to actions from before the processes split. Another part contains the locations
beginning with 0, and goes to the first part of the process. And finally the third part
contains the locations beginning with 1, and goes to the second part of the process.

E can add an action – and the choices not picked when that action was performed
– to P (cases 3,4) when the associated location has an empty path and has P ′ as its
result process. When turning an input memory from the history into a past input action
in the process (case 4), we use S (Definition 4.2) to add keys to the substituted names.
When E encounters a restriction (case 5), it moves a memory that can be used inside
the restriction inside. It does this iteratively until there are no such memories left in the
extrusion histories. We apply E to a process in Example 4.5.

Definition 4.3. The function lcopy gives each member of an extrusion history an extra
copy of its location:

lcopy(H∗) = {(�, u, u) ∣ (�, u) ∈ H∗}
lcopy(H,H,H) = (lcopy(H), lcopy(H), lcopy(H))

Definition 4.4. Given a �IH process,H ⊢P , we can create an equivalent �IK process,
E(lcopy(H) ⊢P , P) = P ′ defined as

1. E((∅, ∅, ∅) ⊢P , P ′) = P

2. E(H ⊢P0|P1, P ′
0|P

′
1) = E(Hshared ⊢P ′′

0 |P
′′
1 , P

′′′
0 |P ′′′

1) where:
Hshared = ({(�, u, u′) ∣ (�, u, u′) ∈ H and u ≠ iu′′}, {(�, u, u′) ∣ (�, u, u′) ∈ H
and u ≠ iu′′}, ∅)
P ′′
0 = E((H0,H0,H0) ⊢P0, P ′

0) where:

H0 = {(a(b), u0, u′0) ∣ (a(b), 0u0, u
′
0) ∈ H or (a(b), �1, ⟨0u0, 1u1⟩ , u′0) ∈ H}

9

H0 = {(a(b), u0, u′0) ∣ (a(b), 0u0, u
′
0) ∈ H or (a(b), �1, ⟨0u0, 1u1⟩ , u′0) ∈ H}

H0 = {(�, �′, u, u′) ∣ (�, �′, 0u, u′) ∈ H}
P ′′
1 = E((H1,H1,H1) ⊢P1, P ′

1)) where:
H1 = {(a(b), u1, u′1) ∣ (a(b), 1u1, u

′
1) ∈ H or (�0, a(b), ⟨0u0, 1u1⟩ , u′1) ∈ H}

H1 = {(a(b), u1, u′1) ∣ (a(b), 1u1, u
′
1) ∈ H or (�0, a(b), ⟨0u0, 1u1⟩ , u′1) ∈ H}

H1 = {(�, �′, u, u′) ∣ (�, �′, 1u, u′) ∈ H}
Hi ⊢P ′

i
�i,0

ui,0
…

�i,n

ui,n
(∅, ∅, ∅) ⊢P ′′′

i for i ∈ {0, 1}

3. E((H∪{(a(b), [Q][P ′], u)},H,H) ⊢P , P ′) = E(H ⊢a(b) [u] .P +
∑

i∈I⧵{j}
�i.Pi, Q)

if Q =
∑

i∈I �i.Pi, a(b) = �j , and P ′ = Pj

4. E((H,H ∪ {(a(b), [Q][P ′], u)},H) ⊢P , P ′) =
E(H ⊢a(b) [u] .S(P , Pj , [u], x) +

∑

i∈I⧵{j}
�i.Pi, Q)

if Q =
∑

i∈I �i.Pi, a(x) = �j , and P ′ = Pj[x ∶= b]
5. E(H ⊢ (�x)P , (�x)P ′) = E(H − (�, u, u′) ⊢P ′′, (�x)Q′)

where P ′′ = (�x)E((∅, ∅, ∅) + (�, u, u′) ⊢P , P ′)
if (�, u, u′) ∈ H ∪H and (∅, ∅, ∅) + (�, u, u) ⊢P

�
u (∅, ∅, ∅) ⊢Q′

6. E(H ⊢!P , !P ′) = E(H ⊢!P |P , !P ′
|P ′) if there exists (�, u, u′) ∈ H ∪H ∪H such

that u ≠ [Q][Q′].

Example 4.5. We will now apply E to the process

({(b(c), u2)}, ∅, {(b(a), b(a), ⟨0u0, 1u1⟩)}) ⊢a(x) ∣ 0

with locations u0 = [b(y).y(x)][a(x)], u1 = [b(a)][0], and u2 = [b(c).(b(y).y(x) ∣
b(a)][b(y).y(x) ∣ b(a)]. We perform

E(lcopy(({(b(c), u2)}, ∅, {(b(a), b(a), ⟨0u0, 1u1⟩)})) ⊢ a(x) ∣ 0, a(x) ∣ 0)

Since we are at a parallel, we use Case 2 of Definition 4.4 to split the extrusion his-
tories into three to get E(({(b(c), u2, u2)}, ∅, ∅) ⊢P0 ∣ P1, b(y).y(x) ∣ b(a)) where P0 =
E((∅, {(b(a), u0, ⟨0u0, 1u1⟩)}, ∅) ⊢a(x), a(x)) andP1 = E(({(b(a), u1, ⟨0u0, 1u1⟩)}, ∅, ∅) ⊢
0, 0).

To find P0, we look at u0, and find that it has a(x) as its result, meaning we can apply
Case 4 to obtain E((∅, ∅, ∅) ⊢ b(a)[⟨0u0, 1u1⟩].S(a(x), y(x), [⟨0u0, 1u1⟩], y), b(y).y(x)).
And by applying Case 5 of Definition 4.2, S(a(x), y(x), [⟨0u0, 1u1⟩], y) = a[⟨0u0,1u1⟩](x).
Since we have no more extrusions to add, we apply Case 1 to get our process P0 =
b(a)[⟨0u0, 1u1⟩].a[⟨0u0,1u1⟩](x).

To find P1, we similarly look at u1 and find that we can apply Case 3. This gives us
P1 = b(a)[⟨0u0, 1u1⟩].0.

We can then apply Case 3 to E(({(b(c), u2, u2)}, ∅, ∅) ⊢ P0 ∣ P1, b(y).y(x) ∣ b(a)).
This gives us our final process,

b(c)[k′].b(a)[k].a[k](x) ∣ b(a)[k].0

10

where k = ⟨0u0, 1u1⟩ and k′ = u2
We can then show, in Theorem 4.6, that we have an operational correspondence between
our two calculi and E preserves transitions. Item 1 states that every transition in �IH
corresponds to one in �IK process generated by E, and Item 2 vice versa.

Theorem 4.6. Given a reachable �IH process, H ⊢P , and an action, �,

1. if there exists a location u such that H ⊢P
�

u H′ ⊢P ′ then there exists a key, m,

such that E(lcopy(H) ⊢P , P)
�[m]

E(lcopy(H′) ⊢P ′, P ′);

2. if there exists a key, m, such that E(lcopy(H) ⊢ P , P)
�[m]

P ′′, then there exists

a location, u, and a �IH process, H′ ⊢ P ′, such that H ⊢ P
�

u H′ ⊢ P ′ and
P ′′ ≡ E(lcopy(H′) ⊢P ′, P ′).

5 Bundle event structures

In this section we will recall the definition of labelled reversible bundle event structures
(LRBESs), which we intend to use later to define the event structure semantics of �IK
and through that �IH. We also describe some operations on LRBESs, which our seman-
tics will make use of. This section is primarily a review of definitions from [10]. We use
bundle event structures, rather than the more common prime event structures, because
LRBESs yield more compact event structures with fewer events and simplifies parallel
composition.

An LRBES consists of a set of events, E, a subset of which, F , are reversible,and
three relations on them. The bundle relation, ↦, says that if X ↦ e then one of the
events of X must have happened before e can and all events in X are in conflict with
each other. The conflict relation, ♯, says that if e ♯ e′ then e and e′ cannot occur in the
same configuration. The prevention relation, ⊳, says that if e⊳ e′ then e′ cannot reverse
after e has happened. Since the event structure is labelled, we also have a set of labels
Act, and a labelling function � from events to labels.We use e to denote e being reversed,
and e∗ to denote either e or e.

Definition 5.1 (Labelled Reversible Bundle Event Structure [10]). A labelled re-
versible bundle event structure is a 7-tuple = (E, F ,↦, ♯,⊳, �,Act) where:

1. E is the set of events;
2. F ⊆ E is the set of reversible events;
3. the bundle set,↦ ⊆ 2E × (E ∪F), satisfiesX ↦ e∗ ⇒ ∀e1, e2 ∈ X.e1 ≠ e2 ⇒ e1 ♯
e2 and for all e ∈ F , {e} ↦ e;

4. the conflict relation, ♯ ⊆ E × E, is symmetric and irreflexive;
5. ⊳ ⊆ E × F is the prevention relation.
6. � ∶ E → Act is a labelling function.

An event in a LRBES can have multiple possible causes as defined in Definition 5.2.
A possible causeX of an event e is a conflict-free set of events which contains a member
of each bundle associated with e and contains possible causes of all events in X.

11

Definition 5.2 (Possible Cause). Given an LRBES, = (E, F,↦, ♯,⊳, �,Act) and an
event e ∈ E, X ⊆ E is a possible cause of e if

– e ∉ X, Xis finite, whenever X′ ↦ e we have X′ ∩X ≠ ∅;
– for any e′, e′′ ∈ {e} ∪X, we have e′ ̸♯ e′′ (X ∪ {e} is conflict-free);
– for all e′ ∈ X, there exists X′′ ⊆ X, such that X′′ is a possible cause of e′;
– there does not exist any X′′′ ⊂ X, such that X′′′ is a possible cause of e.

Since we want to compare the event structures generated by a process to the oper-
ational semantics, we need a notion of transitions on event structures. For this purpose
we use configuration systems (CSs), which event structures can be translated into.

Definition 5.3 (Configuration system [23]). A configuration system (CS) is a quadru-
ple = (E, F,C,→) where E is a set of events, F ⊆ E is a set of reversible events,
C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is a labelled transition

relation such that if X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y then:

– X, Y ∈ C, A ∩X = ∅; B ⊆ X ∩ F ; and Y = (X ⧵ B) ∪ A;

– for all A′ ⊆ A and B′ ⊆ B, we have X
A′∪B′

←←←←←←←←←←←←←←←←←←←←←←←←→ Z
(A⧵A′)∪(B⧵B′)
←←←→ Y , meaning

Z = (X ⧵ B′) ∪ A′ ∈ C.

Definition 5.4 (From LRBES to CS [10]). We define a mapping Cbr from LRBESs to
CSs as: Cbr((E, F,↦, ♯,⊳, �,Act)) = (E, F,C,→) where:

1. X ∈ C if X is conflict-free;
2. For X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X

A∪B
←←←←←←←←←←←←←←←←←←←→ Y if:

(a) Y = (X ⧵ B) ∪ A; X ∩ A = ∅; B ⊆ X; and X ∪ A conflict-free;
(b) for all e ∈ B, if e′ ⊳ e then e′ ∉ X ∪ A;
(c) for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;
(d) for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅.

For our semantics we need to define a prefix, restriction, parallel composition, and
choice. Causal prefixing takes a label, �, an event, e, and an LRBES, , and adds e
to with the label � and associating every other event in with a bundle containing
only e. Restriction removes a set of events from an LRBES.

Definition 5.5 (Causal Prefixes [10]). Given an LRBES , a label �, and an event e,
(�)(e). = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. E′ = E ∪ e
2. F ′ = F ∪ e
3. ↦′ = ↦ ∪({{e}} × (E ∪ {e}))
4. ♯′ = ♯

5. ⊳′ = ⊳ ∪ (E × {e})

6. �′ = �[e↦ �]

7. Act′ = Act ∪ {�}

Removing a set of labels L from an LRBES removes not just events with labels in A
but also events dependent on events with labels in L.

Definition 5.6 (Removing labels and their dependants).Given an event structure =
(E, F,↦, ♯,⊳, �,Act) and a set of labelsL ⊆ Act, we define � (L) = X as themaximum
subset of E such that

12

1. if e ∈ X then �(e) ∉ L;
2. if e ∈ X then there exists a possible cause of e, x, such that x ⊆ X.

A choice between LRBESs puts all the events of one event structure in conflict with the
events of the others.

Definition 5.7 (Choice [10]). Given LRBESs 0, 1,… , n, the choice between them is
∑

0≤i≤n
i = (E, F,↦, ♯,⊳, �,Act) where:

1. E =
⋃

0≤i≤n
{i} × Ei

2. F =
⋃

0≤i≤n
{i} × Fi

3. X ↦ e∗ if e = (i, ei), Xi ↦i e∗i , and
X = {i} ×Xi

4. (i, e) ♯ (j, e′) if i ≠ j or e ♯i e′

5. (i, e) ⊳ (j, e′) if i ≠ j or e ♯i e′

6. �(j, e) = �j(e)
7. Act =

⋃

0≤i≤n
Acti

Definition 5.8 (Restriction [10]). Given an LRBES, = (E, F,↦, ♯,⊳, �,Act), re-
stricting to E′ ⊆ E creates ↾ E′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. F ′ = F ∩ E′;
2. ↦′ = ↦ ∩((E′) × (E′ ∪ F ′));
3. ♯′ = ♯ ∩(E′ × E′);

4. ⊳′ = ⊳ ∩ (E′ × F ′);
5. �′ = � ↾E′ ;
6. Act = ran(�′).

For parallel compositionwe construct a product of event structures, which consists of
events corresponding to synchronisations between the two event structures. The possible
causes of an event (e0, e1) contain a possible cause of e0 and a possible cause of e1.

Definition 5.9 (Parallel [10]). Given two LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0)
and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), their parallel composition 0 × 1 = (E, F,↦
, ♯,⊳, �,Act) with projections �0 and �1 where:

1. E = E0 ×∗ E1 = {(e, ∗) ∣ e ∈ E0} ∪ {(∗, e) ∣ e ∈ E1} ∪ {(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0×∗F1 = {(e, ∗) ∣ e ∈ F0}∪{(∗, e) ∣ e ∈ F1}∪{(e, e′) ∣ e ∈ F0 and e′ ∈ F1};
3. for i ∈ {0, 1} we have (e0, e1) ∈ E, �i((e0, e1)) = ei;
4. for any e∗ ∈ E ∪ F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such

that Xi ↦ �i(e)∗ and X = {e′ ∈ E ∣ �i(e′) ∈ Xi};
5. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e′), or
�i(e) = �i(e′) ≠ ⊥ and �1−i(e) ≠ �1−i(e′);

6. for any e ∈ E, e′ ∈ F , e ⊳ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e′).

7. �(e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�0(e0) if e = (e0, ∗)
�1(e1) if e = (∗, e1)
� if e = (e0, e1) and either �0(e0) = a(x) and �1(e1) = a(x)

or �0(e0) = a(x) and �1(e1) = a(x)
0 otherwise

8. Act = {�} ∪ Act0 ∪ Act1

13

6 Event structure semantics of �IK

In this section we define event structure semantics of �IK using the LRBESs and opera-
tions defined in Section 5. Theorems 6.3 and 6.4 give us an operational correspondence
between a �IK process and the generated event structure. Together with Theorem 4.6,
this gives us a correspondence between a �IH process and the event structure it generates
by going via a �IK process.

As we want to ensure that all free and bound names in our process are distinct, we
modify our syntax for replication, assigning each replication an infinite set, x, of names
to substitute into the place of bound names in each created copy of the process, so that

!xP ≡ !x⧵{x0,…,xk}P |P {
x0,…,xk∕a0,…,ak} if {x0,… , xk} ⊆ x and bn(P) = {a0,… , ak}

Before proceeding to the semantics we also define the standard bound names of a
process P , sbn(P), meaning the names that would be bound in P if every action was
reversed, in Definition 6.1.

Definition 6.1. The standard bound names of a process P , sbn(P), are defined as:

sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(P0|P1) = sbn(P0) ∪ sbn(P1) sbn(P0 + P1) = sbn(P0) ∪ sbn(P1)
sbn(�x)P ′ = {x} ∪ sbn(P ′) sbn(!xP) = x

We can now define the event structure semantics in Table 6. We do this using rules
of the form ⦃P⦄(,l) = ⟨ , Init, k⟩ where l is the level of unfolding of replication,
is an LRBES, Init is the initial configuration, ⊇ n(P) is a set of names, which any
input in the process could receive, and k ∶ Init → is a function assigning communi-
cation keys to the past actions, which we use in parallel composition to determine which
synchronisations of past actions to put in Init. We define ⦃P⦄ = supl∈ℕ ⦃P⦄(,l)

The denotational semantics in Table 6 make use of of the LRBES operators defined
in Section 5. The choice and output cases are straightforward uses of the choice and
causal prefix operators. The input creates a case for prefixing an input of each name in
 and a choice between the cases. We have two cases for restriction, one for restriction
originating from a past communication and another for restriction originating from the
original process. If the restriction does not originate from the original process, then we
ignore it, otherwise we remove events which would use the restricted channel and their
causes. The parallel composition uses the parallel operator, but additionally needs to
consider link causation caused by the early semantics. Each event labelled with an input
of a name in standard bound names gets a bundle consisting of the event labelled with
the output on that name. And each output event is prevented from reversing by the input
names receiving that name. This way, inputs on extruded names are caused by the output
that made the name free. Replication substitutes the names and counts down the level
of replication.

Note that the only difference between a future and a past action is that the event
corresponding to a past action is put in the initial state and given a communication key.

14

⦃0⦄(,l) = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃P0 + P1⦄(,l) = ⟨0 + 1, {0} × Init0 ∪ {1} × Init1, k((i, e)) = ki(e)⟩ where
⦃Pi⦄ = ⟨i, Initi, ki⟩ for i ∈ {0, 1}

⦃

a(n).P
⦄

(,l) =
⟨

a(n)(e).P , InitP , kP
⟩

for some fresh e ∉ E where
⦃P⦄(,l) = ⟨P , InitP , kP ⟩

⦃a(x).P⦄(,l) =

⟨

∑

n∈(⧵sbn(P))
a(n)(e).Pn ,

⋃

n∈(⧵sbn(P))
{n} × InitPn , (n, e) ↦ kPn (e)

⟩

for some fresh en ∉ En where
⦃P [x ∶= n]⦄(,l) =

⟨

Pn , InitPn , kPn
⟩

⦃

a(n)[m].P
⦄

(,l) =
⟨

a(n)(e).P , InitP ∪ {e}, kP [e ↦ m]
⟩

for some fresh e ∉ E where
⦃P⦄(,l) = ⟨P , InitP , kP ⟩

⦃a(b)[m].P⦄(,l) =

⟨

∑

n∈(⧵sbn(P))
a(n)(en).Pn , (

⋃

n∈(⧵sbn(P))
{n} × InitPn) ∪ {(b, eb)}, k

⟩

for some fresh en ∉ En where
⦃P [b[m] ∶= n]⦄(,l) =

⟨

Pn , InitPn , kPn
⟩

k((n, e)) =

{

m if e = eb and n = b
kPn (e) otherwise

⦃(�a)P⦄(,l) = ⟨ ↾ E� , Init ∩ E� , k ↾ E�)⟩ where:
⦃P⦄(,l) = ⟨ , Init, k⟩
E� = �({� ∣ a ∈ n(�)}
if whenever there exist past actions b(a)[m] and b(a)[m] in P then
they are guarded by a restriction (�a) in P

⦃(�a)P⦄(,l) = ⟨ , Init, k⟩ where:
⦃P⦄(,l) = ⟨ , Init, k⟩
if there exist past actions b(a)[m] and b(a)[m] in P which
are not guarded by a restriction (�a) in P

⦃P0|P1⦄(,l) =
⟨

(E, F,↦, ♯,⊳, �,Act) ↾ {e ∣ �(e) ≠ 0}, Init, k
⟩

where
for i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
(E0, F0,↦0, ♯0,⊳0) × (E0, F0,↦0, ♯0,⊳0) = (E, F ,↦′, ♯,⊳′)
Init = {(e0, ∗)|e0 ∈ Init0 and ∄e1 ∈ Init1.k1(e1) = k0(e0)}∪
{(∗, e1)|e1 ∈ Init1 and ∄e0 ∈ Init0.k1(e1) = k0(e0)}∪
{(e0, e1)|e0 ∈ Init0 and e1 ∈ Init1 and k1(e1) = k0(e0)}
X ↦ e if X ↦′ e or there exists x ∈ no(�(e)) such that
X = {e′ ∣ ∃a.�(e′) = a(x)} and x ∈ sbn(P)
e ⊳ e′ if either e ⊳′ e′ or there exists x ∈ no(�(e)) and a such that �(e′) = a(x)

k(e) =

⎧

⎪

⎨

⎪

⎩

k0(e0) if e = (e0, ∗)
k1(e1) if e = (∗, e1)
k0(e0) if e = (e0, e1)

⦃!xP⦄(,0) = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃!xP⦄(,l) =
⦃

!x⧵{x0 ,…,xk}P |P {
x0 ,…,xk∕a0 ,…,ak}

⦄

(,l−1)
if {x0,… , xk} ⊆ x

and bn(P) = {a0,… , ak}

Table 6. Denotational event structure semantics of �IK

15

Example 6.2. Consider the process a(b)[n] ∣ a(b)[n]. Our event structure semantics gen-
erate a LRBES

⦃

a(x)[n] ∣ a(b[n])
⦄

{a,b,x} =
⟨

(E, F,↦, ♯,⊳, �,Act), Init, k
⟩

where:

E = F = {a(b), a(a), a(x), a(b), �} �(e) = e
{a(b)} ↦ a(b) Act = {a(b), a(a), a(x), a(b), �}
a(b) ♯ a(a), a(b) ♯ a(x), a(a) ♯ a(x), Init = {�}
a(b) ♯ �, a(a) ♯ �, a(x) ♯ �, a(b) ♯ � k(�) = n
a(b) ⊳ a(b)

From this we see that (1) receiving b is causally dependent on sending b, (2) all the
possible inputs on a are in conflict with one another, (3) the synchronisation between
the input and the output is in conflict with either happening on their own, and (4) since
the two past actions have the same key, the initial state contains their synchronisation.

We show in Theorems 6.3 and 6.4 that given a process P with a conflict-free initial
state, including any reachable process, performing a transition P

�[m]
←←←←←←←←←←←←←←←←←←→ P ′ does not

affect the event structure, as ⦃P⦄ and ⦃P ′
⦄ are isomorphic. It also means we have

an event e labelled � such that e is available in P ’s initial state, and P ′’s initial state is
P ’s initial state with e added. A similar event can be removed to correspond to a reverse
action.

Theorem 6.3. Let P be a forwards reachable process wherein all bound and free names
are different and let ⊇ n(P) be a set of names. If (1) ⦃P⦄ = ⟨ , Init, k⟩ where
 = (E, F,↦, ♯,⊳, �,Act), and Init is conflict-free, and (2) there exists a transition

P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′

⦄ =
⟨

 ′, Init′, k′
⟩

, then there exists an isomorphism f ∶

 → ′ and a transition in Cbr(), Init
{e}
←←←←←←←←←←←←←→ X, such that �(e) = �, f◦k′ = k[e ↦ m],

and f (X) = Init′.

Theorem 6.4. Let P be a forwards reachable process wherein all bound and free names
are different and let ⊇ n(P) be a set of names. If (1) ⦃P⦄ = ⟨ , Init, k⟩ where

 = (E, F,↦, ♯,⊳, �,Act), and (2) there exists a transition Init
{e}
←←←←←←←←←←←←←→ X in Cbr(),

then there exists a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′

⦄ =
⟨

 ′, Init′, k′
⟩

and an
isomorphism f ∶ → ′ such that �(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′.

By Theorems 4.6, 6.3, and 6.4 we can combine the event structure semantics of �IK
and mapping E (Definition 4.4) and get an operational correspondence between H ⊢P
and the event structure ⦃E(lcopy(H) ⊢P , P)⦄n(E(lcopy(H)⊢P ,P)).

7 Conclusion and future work

All existing reversible versions of the �-calculus use reduction semantics [14,26] or late
semantics [7,17], despite the early semantics being used more widely than the late in the
forward-only setting.We have introduced �IH, the first reversible early �-calculus. It is a
reversible form of the internal �-calculus, where names being sent in output actions are

16

always bound. As well as structural causation, as in CCS, the early form of the internal
�-calculus also has a form of link causation created by the semantics being early, which
is not present in other reversible �-calculi. In �IH past actions are tracked by using
extrusion histories adapted from [12], which move past actions and their locations into
separate histories for dynamic reversibility. We mediate the event structure semantics of
�IH via a statically reversible version of the internal �-calculus, �IK, which keeps the
structure of the process intact but annotates past actions with keys, similarly to �K [17]
and CCSK [21]. We showed that a process �IH with extrusion histories can be mapped
to a �IK process with keys, creating an operational correspondence (Theorem 4.6).

The event structure semantics of �IK, and by extension �IH, are defined inductively
on the syntax of the process. We use labelled reversible bundle event structures [10],
rather than prime event structures, to get a more compact representation where each ac-
tion in the calculus has only one corresponding event. While causation in the internal
�-calculus is simpler that in the full �-calculus, our early semantics means that we still
have to handle link causation, in the form of an input receiving a free name being caused
by a previous output of that free name. We show an operational correspondence be-
tween �IK processes and their event structure representations in Theorems 6.3 and 6.4.
Cristescu et al. [8] have used rigid families [4], related to event structures, to describe
the semantics of R� [7]. However, unlike our denotational event structure semantics,
their semantics require one to reverse every action in the process before applying the
mapping to a rigid family, and then redo every reversed action in the rigid family. Our
approach of using a static calculus as an intermediate step means we get the current state
of the event structure immediately, and do not need to redo the past steps.

Future work: We could expand the event structure semantics of �IK to �K. This would
entail significantly more link causation, but would give us event structure semantics
of a full �-calculus. Another possibility is to expand �IH to get a full reversible early
�-calculus.

Acknowledgements: We thank Thomas Hildebrandt and Håkon Normann for discus-
sions on how to translate their work on �-calculus with extrusion histories to a reversible
setting. We thank the anonymous reviewers of RC 2020 for their helpful comments.

This work was partially supported by an EPSRC DTP award; also by the follow-
ing EPSRC projects: EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1,
EP/T006544/1, EP/N028201/1 and EP/T014709/1; and by EU COST Action IC1405 on
Reversible Computation.

References

1. Aubert, C., Cristescu, I.: Contextual equivalences in configuration structures and reversibility.
JLAMP 86(1), 77 – 106 (2017). https://doi.org/10.1016/j.jlamp.2016.08.004

2. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi. Theoretical
Computer Science 195(2), 205 – 226 (1998). https://doi.org/10.1016/S0304-3975(97)00220-
X

17

https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1016/S0304-3975(97)00220-X
https://doi.org/10.1016/S0304-3975(97)00220-X

3. Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for
CCS and SCCS. In: Linear Time, Branching Time and Partial Order in Logics and Mod-
els for Concurrency. pp. 411–427. No. 354 in LNCS, Springer, Berlin, Heidelberg (1989).
https://doi.org/10.1007/BFb0013028

4. Castellan, S., Hayman, J., Lasson,M.,Winskel, G.: Strategies as concurrent processes. Electr.
Notes Theor. Comput. Sci. 308, 87–107 (2014). https://doi.org/10.1016/j.entcs.2014.10.006

5. Crafa, S., Varacca, D., Yoshida, N.: Compositional event structure semantics for the inter-
nal �-calculus. In: CONCUR. pp. 317–332. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74407-8_22

6. Crafa, S., Varacca, D., Yoshida, N.: Event Structure Semantics of Parallel Extrusion in the
Pi-Calculus. In: FOSSACS. pp. 225–239. No. 7213 in LNCS, Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28729-9_15

7. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible pi-
calculus. In: LICS. pp. 388–397. IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/LICS.2013.45

8. Cristescu, I., Krivine, J., Varacca, D.: Rigid families for the reversible �-calculus. In: RC.
LNCS, vol. 9720, pp. 3–19. Springer (2016). https://doi.org/10.1007/978-3-319-40578-0_1

9. Danos, V., Krivine, J.: Reversible Communicating Systems. In: CONCUR. pp. 292–307.
No. 3170 in LNCS, Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28644-8_19

10. Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled) reversible
CCS. In: RC. pp. 102–122 (2018). https://doi.org/10.1007/978-3-319-99498-7_7

11. Graversen, E., Phillips, I., Yoshida, N.: Event structures for the reversible early internal pi-
calculus. arXiv:2004.01211 [cs.FL] (2020), https://arxiv.org/abs/2004.01211

12. Hildebrandt, T.T., Johansen, C., Normann, H.: A stable non-interleaving early operational
semantics for the pi-calculus. In: LATA. pp. 51–63. No. 10168 in LNCS, Springer, Berlin,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-53733-7_3

13. Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151(2), 437 – 486
(1995). https://doi.org/10.1016/0304-3975(95)00074-7

14. Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversing Higher-Order Pi. In: CONCUR. pp. 478–
493. No. 6269 in LNCS, Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15375-4_33

15. Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversibility in the higher-order �-calculus. Theo-
retical Computer Science 625, 25 – 84 (2016). https://doi.org/10.1016/j.tcs.2016.02.019

16. Medić, D.,Mezzina, C.A.: Static VSDynamic Reversibility in CCS. In: RC. LNCS, vol. 9720,
pp. 36–51. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-
40578-0_3

17. Medic, D., Mezzina, C.A., Phillips, I., Yoshida, N.: A parametric framework for reversible
pi-calculi. In: EXPRESS/SOS. pp. 87–103 (2018). https://doi.org/10.4204/EPTCS.276.8

18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inf. Comput.
100(1), 1–77 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

19. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theor. Comput. Sci.
114(1), 149–171 (1993). https://doi.org/10.1016/0304-3975(93)90156-N

20. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: ICALP. pp. 685–695. Springer-Verlag,
Berlin, Heidelberg (1992). https://doi.org/10.5555/646246.684864

21. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. JLAMP 73(1-2), 70–96 (2007).
https://doi.org/10.1016/j.jlap.2006.11.002

22. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electr. Notes Theor.
Comput. Sci. 192(1), 93–108 (2007). https://doi.org/10.1016/j.entcs.2007.08.018

23. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. JLAMP
84(6), 781 – 805 (2015). https://doi.org/10.1016/j.jlamp.2015.07.004

18

https://doi.org/10.1007/BFb0013028
https://doi.org/10.1016/j.entcs.2014.10.006
https://doi.org/10.1007/978-3-540-74407-8_22
https://doi.org/10.1007/978-3-642-28729-9_15
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-40578-0_1
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-319-99498-7_7
https://arxiv.org/abs/2004.01211
https://doi.org/10.1007/978-3-319-53733-7_3
https://doi.org/10.1016/0304-3975(95)00074-7
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.4204/EPTCS.276.8
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0304-3975(93)90156-N
https://doi.org/10.5555/646246.684864
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1016/j.jlamp.2015.07.004

24. Sangiorgi, D.: �-calculus, internal mobility, and agent-passing calculi. Theoretical Computer
Science 167(1), 235 – 274 (1996). https://doi.org/10.1016/0304-3975(96)00075-8

25. Sewell, P., Wojciechowski, P.T., Unyapoth, A.: Nomadic pict: Programming languages, com-
munication infrastructure overlays, and semantics for mobile computation. ACM Trans. Pro-
gram. Lang. Syst. 32(4), 12:1–12:63 (2010). https://doi.org/10.1145/1734206.1734209

26. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. JLAMP 84(5), 684 – 707
(2015). https://doi.org/10.1016/j.jlamp.2015.03.004

27. Winskel, G.: Event structure semantics for CCS and related languages. In:
ICALP. pp. 561–576. No. 140 in LNCS, Springer, Berlin, Heidelberg (1982).
https://doi.org/10.1007/BFb0012800

19

https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1145/1734206.1734209
https://doi.org/10.1016/j.jlamp.2015.03.004
https://doi.org/10.1007/BFb0012800

	Event structures for the reversible early internal -calculus

