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Abstract. The �-calculus is a widely used process calculus, which models com-

munications between processes and allows the passing of communication links.

Various operational semantics of the �-calculus have been proposed, which can

be classified according to whether transitions are unlabelled (so-called reductions)

or labelled. With labelled transitions, we can distinguish early and late semantics.

The early version allows a process to receive names it already knows from the en-

vironment, while the late semantics and reduction semantics do not. All existing

reversible versions of the �-calculus use reduction or late semantics, despite the

early semantics of the (forward-only) �-calculus being more widely used than the

late. We define �IH, the first reversible early �-calculus, and give it a denotational

semantics in terms of reversible bundle event structures. The new calculus is a re-

versible form of the internal �-calculus, which is a subset of the �-calculus where

every link sent by an output is private, yielding greater symmetry between inputs

and outputs.

1 Introduction

The �-calculus [18] is a widely used process calculus, which models communications

between processes using input and output actions, and allows the passing of communi-

cation links. Various operational semantics of the �-calculus have been proposed, which

can be classified according to whether transitions are unlabelled or labelled. Unlabelled

transitions (so-called reductions) represent completed interactions. As observed in [25]

they give us the internal behaviour of complete systems, whereas to reason composition-

ally about the behaviour of a system in terms of its components we need labelled transi-

tions. With labelled transitions, we can distinguish early and late semantics [19], with the

difference being that early semantics allows a process to receive (free) names it already

knows from the environment, while the late does not. This creates additional causation

in the early case between those inputs and previous output actions making bound names

free. All existing reversible versions of the �-calculus use reduction semantics [14, 26]

or late semantics [7, 17]. However the early semantics of the (forward-only) �-calculus

is more widely used than the late, partly because it has a sound correspondence with

contextual congruences [13, 20].

We define �IH, the first reversible early �-calculus, and give it a denotational se-

mantics in terms of reversible event structures. The new calculus is a reversible form of

the internal �-calculus, or �I-calculus [24], which is a subset of the �-calculus where
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every link sent by an output is bound (private), yielding greater symmetry between in-

puts and outputs. It has been shown that the asynchronous�-calculus can be encoded in

the asynchronous form of the �I-calculus [2].

The �-calculus has two forms of causation. Structural causation, as one would find

in CCS, comes directly from the structure of the process, e.g. in a(b).c(d) the action

a(b) must happen before c(d). Link causation, on the other hand, comes from one action

making a name available for others to use, e.g. in the process a(x)|b(c), the event a(c)

will be caused by b(c) making c a free name. Note that link causation as in this example

is present in the early form of the �I-calculus though not the late, since it is created by the

process receiving one of its free names. Restricting ourselves to the �I-calculus, rather

than the full �-calculus lets us focus on the link causation created by early semantics,

since it removes the other forms of link causation present in the �-calculus.

We base �IH on the work of Hildebrandt et al. [12], which used extrusion histories

and locations to define a stable non-interleaving early operational semantics for the �-

calculus. We extend the extrusion histories so that they contain enough information to

reverse the �I-calculus, storing not only extrusions but also communications. Allowing

processes to evolve, while moving past actions to a history separate from the process,

is called dynamic reversibility. By contrast, static reversibility, as in CCSK [21], lets

processes keep their structure during the computation, and annotations are used to keep

track of the current state and how actions may be reversed.

Event structures are a model of concurrency which describe causation, conflict and

concurrency between events. They are ‘truly concurrent’ in that they do not reduce

concurrency of events to the different possible interleavings. They have been used to

model forward-only process calculi [3, 6, 27], including the �I-calculus [5]. Describing

reversible processes as event structures is useful because it gives us a simple represen-

tation of the causal relationships between actions and gives us equivalences between

processes which generate isomorphic event structures. True concurrency in semantics

is particularly important in reversible process calculi, as the order actions can reverse in

depends on their causal relations [22].

Event structure semantics of dynamically reversible process calculi have the added

complexity of the histories and the actions in the process being separated, obscuring the

structural causation. This was an issue for Cristescu et al. [8], who used rigid families [4],

related to event structures, to describe the semantics of R� [7]. Their semantics require

a process to first reverse all actions to find the original process, map this process to a

rigid family, and then apply each of the reversed memories in order to reach the current

state of the process. Aubert and Cristescu [1] used a similar approach to describe the

semantics of a subset of RCCS processes as configuration structures. We use a different

tactic of first mapping to a statically reversible calculus, �IK, and then obtaining the

event structure. This means that while we do have to reconstruct the original structure

of the process, we avoid redoing the actions in the event structure.

Our �IK is inspired by CCSK and the statically reversible �-calculus of [17], which

use communication keys to denote past actions. To keep track of link causation, keys

are used in a number of different ways in [17]. In our case we can handle link causation

by using keys purely to annotate the action which was performed using the key, and any

names which were substituted during that action.
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Although our two reversible variants of the �I-calculus have very different syntax

and originate from different ideas, we show an operational correspondence between

them in Theorem 4.6. We do this despite the extrusion histories containing more in-

formation than the keys, since they remember what bound names were before being

substituted. The mapping from �IH to �IK bears some resemblance to the one pre-

sented from RCCS to CCSK in [16], though with some important differences. �IH uses

centralised extrusion histories more similar to rho� [15] while RCCS uses distributed

memories. Additionally, unlike CCS, �I has substitution as part of its transitions and

memories are handled differently by �IK and �IH, and our mapping has to take this into

account.

We describe denotational structural event structure semantics of �IK, partly inspired

by [5, 6], using reversible bundle event structures [10]. Reversible event structures [23]

allow their events to reverse and include relations describing when events can reverse.

Bundle event structures are more expressive than prime event structures, since they al-

low an event to have multiple possible conflicting causes. This allows us to model par-

allel composition without having a single action correspond to multiple events. While

it would be possible to model �IK using reversible prime event structures, using bundle

event structures not only gives us fewer events, it also lays the foundation for adding

rollback to �IK and �IH, similarly to [10], which cannot be done using reversible prime

event structures.

The structure of the paper is as follows: Section 2 describes �IH; Section 3 describes

�IK; Section 4 describes the mapping from �IH to �IK; Section 5 recalls labelled re-

versible bundle event structures; and Section 6 gives event structure semantics of �IK.

Proofs of the results presented in this paper can be found in the technical report [11].

2 �I-calculus reversible semantics with extrusion histories

Stable non-interleaving, early operational semantics of the �-calculus were defined by

Hildebrandt et al. in [12], using locations and extrusion histories to keep track of link

causation. We will in this section use a similar approach to define a reversible variant

of the �I-calculus, �IH, using the locations and histories to keep track of not just cau-

sation, but also past actions. The �I-calculus is a restricted variant of the �-calculus

wherein output on a channel a, a(b), binds the name being sent, b, corresponding to

the �-calculus process (�b)a⟨b⟩.P . This creates greater symmetry with the input a(x),
where the variable x is also bound. The syntax of �IH processes is:

P ∶∶=
∑
i∈I

�i.Pi ∣ P0|P1 ∣ (�x)P � ∶∶= a(b) ∣ a(b)

The forward semantics of �IH can be seen in Table 1 and the reverse semantics can

be seen in Table 2. We associate each transition with an action � ∶∶= � | � and a

location u (Definition 2.1), describing where the action came from and what changes

are made to the process as a result of the action. We store these location and action pairs

in extrusion and communication histories associated with processes, so (H,H,H) ⊢P

means that if (�, u) is an action and location pair in the output history H then � is an

output action, whichP previously performed at location u. Similarly H contains pairs of
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input actions and locations andH contains triples of two communicating actions and the

location associated with their communication. We use H as shorthand for (H,H,H).

Definition 2.1 (Location [12]). A location u of an action � is one of the following:

1. l[P ][P ′] if � is an input or output, where l ∈ {0, 1}∗ describes the path taken

through parallel compositions to get to �’s origin, P is the subprocess reached by

following the path before � has been performed, and P ′ is the result of performing

� in P .

2. l
⟨
0l0[P0][P

′
0
], 1l1[P1][P

′
1
]
⟩

if � = � , where l0l0[P0][P
′
0
] and l1l1[P1][P

′
1
] are the

locations of the two actions communicating.

The path l can be empty if the action did not go through any parallel compositions.

We also use the operations on extrusion histories from Definition 2.2. These (1) add

a branch to the path in every location, (2) isolate the extrusions whose locations begin

with a specific branch, (3) isolate the extrusions whose locations begin with a specific

branch and then remove the first branch from the locations, and (4) add a pair to the

history it belongs in.

Definition 2.2 (Operations on extrusion histories [12]). Given an extrusion history

(H,H,H), for H∗ ∈ {H,H,H} we have the following operations for i ∈ {0, 1}:

1. iH∗ = {(�, iu) ∣ (�, u) ∈ H∗}
2. [i]H∗ = {(�, iu) ∣ (�, iu) ∈ H∗}
3. [ǐ]H∗ = {(�, u) ∣ (�, iu) ∈ H∗}

4. H + (�, u) =

⎧⎪⎨⎪⎩

(H ∪ {L}, H,H) if (�, u) = (a(n), u)

(H,H ∪ {L}, H) if (�, u) = (a(x), u)

(H,H,H ∪ {L}) if (�, u) = (a(x), a(n), l⟨u0, u1⟩)
The forwards semantics of �IH have six rules. In [OUT] the action is an output, the lo-

cation is the process before and after doing the output, and they are added to the output

history. The equivalent reverse rule, [OUT−1], similarly removes the pair from the his-

tory and transforms the process from the second part of the location back to the first. The

input rule [IN] works similarly, but performs a substitution on the received name and

adds the pair to the input history instead. In [PARi] we isolate the parts of the histories

whose locations start with i and use those to perform an action in Pi, getting H
′
i
⊢P ′

i
. It

then replaces the part of the histories parts of the histories whose locations start with i

with H
′
i

when propagating the action through the parallel. A communication in [COMi]
adds memory of the communication to the history. The rules [SCOPE] and [STR] are

standard and self-explanatory.

The reverse rules use the extrusion histories to find a location l[P ][P ′] such that the

current state of the subprocess at l is P ′, and change it to P .

In these semantics structural congruence, consisting only of �-conversion together

with !P ≡ !P |P and (� a)(�b)P ≡ (� b)(� a)P , is primarily used to create and re-

move extra copies of a replicated process when reversing the action that happened be-

fore the replication. Since we use locations in our extrusion histories, we try to avoid
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u = [
∑
i∈I

�i.Pi][Pj ] �j = a(n) j ∈ I

H ⊢
∑
i∈I

�i.Pi

�j
←←←←←←←←→
u

(H ∪ {(a(n), u)},H,H) ⊢Pj

[OUT]

u = [
∑
i∈I

�i.Pi][Pj] P ′
j
= Pj [x ∶= n] �j = a(x) j ∈ I

H ⊢
∑
i∈I

�i.Pi

a(n)
←←←←←←←←←←←←←→
u

(H,H ∪ {(a(n), u)}, H) ⊢P ′
j

[IN]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi

�
←←←←←→
u
H

′
i
⊢P ′

i
P ′
1−i

= P1−i if � = a(n) then n ∉ fn(P1−i)

H ⊢P0|P1

�
←←←←←←←→
iu

((H ⧵ [i]H) ∪ iH ′
i , (H ⧵ [i]H) ∪ iH ′

i
, (H ⧵ [i]H) ∪ iH ′

i
) ⊢P ′

0
|P ′

1

[PARi]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi

�i
←←←←←←←→
vi

H
′
i
⊢P ′

i
�i = a(n) �j = a(n)

([ǰ]H, [ǰ]H, [ǰ]H) ⊢Pj

�i
←←←←←←←←→
vj

H
′
j
⊢P ′

j
j = 1 − i n ∉ fn(Pj )

H ⊢P0|P1

�
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(0v0,1v1 )

(H,H,H ∪ {((�0, �1, ⟨0v0, 1v1⟩)}) ⊢ (�n)(P ′
0
|P ′

1
)
[COMi]

H ⊢P
�
←←←←←→
u
H

′ ⊢P ′ x ∉ n(�)

H ⊢ (�x)P
�
←←←←←→
u
H

′ ⊢ (�x)P ′
[SCOPE]

P ≡ P ′
H ⊢P ′

�
←←←←←→
u
H

′ ⊢Q′ Q′ ≡ Q

H ⊢P
�
←←←←←→
u
H

′ ⊢Q
[STR]

Table 1. Semantics of �IH (forwards rules)

using structural congruence any more than necessary. However, not using it for parallel

composition would mean that we would need some other way of preventing traces such

as H ⊢!P
�
←←←←←←←→
u

�

u
H ⊢!P |P , which allows a process to reach a state it could not reach via

a parabolic trace. Using structural congruence for replication does not cause any prob-

lems for the locations, as we can tell past actions originating in each copy of P apart by

the path in their location, with actions from the ith copy having a path of i 0s followed

by a 1.

Example 2.3. Consider the process (a(x).x(d)|a(c))|b(y). If we start with empty histo-

ries, each transition adds actions and locations:

(∅, ∅, ∅) ⊢ (a(x).x(d)|a(c))|b(y) �
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
0⟨0[a(x).x(d)][c(d)],1[a(c)][0]⟩

(∅, ∅, {(a(c), a(c), 0
⟨
0[a(x).x(d)][c(d)], 1[a(c)][0]

⟩
}) ⊢ (�c)(c(d)|0)|b(y) c(d)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
00[c(d)][0]

({(c(d), 00[c(d)][0])}, ∅, {(a(c), a(c), 0
⟨
0[a(x).x(d)][c(d)], 1[a(c)][0]

⟩
}) ⊢ (�c)(0|0)|b(y) b(d)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
1[b(y)][0]

({(c(b), 00[c(b)][0])}, {(b(d), 1[b(y)][0])}, {(a(c), a(c), 0
⟨
0[a(x).x(d)][c(d)], 1[a(c)][0]

⟩
}) ⊢ (0|0)|0

We show that our forwards and reverse transitions correspond.

Proposition 2.4 (Loop).

1. Given a �IH process P and an extrusion history H, if H ⊢P
�
←←←←←←→
u

H
′ ⊢Q, then

H
′ ⊢Q

�

u
H ⊢P .
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u = [
∑
i∈I

�i.Pi][Pj] �j = a(n) j ∈ I (a(n), u) ∈ H

H ⊢ Pj

�j

u
(H ⧵

{
(a(n), u)

}
,H,H) ⊢

∑
i∈I �i.Pi

[OUT−1]

u = [
∑
i∈I

�i.Pi][Pj ] P ′
j
= Pj[x ∶= n] �j = a(x) j ∈ I (a(n), u) ∈ H

H ⊢ P ′
j

a(n)

u
(H,H ⧵ {(a(n), u)} ,H) ⊢

∑
i∈I

�i.Pi

[IN−1]

([ǐ]H, [ǐ]H, [ǐ]H) ⊢ Pi

�

u H
′
i
⊢ P ′

i
P ′
1−i

= P1−i if � = a(n) then n ∉ fn(P1−i)

H ⊢ P0|P1

�

iu
((H ⧵ [i]H) ∪ iH ′

i
, (H ⧵ [i]H) ∪ iH ′

i
, (H ⧵ [i]H) ∪ iH ′

i
) ⊢ P ′

0
|P ′

1

[PAR−1
i
]

([ǐ]H ∪ {(a(n), vi)}, [ǐ]H, [ǐ]H) ⊢ Pi

a(n)

vi
H

′
i
⊢ P ′

i
�i = a(n) �j = a(n)

([ǰ]H, [ǰ]H ∪ {(a(n), vj)}, [ǰ]H) ⊢ Pj

a(n)

vj
H

′
j
⊢ P ′

j
j = 1 − i n ∉ fn(Pj)

H ⊢ (�n)(P0|P1)
�

(0v0,1v1 )
(H,H,H ⧵ {((�0, �1, ⟨0v0, 1v1⟩)} ⊢P ′

0
|P ′

1

[COM−1
i
]

H ⊢ P
�

u
H

′ ⊢ P ′ x ∉ n(�)

H ⊢ (�x)P
�

u
H

′ ⊢ (�x)P ′

[SCOPE−1]
P ≡ P ′

H ⊢ P ′
�

u H
′ ⊢ Q′ Q′ ≡ Q

H ⊢ P
�

u H
′ ⊢ Q

[STR−1]

Table 2. Semantics of reversible �IH (reverse rules)

2. Given a forwards-reachable�IH process P and an extrusion history H, if H ⊢P
�

u

H
′ ⊢Q, then H

′ ⊢Q
�
←←←←←←→
u

H ⊢P .

3 �I-calculus reversible semantics with annotations

In order to define event structure semantics of �IH, we first map from �IH to a stati-

cally reversible variant of �I-calculus, called �IK. �IK is based on previous statically

reversible calculi �K [17] and CCSK [21]. Both of these use communication keys to

denote past actions and which other actions they have interacted with, so a(x)|a(b) �[n]
←←←←←←←←←←←←←←←→

a(b)[n]|a(b)[n] means a communication with the key n has taken place between the two

actions. We apply this idea to define early semantics of �IK, which has the following

syntax:

P ∶∶= �.P ∣ �[n].P ∣ P0 + P1 ∣ P0|P1 ∣ (�x)P � ∶∶= a(b) ∣ a(b)

The primary difference between applying communication keys to CCS and the �I-

calculus is the need to deal with substitution. We need to keep track of not only which ac-

tions have communicated with each other, but also which names were substituted when.

We do this by giving the substituted names a key, a[n], but otherwise treating them the

same as those without the key, except when undoing the input associated with n.
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std(P ) P ′ = P [x ∶= b[n]]

a(x).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P ′

std(P )

a(b).P
a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ a(b)[n].P

P
�[m]
←←←←←←←←←←←←←←←→ P ′ m ≠ n if � = a(x) then x ∉ n(�)

�[n].P
�[m]
←←←←←←←←←←←←←←←→ �[n].P ′

P0

�[n]
←←←←←←←←←←←←←←→ P ′

0
std(P1)

P0 + P1

�[n]
←←←←←←←←←←←←←←→ P ′

0
+ P1

P0

�[n]
←←←←←←←←←←←←←←→ P ′

0
fsh[n](P1) if � = a(b) then b ∉ fn(P1)

P0|P1

�[n]
←←←←←←←←←←←←←←→ P ′

0
|P1

P0

a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ P ′

0
P1

a(b)[n]
←←←←←←←←←←←←←←←←←←←←←→ P ′

1

P0|P1

�[n]
←←←←←←←←←←←←←→ (�b)(P ′

0
|P ′

1
)

P
�[m]
←←←←←←←←←←←←←←←→ P ′ a ∉ n(�)

(�a)P
�[m]
←←←←←←←←←←←←←←←→ (�a)P ′

P ≡ Q
�[n]
←←←←←←←←←←←←←←→ Q′ ≡ P ′

P
�[n]
←←←←←←←←←←←←←←→ P ′

Table 3. �IK forward semantics

std(P ) x ∉ n(P ) P ′ = P [b[m] ∶= x]

a(b)[m].P
a(b)[m]

a(x).P ′

std(P )

a(b)[n].P
a(b)[n]

a(b).P

P
�[m]

P ′ m ≠ n

�[n].P
�[m]

�[n].P ′

P0

�[n]

P ′
0

std(P1)

P0 + P1

�[n]

P ′
0
+ P1

P0

�[n]

P ′
0

fsh[n](P1) if � = a(b) then b ∉ fn(P1)

P0|P1

�[n]

P ′
0
|P1

P0

a(b)[n]

P ′
0

P1

a(b)[n]

P ′
1

(�b)(P0|P1)
�[n]

P ′
0
|P ′

1

P
�[m]

P ′ a ∉ n(�)

(�a)P
�[m]

(�a)P ′

P ≡ Q
�[n]

Q′ ≡ P ′

P
�[n]

P ′

Table 4. �IK reverse semantics

Table 3 shows the forward semantics of �IK. The reverse semantics can be seen in

Table 4. We use � to range over input and output actions and � over input, output, and � .

We use std(P ) denote that P is a standard process, meaning it does not contain any

past actions (actions annotated with a key), and fsh[n](P ) to denote that a key n is fresh

for P . Names in past actions are always free. Our semantics very much resemble those

of CCSK, with the exceptions of substitution and ensuring that any name being output

does not appear elsewhere in the process. The semantics use structural congruence as

defined in Table 5.

We again show a correspondence between forward and reverse transitions.

Proposition 3.1 (Loop).

1. Given a process P , if P
�[n]
←←←←←←←←←←←←←←←←→Q then Q

�[n]
P .

2. Given a forwards reachable process P , if P
�[n]

Q then Q
�[n]
←←←←←←←←←←←←←←←←→ P .
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P |0 ≡ P P0|P1 ≡ P1|P0 P0|(P1|P2) ≡ (P0|P1)|P2

P + 0 ≡ P P0 + P1 ≡ P1 + P0 P0 + (P1 + P2) ≡ (P0 + P1) + P2

!P ≡ !P |P (�x)(�y)P ≡ (�y)(�x)P (�a)(P0|P1) ≡ ((�a)P0|P1) if a ∉ n(P1)

Table 5. Structural congruence

4 Mapping from �IH to �IK

We will now define a mapping from �IH to �IK and show that we have an operational

correspondence in Theorem 4.6. The extrusion histories store more information than the

keys, as they keep track of which names were substituted, as illustrated by Example 4.1.

This means we lose some information in our mapping, but not information we need.

Example 4.1. Consider the processes (∅, {(a(b), [a(x)][0])}, ∅) ⊢ 0 and a(b)[n]. These

are the result of a(x) receiving b in the two different semantics. We can see that the

extrusion history remembers that the input name was x before b was received, but the

keys do not remember, and when reversing the action could use any name as the input

name. This does not make a great deal of difference, as after reversing a(b), the process

with the extrusion history can also �-convert x to any name.

Since we intend to define a mapping from processes with extrusion histories to pro-

cesses with keys, we first describe how to add keys to substituted names in a process in

Definition 4.2. We have a function, S, which takes a process, P1, in which we wish to

add the key [n] to all those names which were x in a previous state of the process, P2,

before being substituted for some other name in an input action with the key [n].

Definition 4.2 (Substituting in �IK-process to correspond with processes with ex-

trusion histories). Given a �IK process P1, a �I-calculus process without keys, P2, a

key n, and a name x, we can add the key n to any names which x has been substituted

with, by applying S(P1, P2, [n], x), defined as:

1. S (0, 0, [n], x) = 0

2. S

(∑
i∈I

Pi1,
∑
i∈I

Pi2, [n], x

)
=

∑
i∈I

S
(
Pi1, Pi2, [n], x

)

3. S
(
P1|Q1, P2|Q2, [n], x

)
= S

(
P1, P2, [n], x

) |S (
Q1, Q2, [n], x

)

4. S
(
(�a)P1, (�b)P2, [n], x

)
= P ′

1
where:

if x = b then P ′
1
= P1 and otherwise P ′

1
= (�a)S

(
P1, P2, [n], x

)
.

5. S
(
�1.P1, �2.P2, [n], x

)
= �′

1
.P ′

1
where:

if �2 ∈ {x(c), x(c)} then �′
1
= �1[n] and otherwise �′

1
= �1;

if �2 ∈ {c(x), c(x)} then P ′
1
= P1 and otherwise P ′

1
= S

(
P1, P2, [n], x

)
.

6. S
(
�1[m].P1, �2.P2, [n], x

)
= �′

1
[m].P ′

1
where:

if �2 ∈ {x(c), x(c)} then �′
1
= �1[n] and otherwise �′

1
= �1;

if �2 ∈ {c(x), c(x)} then P ′
1
= P1 and otherwise P ′

1
= S

(
P1, P2, [n], x

)
.
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7. S
(
!P1, !P2, [n], x

)
= !S

(
P1, P2, [n], x

)

8. S
(
P1|P ′

1
, !P2, [n], x

)
= S

(
P1, !P2, [n], x

) |S (
P ′
1
, P2, [n], x

)

9. S
(
!P1, P2|P ′

2
, [n], x

)
= S

(
!P1, P2, [n], x

) |S (
P1, P

′
2
, [n], x

)

where a(b)[n] = a[n](b) and a(b)[n] = a[n](b)

Being able to annotate our names with keys, we can define a mapping, E, from

extrusion histories to keys in Definition 4.4. E iterates over the extrusions, having one

process which builds �IK-process, and another that keeps track of which state of the

original �IH process has been reached. When turning an extrusion into a keyed action,

we use the locations as key and also give each extrusion an extra copy of its location

to use for determining where the action came from. This way we can use one copy

to iteratively go through the process, removing splits from the path as we go through

them, while still having another intact copy of the location to use as the final key. In

E(H ⊢P , P ′), H is a history of extrusions which need to be turned into keyed actions,

P is the process these keyed actions should be added to, and P ′ is the state the process

would have reached, had the added extrusions been reversed instead of turned into keyed

actions.

IfE encounters a parallel composition in P (case 2), it splits its extrusion histories in

three. One part, Hshared contains the locations which have an empty path, and therefore

belong to actions from before the processes split. Another part contains the locations

beginning with 0, and goes to the first part of the process. And finally the third part

contains the locations beginning with 1, and goes to the second part of the process.

E can add an action – and the choices not picked when that action was performed

– to P (cases 3,4) when the associated location has an empty path and has P ′ as its

result process. When turning an input memory from the history into a past input action

in the process (case 4), we use S (Definition 4.2) to add keys to the substituted names.

When E encounters a restriction (case 5), it moves a memory that can be used inside

the restriction inside. It does this iteratively until there are no such memories left in the

extrusion histories. We apply E to a process in Example 4.5.

Definition 4.3. The function lcopy gives each member of an extrusion history an extra

copy of its location:

lcopy(H∗) = {(�, u, u) ∣ (�, u) ∈ H∗}

lcopy(H,H,H) = (lcopy(H), lcopy(H), lcopy(H))

Definition 4.4. Given a �IH process, H ⊢P , we can create an equivalent �IK process,

E(lcopy(H) ⊢P , P ) = P ′ defined as

1. E((∅, ∅, ∅) ⊢P , P ′) = P

2. E(H ⊢P0|P1, P ′
0
|P ′

1
) = E(Hshared ⊢P ′′

0
|P ′′

1
, P ′′′

0
|P ′′′

1
) where:

Hshared = ({(�, u, u′) ∣ (�, u, u′) ∈ H and u ≠ iu′′}, {(�, u, u′) ∣ (�, u, u′) ∈ H

and u ≠ iu′′}, ∅)
P ′′
0
= E((H0, H0, H0) ⊢P0, P

′
0
) where:

H0 = {(a(b), u0, u
′
0
) ∣ (a(b), 0u0, u

′
0
) ∈ H or (a(b), �1, ⟨0u0, 1u1⟩ , u′0) ∈ H}
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H0 = {(a(b), u0, u
′
0
) ∣ (a(b), 0u0, u

′
0
) ∈ H or (a(b), �1, ⟨0u0, 1u1⟩ , u′0) ∈ H}

H0 = {(�, �′, u, u′) ∣ (�, �′, 0u, u′) ∈ H}

P ′′
1
= E((H1, H1, H1) ⊢P1, P

′
1
)) where:

H1 = {(a(b), u1, u
′
1
) ∣ (a(b), 1u1, u

′
1
) ∈ H or (�0, a(b), ⟨0u0, 1u1⟩ , u′1) ∈ H}

H1 = {(a(b), u1, u
′
1
) ∣ (a(b), 1u1, u

′
1
) ∈ H or (�0, a(b), ⟨0u0, 1u1⟩ , u′1) ∈ H}

H1 = {(�, �′, u, u′) ∣ (�, �′, 1u, u′) ∈ H}

Hi ⊢P ′
i

�i,0

ui,0
…

�i,n

ui,n
(∅, ∅, ∅) ⊢P ′′′

i
for i ∈ {0, 1}

3. E((H∪{(a(b), [Q][P ′], u)}, H,H) ⊢P , P ′) = E(H ⊢a(b) [u] .P +
∑

i∈I⧵{j}

�i.Pi, Q)

if Q =
∑

i∈I �i.Pi, a(b) = �j , and P ′ = Pj

4. E((H,H ∪ {(a(b), [Q][P ′], u)}, H) ⊢P , P ′) =
E(H ⊢a(b) [u] .S(P , Pj , [u], x) +

∑
i∈I⧵{j}

�i.Pi, Q)

if Q =
∑

i∈I �i.Pi, a(x) = �j , and P ′ = Pj[x ∶= b]

5. E(H ⊢ (�x)P , (�x)P ′) = E(H − (�, u, u′) ⊢P ′′, (�x)Q′)
where P ′′ = (�x)E((∅, ∅, ∅) + (�, u, u′) ⊢P , P ′)

if (�, u, u′) ∈ H ∪H and (∅, ∅, ∅) + (�, u, u) ⊢P
�

u
(∅, ∅, ∅) ⊢Q′

6. E(H ⊢!P , !P ′) = E(H ⊢!P |P , !P ′|P ′) if there exists (�, u, u′) ∈ H ∪H ∪H such

that u ≠ [Q][Q′].

Example 4.5. We will now apply E to the process

({(b(c), u2)}, ∅, {(b(a), b(a), ⟨0u0, 1u1⟩)}) ⊢a(x) ∣ 0

with locations u0 = [b(y).y(x)][a(x)], u1 = [b(a)][0], and u2 = [b(c).(b(y).y(x) ∣

b(a)][b(y).y(x) ∣ b(a)]. We perform

E(lcopy(({(b(c), u2)}, ∅, {(b(a), b(a), ⟨0u0, 1u1⟩)})) ⊢ a(x) ∣ 0, a(x) ∣ 0)

Since we are at a parallel, we use Case 2 of Definition 4.4 to split the extrusion his-

tories into three to get E(({(b(c), u2, u2)}, ∅, ∅) ⊢P0 ∣ P1, b(y).y(x) ∣ b(a)) where P0 =

E((∅, {(b(a), u0, ⟨0u0, 1u1⟩)}, ∅) ⊢a(x), a(x)) andP1 = E(({(b(a), u1, ⟨0u0, 1u1⟩)}, ∅, ∅) ⊢
0, 0).

To find P0, we look at u0, and find that it has a(x) as its result, meaning we can apply

Case 4 to obtain E((∅, ∅, ∅) ⊢ b(a)[⟨0u0, 1u1⟩].S(a(x), y(x), [⟨0u0, 1u1⟩], y), b(y).y(x)).
And by applying Case 5 of Definition 4.2, S(a(x), y(x), [⟨0u0, 1u1⟩], y) = a[⟨0u0,1u1⟩](x).
Since we have no more extrusions to add, we apply Case 1 to get our process P0 =
b(a)[⟨0u0, 1u1⟩].a[⟨0u0,1u1⟩](x).

To find P1, we similarly look at u1 and find that we can apply Case 3. This gives us

P1 = b(a)[⟨0u0, 1u1⟩].0.

We can then apply Case 3 to E(({(b(c), u2, u2)}, ∅, ∅) ⊢ P0 ∣ P1, b(y).y(x) ∣ b(a)).
This gives us our final process,

b(c)[k′].b(a)[k].a[k](x) ∣ b(a)[k].0
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where k = ⟨0u0, 1u1⟩ and k′ = u2

We can then show, in Theorem 4.6, that we have an operational correspondence between

our two calculi and E preserves transitions. Item 1 states that every transition in �IH

corresponds to one in �IK process generated by E, and Item 2 vice versa.

Theorem 4.6. Given a reachable �IH process, H ⊢P , and an action, �,

1. if there exists a location u such that H ⊢P
�

u
H

′ ⊢P ′ then there exists a key, m,

such that E(lcopy(H) ⊢P , P )
�[m]

E(lcopy(H′) ⊢P ′, P ′);

2. if there exists a key, m, such that E(lcopy(H) ⊢ P , P )
�[m]

P ′′, then there exists

a location, u, and a �IH process, H′ ⊢ P ′, such that H ⊢ P
�

u
H

′ ⊢ P ′ and

P ′′ ≡ E(lcopy(H′) ⊢P ′, P ′).

5 Bundle event structures

In this section we will recall the definition of labelled reversible bundle event structures

(LRBESs), which we intend to use later to define the event structure semantics of �IK

and through that �IH. We also describe some operations on LRBESs, which our seman-

tics will make use of. This section is primarily a review of definitions from [10]. We use

bundle event structures, rather than the more common prime event structures, because

LRBESs yield more compact event structures with fewer events and simplifies parallel

composition.

An LRBES consists of a set of events, E, a subset of which, F , are reversible,and

three relations on them. The bundle relation, ↦, says that if X ↦ e then one of the

events of X must have happened before e can and all events in X are in conflict with

each other. The conflict relation, ♯, says that if e ♯ e′ then e and e′ cannot occur in the

same configuration. The prevention relation, ⊳, says that if e⊳ e′ then e′ cannot reverse

after e has happened. Since the event structure is labelled, we also have a set of labels

Act, and a labelling function � from events to labels. We use e to denote e being reversed,

and e∗ to denote either e or e.

Definition 5.1 (Labelled Reversible Bundle Event Structure [10]). A labelled re-

versible bundle event structure is a 7-tuple  = (E, F ,↦, ♯,⊳, �,Act) where:

1. E is the set of events;

2. F ⊆ E is the set of reversible events;

3. the bundle set, ↦ ⊆ 2E × (E ∪F ), satisfies X ↦ e∗ ⇒ ∀e1, e2 ∈ X.e1 ≠ e2 ⇒ e1 ♯

e2 and for all e ∈ F , {e} ↦ e;

4. the conflict relation, ♯ ⊆ E × E, is symmetric and irreflexive;

5. ⊳ ⊆ E × F is the prevention relation.

6. � ∶ E → Act is a labelling function.

An event in a LRBES can have multiple possible causes as defined in Definition 5.2.

A possible cause X of an event e is a conflict-free set of events which contains a member

of each bundle associated with e and contains possible causes of all events in X.

11



Definition 5.2 (Possible Cause). Given an LRBES,  = (E, F,↦, ♯,⊳, �,Act) and an

event e ∈ E, X ⊆ E is a possible cause of e if

– e ∉ X, Xis finite, whenever X′ ↦ e we have X′ ∩X ≠ ∅;

– for any e′, e′′ ∈ {e} ∪X, we have e′ ̸♯ e′′ (X ∪ {e} is conflict-free);

– for all e′ ∈ X, there exists X′′ ⊆ X, such that X′′ is a possible cause of e′;
– there does not exist any X′′′ ⊂ X, such that X′′′ is a possible cause of e.

Since we want to compare the event structures generated by a process to the oper-

ational semantics, we need a notion of transitions on event structures. For this purpose

we use configuration systems (CSs), which event structures can be translated into.

Definition 5.3 (Configuration system [23]). A configuration system (CS) is a quadru-

ple  = (E, F,C,→) where E is a set of events, F ⊆ E is a set of reversible events,

C ⊆ 2E is the set of configurations, and →⊆ C × 2E∪F × C is a labelled transition

relation such that if X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y then:

– X, Y ∈ C, A ∩X = ∅; B ⊆ X ∩ F ; and Y = (X ⧵ B) ∪ A;

– for all A′ ⊆ A and B′ ⊆ B, we have X
A′∪B′

←←←←←←←←←←←←←←←←←←←←←←←←→ Z
(A⧵A′)∪(B⧵B′)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Y , meaning

Z = (X ⧵ B′) ∪ A′ ∈ C.

Definition 5.4 (From LRBES to CS [10]). We define a mapping Cbr from LRBESs to

CSs as: Cbr((E, F,↦, ♯,⊳, �,Act)) = (E, F,C,→) where:

1. X ∈ C if X is conflict-free;

2. For X, Y ∈ C, A ⊆ E, and B ⊆ F , there exists a transition X
A∪B
←←←←←←←←←←←←←←←←←←←→ Y if:

(a) Y = (X ⧵ B) ∪ A; X ∩ A = ∅; B ⊆ X; and X ∪ A conflict-free;

(b) for all e ∈ B, if e′ ⊳ e then e′ ∉ X ∪ A;

(c) for all e ∈ A and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ B) ≠ ∅;

(d) for all e ∈ B and X′ ⊆ E, if X′ ↦ e then X′ ∩ (X ⧵ (B ⧵ {e})) ≠ ∅.

For our semantics we need to define a prefix, restriction, parallel composition, and

choice. Causal prefixing takes a label, �, an event, e, and an LRBES,  , and adds e

to  with the label � and associating every other event in  with a bundle containing

only e. Restriction removes a set of events from an LRBES.

Definition 5.5 (Causal Prefixes [10]). Given an LRBES  , a label �, and an event e,

(�)(e). = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. E′ = E ∪ e
2. F ′ = F ∪ e
3. ↦′ = ↦ ∪({{e}} × (E ∪ {e}))
4. ♯′ = ♯

5. ⊳
′ = ⊳ ∪ (E × {e})

6. �′ = �[e ↦ �]

7. Act′ = Act ∪ {�}

Removing a set of labels L from an LRBES removes not just events with labels in A

but also events dependent on events with labels in L.

Definition 5.6 (Removing labels and their dependants). Given an event structure  =
(E, F,↦, ♯,⊳, �,Act) and a set of labelsL ⊆ Act, we define � (L) = X as the maximum

subset of E such that
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1. if e ∈ X then �(e) ∉ L;

2. if e ∈ X then there exists a possible cause of e, x, such that x ⊆ X.

A choice between LRBESs puts all the events of one event structure in conflict with the

events of the others.

Definition 5.7 (Choice [10]). Given LRBESs 0, 1,… , n, the choice between them is∑
0≤i≤n

i = (E, F,↦, ♯,⊳, �,Act) where:

1. E =
⋃

0≤i≤n

{i} × Ei

2. F =
⋃

0≤i≤n

{i} × Fi

3. X ↦ e∗ if e = (i, ei), Xi ↦i e
∗
i
, and

X = {i} ×Xi

4. (i, e) ♯ (j, e′) if i ≠ j or e ♯i e
′

5. (i, e) ⊳ (j, e′) if i ≠ j or e ♯i e
′

6. �(j, e) = �j(e)

7. Act =
⋃

0≤i≤n

Acti

Definition 5.8 (Restriction [10]). Given an LRBES,  = (E, F,↦, ♯,⊳, �,Act), re-

stricting  to E′ ⊆ E creates  ↾ E′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′) where:

1. F ′ = F ∩ E′;

2. ↦′ = ↦ ∩((E′) × (E′ ∪ F ′));
3. ♯′ = ♯ ∩(E′ × E′);

4. ⊳
′ = ⊳ ∩ (E′ × F ′);

5. �′ = � ↾E′ ;

6. Act = ran(�′).

For parallel composition we construct a product of event structures, which consists of

events corresponding to synchronisations between the two event structures. The possible

causes of an event (e0, e1) contain a possible cause of e0 and a possible cause of e1.

Definition 5.9 (Parallel [10]). Given two LRBESs 0 = (E0, F0,↦0, ♯0,⊳0, �0,Act0)
and 1 = (E1, F1,↦1, ♯1,⊳1, �1,Act1), their parallel composition 0 × 1 = (E, F,↦

, ♯,⊳, �,Act) with projections �0 and �1 where:

1. E = E0 ×∗ E1 = {(e, ∗) ∣ e ∈ E0} ∪ {(∗, e) ∣ e ∈ E1} ∪ {(e, e′) ∣ e ∈ E0 and e′ ∈
E1};

2. F = F0×∗F1 = {(e, ∗) ∣ e ∈ F0}∪{(∗, e) ∣ e ∈ F1}∪{(e, e
′) ∣ e ∈ F0 and e′ ∈ F1};

3. for i ∈ {0, 1} we have (e0, e1) ∈ E, �i((e0, e1)) = ei;

4. for any e∗ ∈ E ∪ F , X ⊆ E, X ↦ e∗ iff there exists i ∈ {0, 1} and Xi ⊆ Ei such

that Xi ↦ �i(e)
∗ and X = {e′ ∈ E ∣ �i(e

′) ∈ Xi};

5. for any e, e′ ∈ E, e ♯ e′ iff there exists i ∈ {0, 1} such that �i(e) ♯i �i(e
′), or

�i(e) = �i(e
′) ≠ ⊥ and �1−i(e) ≠ �1−i(e

′);
6. for any e ∈ E, e′ ∈ F , e ⊳ e′ iff there exists i ∈ {0, 1} such that �i(e) ⊳i �i(e

′).

7. �(e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�0(e0) if e = (e0, ∗)

�1(e1) if e = (∗, e1)

� if e = (e0, e1) and either �0(e0) = a(x) and �1(e1) = a(x)

or �0(e0) = a(x) and �1(e1) = a(x)

0 otherwise

8. Act = {�} ∪ Act0 ∪ Act1
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6 Event structure semantics of �IK

In this section we define event structure semantics of �IK using the LRBESs and opera-

tions defined in Section 5. Theorems 6.3 and 6.4 give us an operational correspondence

between a �IK process and the generated event structure. Together with Theorem 4.6,

this gives us a correspondence between a �IH process and the event structure it generates

by going via a �IK process.

As we want to ensure that all free and bound names in our process are distinct, we

modify our syntax for replication, assigning each replication an infinite set, x, of names

to substitute into the place of bound names in each created copy of the process, so that

!xP ≡ !x⧵{x0,…,xk}
P |P{x0,…,xk∕a0 ,…,ak

} if {x0,… , xk} ⊆ x and bn(P ) = {a0,… , ak}

Before proceeding to the semantics we also define the standard bound names of a

process P , sbn(P ), meaning the names that would be bound in P if every action was

reversed, in Definition 6.1.

Definition 6.1. The standard bound names of a process P , sbn(P ), are defined as:

sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(a(x).P ′) = {x} ∪ sbn(P ′) sbn(a(x)[m].P ′) = {x} ∪ sbn(P ′)
sbn(P0|P1) = sbn(P0) ∪ sbn(P1) sbn(P0 + P1) = sbn(P0) ∪ sbn(P1)
sbn(�x)P ′ = {x} ∪ sbn(P ′) sbn(!xP ) = x

We can now define the event structure semantics in Table 6. We do this using rules

of the form ⦃P⦄( ,l) = ⟨ , Init, k⟩ where l is the level of unfolding of replication, 

is an LRBES, Init is the initial configuration,  ⊇ n(P ) is a set of names, which any

input in the process could receive, and k ∶ Init →  is a function assigning communi-

cation keys to the past actions, which we use in parallel composition to determine which

synchronisations of past actions to put in Init. We define ⦃P⦄ = supl∈ℕ ⦃P⦄( ,l)

The denotational semantics in Table 6 make use of of the LRBES operators defined

in Section 5. The choice and output cases are straightforward uses of the choice and

causal prefix operators. The input creates a case for prefixing an input of each name in

 and a choice between the cases. We have two cases for restriction, one for restriction

originating from a past communication and another for restriction originating from the

original process. If the restriction does not originate from the original process, then we

ignore it, otherwise we remove events which would use the restricted channel and their

causes. The parallel composition uses the parallel operator, but additionally needs to

consider link causation caused by the early semantics. Each event labelled with an input

of a name in standard bound names gets a bundle consisting of the event labelled with

the output on that name. And each output event is prevented from reversing by the input

names receiving that name. This way, inputs on extruded names are caused by the output

that made the name free. Replication substitutes the names and counts down the level

of replication.

Note that the only difference between a future and a past action is that the event

corresponding to a past action is put in the initial state and given a communication key.
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⦃0⦄( ,l) = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩
⦃P0 + P1⦄( ,l) = ⟨0 + 1, {0} × Init0 ∪ {1} × Init1, k((i, e)) = ki(e)⟩ where

⦃Pi⦄ = ⟨i, Initi, ki⟩ for i ∈ {0, 1}
⦃
a(n).P

⦄
( ,l)

=
⟨
a(n)(e).P , InitP , kP

⟩
for some fresh e ∉ E where

⦃P⦄( ,l) = ⟨P , InitP , kP ⟩

⦃a(x).P⦄( ,l) =

⟨
∑

n∈( ⧵sbn(P ))

a(n)(e).Pn
,

⋃
n∈( ⧵sbn(P ))

{n} × InitPn , (n, e) ↦ kPn (e)

⟩

for some fresh en ∉ En where

⦃P [x ∶= n]⦄( ,l) =
⟨
Pn

, InitPn , kPn

⟩
⦃
a(n)[m].P

⦄
( ,l)

=
⟨
a(n)(e).P , InitP ∪ {e}, kP [e ↦ m]

⟩
for some fresh e ∉ E where

⦃P⦄( ,l) = ⟨P , InitP , kP ⟩

⦃a(b)[m].P⦄( ,l) =

⟨
∑

n∈( ⧵sbn(P ))

a(n)(en).Pn
, (

⋃
n∈( ⧵sbn(P ))

{n} × InitPn ) ∪ {(b, eb)}, k

⟩

for some fresh en ∉ En where

⦃P [b[m] ∶= n]⦄( ,l) =
⟨
Pn

, InitPn , kPn

⟩

k((n, e)) =

{
m if e = eb and n = b

kPn (e) otherwise

⦃(�a)P⦄( ,l) = ⟨ ↾ E� , Init ∩ E� , k ↾ E�)⟩ where:

⦃P⦄( ,l) = ⟨ , Init, k⟩
E� = �({� ∣ a ∈ n(�)}

if whenever there exist past actions b(a)[m] and b(a)[m] in P then

they are guarded by a restriction (�a) in P

⦃(�a)P⦄( ,l) = ⟨ , Init, k⟩ where:

⦃P⦄( ,l) = ⟨ , Init, k⟩
if there exist past actions b(a)[m] and b(a)[m] in P which

are not guarded by a restriction (�a) in P

⦃P0|P1⦄( ,l) =
⟨
(E,F,↦, ♯,⊳, �,Act) ↾ {e ∣ �(e) ≠ 0}, Init, k

⟩
where

for i ∈ {0, 1}, ⦃Pi⦄l = ⟨i, Initi, ki⟩
(E0, F0,↦0, ♯0,⊳0) × (E0, F0,↦0, ♯0,⊳0) = (E, F ,↦′, ♯,⊳′)
Init = {(e0, ∗)|e0 ∈ Init0 and ∄e1 ∈ Init1.k1(e1) = k0(e0)}∪
{(∗, e1)|e1 ∈ Init1 and ∄e0 ∈ Init0.k1(e1) = k0(e0)}∪
{(e0, e1)|e0 ∈ Init0 and e1 ∈ Init1 and k1(e1) = k0(e0)}
X ↦ e if X ↦′ e or there exists x ∈ no(�(e)) such that

X = {e′ ∣ ∃a.�(e′) = a(x)} and x ∈ sbn(P )
e ⊳ e′ if either e ⊳′ e′ or there exists x ∈ no(�(e)) and a such that �(e′) = a(x)

k(e) =

⎧
⎪⎨⎪⎩

k0(e0) if e = (e0, ∗)

k1(e1) if e = (∗, e1)

k0(e0) if e = (e0, e1)

⦃!
x
P⦄( ,0) = ⟨(∅, ∅, ∅, ∅, ∅, ∅, ∅), ∅, ∅⟩

⦃!
x
P⦄( ,l) =

⦃
!
x⧵{x0 ,…,xk}

P |P{x0 ,…,xk∕a0 ,…,ak
}
⦄

( ,l−1)
if {x0,… , xk} ⊆ x

and bn(P ) = {a0,… , ak}

Table 6. Denotational event structure semantics of �IK
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Example 6.2. Consider the process a(b)[n] ∣ a(b)[n]. Our event structure semantics gen-

erate a LRBES
⦃
a(x)[n] ∣ a(b[n])

⦄
{a,b,x}

=
⟨
(E, F,↦, ♯,⊳, �,Act), Init, k

⟩
where:

E = F = {a(b), a(a), a(x), a(b), �} �(e) = e
{a(b)} ↦ a(b) Act = {a(b), a(a), a(x), a(b), �}
a(b) ♯ a(a), a(b) ♯ a(x), a(a) ♯ a(x), Init = {�}
a(b) ♯ �, a(a) ♯ �, a(x) ♯ �, a(b) ♯ � k(�) = n
a(b) ⊳ a(b)

From this we see that (1) receiving b is causally dependent on sending b, (2) all the

possible inputs on a are in conflict with one another, (3) the synchronisation between

the input and the output is in conflict with either happening on their own, and (4) since

the two past actions have the same key, the initial state contains their synchronisation.

We show in Theorems 6.3 and 6.4 that given a process P with a conflict-free initial

state, including any reachable process, performing a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ does not

affect the event structure, as ⦃P⦄ and ⦃P ′⦄ are isomorphic. It also means we have

an event e labelled � such that e is available in P ’s initial state, and P ′’s initial state is

P ’s initial state with e added. A similar event can be removed to correspond to a reverse

action.

Theorem 6.3. Let P be a forwards reachable process wherein all bound and free names

are different and let  ⊇ n(P ) be a set of names. If (1) ⦃P⦄ = ⟨ , Init, k⟩ where

 = (E, F,↦, ♯,⊳, �,Act), and Init is conflict-free, and (2) there exists a transition

P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′⦄ =

⟨
 ′, Init′, k′

⟩
, then there exists an isomorphism f ∶

 →  ′ and a transition in Cbr(), Init
{e}
←←←←←←←←←←←←←→ X, such that �(e) = �, f◦k′ = k[e ↦ m],

and f (X) = Init′.

Theorem 6.4. Let P be a forwards reachable process wherein all bound and free names

are different and let  ⊇ n(P ) be a set of names. If (1) ⦃P⦄ = ⟨ , Init, k⟩ where

 = (E, F,↦, ♯,⊳, �,Act), and (2) there exists a transition Init
{e}
←←←←←←←←←←←←←→ X in Cbr(),

then there exists a transition P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′ such that ⦃P ′⦄ =

⟨
 ′, Init′, k′

⟩
and an

isomorphism f ∶  →  ′ such that �(e) = �, f◦k′ = k[e ↦ m], and f (X) = Init′.

By Theorems 4.6, 6.3, and 6.4 we can combine the event structure semantics of �IK

and mapping E (Definition 4.4) and get an operational correspondence between H ⊢P
and the event structure ⦃E(lcopy(H) ⊢P , P )⦄n(E(lcopy(H)⊢P ,P )).

7 Conclusion and future work

All existing reversible versions of the �-calculus use reduction semantics [14,26] or late

semantics [7,17], despite the early semantics being used more widely than the late in the

forward-only setting. We have introduced�IH, the first reversible early �-calculus. It is a

reversible form of the internal �-calculus, where names being sent in output actions are
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always bound. As well as structural causation, as in CCS, the early form of the internal

�-calculus also has a form of link causation created by the semantics being early, which

is not present in other reversible �-calculi. In �IH past actions are tracked by using

extrusion histories adapted from [12], which move past actions and their locations into

separate histories for dynamic reversibility. We mediate the event structure semantics of

�IH via a statically reversible version of the internal �-calculus, �IK, which keeps the

structure of the process intact but annotates past actions with keys, similarly to �K [17]

and CCSK [21]. We showed that a process �IH with extrusion histories can be mapped

to a �IK process with keys, creating an operational correspondence (Theorem 4.6).

The event structure semantics of �IK, and by extension �IH, are defined inductively

on the syntax of the process. We use labelled reversible bundle event structures [10],

rather than prime event structures, to get a more compact representation where each ac-

tion in the calculus has only one corresponding event. While causation in the internal

�-calculus is simpler that in the full �-calculus, our early semantics means that we still

have to handle link causation, in the form of an input receiving a free name being caused

by a previous output of that free name. We show an operational correspondence be-

tween �IK processes and their event structure representations in Theorems 6.3 and 6.4.

Cristescu et al. [8] have used rigid families [4], related to event structures, to describe

the semantics of R� [7]. However, unlike our denotational event structure semantics,

their semantics require one to reverse every action in the process before applying the

mapping to a rigid family, and then redo every reversed action in the rigid family. Our

approach of using a static calculus as an intermediate step means we get the current state

of the event structure immediately, and do not need to redo the past steps.

Future work: We could expand the event structure semantics of �IK to �K. This would

entail significantly more link causation, but would give us event structure semantics

of a full �-calculus. Another possibility is to expand �IH to get a full reversible early

�-calculus.
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A Section 2

Lemma A.1. Let P be a process. If there exists an extrusion history H such that H ⊢

P
�

u
H

′ ⊢P ′ then there exists L such that H = H
′ + L, and for any extrusion history

H
′′ not containing L, H′′ + L ⊢P

�

u
H

′′ ⊢P ′.

Proof. [SCOPE−1] and [PAR−1
i

] simply propagate the changes to extrusion histories,

and [COM−1
i

], [IN−1], and [OUT−1] remove exactly one extrusion from the histories,

which is the only one they depend on.

Proof (Proof of Proposition 2.4).

1. We prove this by induction in H ⊢P
�
←←←←←←→
u

H
′ ⊢Q:

[SCOPE] In this case P = (�x)P ′ and Q = (�x)Q′, x ∉ n(�), and by induction

H
′ ⊢Q′

�

u
H ⊢P ′. From rule [SCOPE−1] we therefore get H′ ⊢Q

�

u
H ⊢P .

[PARi] In this case P = P0|P1 and Q = Q0|Q1, P1−i = Q1−i, in � = a(n) then n ∉

fn(P1−i), and by induction ([ǐ]H
′
, [ǐ]H ′, [ǐ]H ′) ⊢Qi

�

u
([ǐ]H, [ǐ]H, [ǐ]H) ⊢

Pi, meaning according to rule [PAR−1
i

], H′ ⊢Q
�

u
H ⊢P .

[COMi] In this case P = P0|P1 and Q = Q0|Q1, n ∉ fn(Pj), H = H
′
, H = H ′,

H ′ = H ∪ 0{(n, (0v0, 1v1))}, and by induction and Lemma A.1, we have

([ǐ]H
′
, [ǐ]H ′, [ǐ]H ′) ⊢Qi

a(n)

vi
([ǐ]H, [ǐ]H, [ǐ]H) ⊢Pi and ([ǰ]H

′
, [ǰ]H ′, [ǰ]H ′) ⊢

Qj

a(n)

vj
([ǰ]H, [ǰ]H, [ǰ]H) ⊢ Pj . This means according to [COM−1], H′ ⊢

Q
�

u
H ⊢P .

[STR] In this case Q ≡ Q′,H′ ⊢Q′
�

u
H ⊢P ′, and P ′ ≡ P , and by rule [STR−1],

H
′ ⊢Q

�

u
H ⊢P .
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[OUT] In this Case P =
∑
i∈I

�i.Pi, Q = Pj and � = a(n) = �j for some j ∈ I , and

by [OUT−1], H′ ⊢Q
�

u
H ⊢P .

[IN] Similar to [OUT].

2. Similar to previous.

Definition A.2 (Location). Given a location u, its set of paths is defined as

loc(u) =

{
{l} if u = l[P ][P ′]

{ll0, ll1} if u = l
⟨
l0[P0][P

′
0
], l1[P1][P0]

⟩

To get causal semantics of �IH, we add a set of causes to each transition, consisting of

the previous extrusions, from the output history, which extruded the names of the action.

Definition A.3 (Causal semantics). The early causal semantics consist of transitions

of the form H ⊢P
�

←←←←←←←←←←←←←←→
u,D

H
′ ⊢P where H ⊢P

�
←←←←←←→
u

H
′ ⊢P and

1. (n, u) ∈ D ⇒ ∃a. (a(n), u) ∈ H;

2. if (n, l), (n, l′) ∈ D then l = l′;

3. dom(D) = dom(H)∩no(�) where no(�) is the set of non-output names in �, defined

by no(a(b)) = {a} ⧵ {b}, no(a(b)) = {a, b} and no(�) = ∅.

Definition A.4 (Independence). Two locations, u0 and u1, are independent if for all

l0 ∈ loc(u0) and l1 ∈ loc(u1), there exist l, l′
0
, l′

1
such that either l0 = l0l′

0
and l1 = l1l′

1
or l0 = l1l′

0
and l1 = l0l′

1
.

Two transitions
�0

u0,D0

and
�1

u1,D1

are independent if u0 and u1 are independent,

there does not exist n such that Di(n) = u1−i.

Proposition A.5 (Forward diamond [9]). If H ⊢P
�0

u0,D0

H0 ⊢P0 and H ⊢P
�1

u1,D1

H1 ⊢P1 are independent transitions then there exists H′ ⊢P ′ such that H0 ⊢P0
�1

u1,D1

H
′ ⊢P ′ and H1 ⊢P1

�0

u0,D0

H
′ ⊢P ′.

Proof (Proof of Proposition A.5). This proof is similar to Theorem 14 of [12]. We have

a path l such that ui = l0u′
i

and u1−i = l1u′
1−i

. If Q|R is the parallel composition at

location l, then ([ľ0]H, [ľ0]H, [ľ0]H) ⊢Q
�i

u′
i

and ([ľ1]H, [ľ1]H, [ľ1]H) ⊢Q
�1−i

u′
1−i

and there does not exist n such that Di(n) = u1−i or there does not exist n such that

D1−i(n) = ui, and by [PARi] and [PAR−
i
1], this means H0 ⊢ P0

�1
←←←←←←←←←←→
u1

H
′
0
⊢ P ′ and

H1 ⊢P1
�0
←←←←←←←←←←→
u0

H
′
1
⊢P ′ and by Lemma 15 of [12], H′

0
= H

′
1
.
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Definition A.6 (Trace equivalence). We define trace equivalence ∼ as the least equiv-

alence relation closed under composition such that:

t; t ∼ "t

H ⊢P
�0

u0,D0

�1

u1,D1

H
′ ⊢P ′ ∼ H ⊢P

�1

u1,D1

�0

u0,D0

H
′ ⊢P ′

if
�1

u1,D1

and
�0

u0,D0

are independent

Proposition A.7 (Parabola). Let t be a trace, then there exists a forward trace tf and

a backward trace tb such that t ∼ tb; tf .

Proof. We say that t = H ⊢ P
�0

u0,D0

H0 ⊢ P0
�1

u1,D1

…
�n

un,Dn

H
′ ⊢Q and tb; tf =

H ⊢P
�′
0

u′
0
,D′

0

…
�′
k

u′
k
,D′

k

H
′
k
⊢P ′

k

�′
k+1

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
u′
k+1

,D′
k+1

…
�′m

←←←←←←←←←←←←←←←←←←←←←←←←→
u′m,D

′
m

H ⊢Q.

We prove that they are equivalent by induction on the number of pairs
�i

←←←←←←←←←←←←←←←←←←←→
ui,Di

,
�i+1

ui+1,Di+1

and the length of the trace.

If no such pair exists, then t = tb; tf , otherwise we find the first such pair
�i

←←←←←←←←←←←←←←←←←←←→
ui,Di

,

�i+1

ui+1
.

If ui = ui+1 and �i = �i+1 then by Proposition 2.4, Hi−1 ⊢Pi−1 = Hi+1 ⊢Pi+1, and

we have a shorter trace H ⊢P
�0

u0,D0

H0…Hi−1 ⊢Pi−1
�i+2

ui+2,Di+2

…
�n

un,Dn

H
′ ⊢Q ∼

t.

If ui ≠ ui+1 or �i ≠ �i+1 then if ui  ui+1 and ui+1  ui then by Proposition A.5,

we have a trace H ⊢P
�0

u0,D0

H0…Hi−1 ⊢Pi−1
�i+1

ui+1,Di+1

�i

ui,Di

Hi+1 ⊢Pi+1
�i+2

ui+2 ,Di+2

…
�n

un,Dn

H
′ ⊢Q ∼ t. If ui ⪯ ui+1 then, since

�i
←←←←←←←←←←←←←←←←←←←→
ui,Di

is the most recent action in Hi,

ui = ui+1 and �i ≠ �i+1. If ui+1 ⪯ ui then, if ui+1 = l[Pa][Pb], Pb is not the subprocess

located at location l of Pi, meaning there cannot exist a transition Hi ⊢Pi
�i+1

ui+1,Di+1

.

B Section 3

Lemma B.1. Given a forwards reachable processP , if P
a(x)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←→ then there cannot exist

a past output action b(x)[m] anywhere in P .

Proof. This would require b(x)[m] to either prefix, be in parallel with, or be an alterna-

tive choice to a(x) inP . The first two cases are impossible due to the if � = a(x) then x ∉
n(�) and if � = a(x) then x ∉ fn(P1) requirement in the rules for propagating a(x)[n]
past past actions and parallel composition, and the last case is prevented by requiring

alternative paths to be standard if we want to propagate an action past the choice.
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Proof (Proof of Proposition 3.1).

1. We perform induction on P
�[n]
←←←←←←←←←←←←←←←←→Q:

(a) Suppose P = a(x).P ′, � = a(b), std(P ′), Q = a(b)[n].Q′, and Q′ = Q[x ∶=

b[n]]. Then, since x ∉ n(Q′), Q
a(b)

P .

(b) Suppose P = a(x).P ′, � = a(x), std(P ′), Q = a(x)[n].P ′. Then clearly Q
a(x)

P .

(c) Suppose P = �[m].P ′, P ′
�[n]
←←←←←←←←←←←←←←←←→Q′, Q = �[m].Q′, n ≠ m, and if � = a(x) then

x ∉ n(�). Then by induction Q′
�[n]

P

′, and clearly Q
�[n]

P .

(d) Suppose P = P0|P1, P0
�[n]
←←←←←←←←←←←←←←←←→Q0, fsh[n](P1), Q = Q0|P1, and if � = a(x) then

x ∉ fn(P1). Then by induction, Q0

�[n]
, and obviously Q

�[n]
P .

(e) SupposeP = P0|P1,P0
a(x)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←→Q0,P1

a(x)[n]
←←←←←←←←←←←←←←←←←←←←←←←←←→Q1,� = � , andQ = (�x)(Q0|Q1).

Then by induction Q0

a(x)
P0 and Q1

a(x)
P1, meaning clearly Q

�[n]
P .

(f) Suppose P = P0 + P1, P0
�[n]
←←←←←←←←←←←←←←←←→ Q0, std(P1), and Q = Q0 + P1. Then by

induction Q0

�[n]
P0, meaning Q

�[n]
P .

(g) Suppose P = (�x)P ′, P ′
�[n]
←←←←←←←←←←←←←←←←→ Q′, x ∉ n(�), and Q = (�x)Q′. Then by

induction Q′
�[n]

P ′, and we get Q
�[n]

P .

(h) Suppose P ≡ P ′, P ′
�[n]
←←←←←←←←←←←←←←←←→ Q′, and Q ≡ Q′. Then by induction Q′

�[n]
P ′,

and therefore Q
�[n]

P .

2. We prove this by induction on P
�[n]

Q:

(a) Suppose P = a(b)[n].P ′, � = a(b), std(P ′), x ∉ n(P ′), Q′ = P ′[b[n] ∶= x],

and Q = a(x).Q′. Then clearly Q
�[n]
←←←←←←←←←←←←←←←←→ P .

(b) Suppose P = a(x)[n].P ′, � = a(x), std(P ′), Q = a(x).P ′. Then clearly Q
a(x)
←←←←←←←←←←←←←←←←→

P .

(c) Suppose P = �[m].P ′, P ′
�[n]

Q′, m ≠ n, and Q = �[n].Q′. Then by induc-

tion, Q′
�[n]
←←←←←←←←←←←←←←←←→ P ′, and since P is forwards reachable, if � = a(x) then x ∉ n(�).

This means Q
�[n]
←←←←←←←←←←←←←←←←→ P .

(d) Suppose P = P0|P1, P0
�[n]

Q0, fsh[n](P1), Q = Q0|P1, and if � = a(()x)

then x ∉ fn(P1). Then by induction Q0

�[n]
←←←←←←←←←←←←←←←←→ P0, and clearly Q

�[n]
←←←←←←←←←←←←←←←←→ P .

(e) Suppose P = (�x)(P0|P1), � = � , P0
a(x)[n]

Q0, P1
a(x)[n]

Q1, and Q =

Q0|Q1. Then by induction Q0

a(x)
←←←←←←←←←←←←←←←←→ P0 and Q1

a(x)
←←←←←←←←←←←←←←←←→ P1, meaning clearly

Q
�[n]
←←←←←←←←←←←←←←←←→ P .
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(f) Suppose P = P0 + P1, P0
�[n]

Q0, std(P1), and Q = Q0 + P1. Then by

induction Q0

�[n]
←←←←←←←←←←←←←←←←→ P0, meaning Q

�[n]
←←←←←←←←←←←←←←←←→ P .

(g) Suppose P = (�x)P ′, P ′
�[n]

Q′, x ∉ n(�), and Q = (�x)Q′. Then by

induction Q′
�[n]
←←←←←←←←←←←←←←←←→ P ′, and we get Q

�[n]
←←←←←←←←←←←←←←←←→ P .

(h) Suppose P ≡ P ′, P ′
�[n]

Q′, and Q ≡ Q′. Then by induction Q′
�[n]
←←←←←←←←←←←←←←←←→ P ′,

and therefore Q
�[n]
←←←←←←←←←←←←←←←←→ P .

Proposition B.2 (Reverse diamond). Given forwards reachable processes P , Q, and

R, if P
�[m]

Q and P
�′[n]

R and m ≠ n, then there exists a process S such that

Q
�′[n]

S and R
�[m]

S.

Proof (Proof of Proposition B.2). We use structural induction on P to prove both these

at once:

1. Suppose P = 0 or P = �.P ′. Then P cannot do any backwards transitions.

2. Suppose P = �[o].P ′. Then either std(P ′) and n = m = o, or Q = a(b)[o].Q′,

R = a(b)[o].R′, P ′
�[m]

Q′, and P ′
�′[n]

R′, meaning by induction there exists

S′ such that Q′
�′[n]

S′ and R′
�[m]

S′. We say that S = �[n].S′, and the

theorem holds.

3. Suppose P = P0+P1, then either std(P0), P1
�[m]

Q1, P
�′[n]

R1, Q = P0+Q1,

and R = P0 + R1, or std(P1), P0
�[m]

Q0, P
�′[n]

R0, Q = Q0 + P1, and

R = R0+P1. In the first case, by induction there exists an S1 such that Q1

�′[n]
S1

and R1

�[m]
S1, and we define S = P0 + S1, and theorem holds. The second case

is similar.

4. Suppose P = (�x)P ′. Then either (1) P ′
�[m]

Q′ and x ∉ n(�) and Q = (�x)Q′

or (2) P ′ = P0|P1, Pi
a(x)[m]

Qi, P1−i
a(x)[m]

Qi−1, � = � , and Q = Q0|Q1,

and either (a) P ′
�′[n]

R′ and x ∉ n(�′) and R = (�x)R′ or (b) P ′ = P0|P1,

Pi
a(x)[n]

Ri, P1−i
a(x)[n]

Ri−1, �′ = � , and R = R0|R1.

In case 1a, by induction there exists S′ such that Q′
�′[n]

S′ and R′
�[m]

S′, and

we define S = (�x)S′, and the theorem holds.

In case 1b, there exists Pj such that Pj
�[m]

Qj , and fsh[m](P1−j), and if � = a(x)

then x ∉ fn(P1). If j = i then by induction there exists an Si such that Qj

�′[n]
Si

and Ri

a(x)[m]
Si, and we define S = Si|R1−i, and the theorem holds. If I = 1− j,

the argument is similar.
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Case 2a is similar to case 1b.

Case 2b cannot occur because we cannot have more than one past action outputting

the same name according to Lemma B.1.

5. Suppose P = P0|P1. Then there exists an i such that either Pi
�[m]

Qi and Pi
�′[n]

Ri and Q = Qi|P1−i and R = Ri|P1−i, or Pi
�[m]

Qi and P1−i
�′[n]

R1−i and

Q = Qi|P1−i and R = Pi|R1−i.

In the first case, there exists Si such that Qi

�′[n]
Si and Ri

�[m]
Si, and we

define S = Si|P1−i and the theorem holds.

If the second case we define S = Qi|R1−i, and the theorem holds.

Proposition B.3. Given forwards reachable processes P , Q, and R, if P
�[m]

Q and

P
�′[m]

R then � = �′ and R ≡ Q.

Proof. We prove this by structural induction:

1. Suppose P = 0 or P = �.P ′. Then P cannot do any reverse transitions.

2. Suppose P = �[n].P ′. Then either std(P ′), meaning � = �′ = �, n = m, and

Q ≡ R, or P ′
�[m]

Q′, P ′
�′[m]

R′, Q = �[n].Q′, and R = �[n].R′, and the

result follows from induction.

3. Suppose P = P0 + P1. Then the result follows from induction.

4. Suppose P = (�x)P ′. Then either (1) P ′
�[m]

Q′ and x ∉ n(�) and Q = (�x)Q′

or (2) P ′ = P0|P1, Pi
a(x)[m]

Qi, P1−i
a(x)[m]

Qi−1, � = � , and Q = Q0|Q1,

and either (a) P ′
�′[m]

R′ and x ∉ n(�′) and R = (�x)R′ or (b) P ′ = P0|P1,

Pi
a(x)[m]

Ri, P1−i
a(x)[m]

Ri−1, �′ = � , and R = R0|R1.

In case 1a the result follows from induction.

In case 1b Pj such that Pj
�[m]

Qj , and fsh[m](P1−j), contradicting P1−j
�[m]
←←←←←←←←←←←←←←←←←→

R1−j . Meaning this case cannot occur.

Similar for case 2a.

Case 2b follows from induction.

5. SupposeP = P0|P1. Then there exists an i such that eitherPi
�[m]

Qi andPi
�′[m]

Ri and Q = Qi|P1−i and R = Ri|P1−i, or Pi
�[m]

Qi and P1−i
�′[m]

R1−i and

Q = Qi|P1−i and R = Pi|R1−i.

In the first case the result follows from induction. In the second case Pi
�[m]

Qi

requires fsh[m](P1−i), which contradictsP1−i
�′[m]

R1−i, meaning this case cannot

occur.

Theorem B.4 (Parabola). Given processes P and Q, such that P ↣∗ Q, there exists a

process R such that P ⇝∗ R →∗ Q.
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Proof (Proof of Theorem B.4). We say that P
�0[m0]

P0…
�n[mn]

Pn = Q and per-

form induction on the length of the trace, the number of pairs
�i[mi]
←←←←←←←←←←←←←←←←←←←←←←←→

�i+1[mi+1]

in the

trace, and the location of the first such pair.

If no such pair exists then R must exist.

Otherwise, we say that
�i[mi]
←←←←←←←←←←←←←←←←←←←←←←←→

�i+1[mi+1]

is the fist such pair in the trace. We have 2

cases, either mi = mi+1 or not.

If mi = mi+1 then by Propositions 3.1 and B.3, Pi−1 = Pi+1, and we therefore have

a trace P
�0[m0]

P0…
�i−1[mi−1]

Pi−1
�i+2[mi+2]

…
�n[mn]

Pn = Q.

Ifmi ≠ mi+1 then by Proposition B.2 we have a traceP
�0[m0]

P0…Pi−1

�i+1[mi+1]

�i[mi]
←←←←←←←←←←←←←←←←←←←←←←←→ Pi+1…

�n[mn]
Pn = Q

C Section 4

In Lemma C.2 we demonstrate, that S does indeed annotate any name, which was sub-

stituted for x1, with n.

We also define the root of a �IK process as removing all keys from the process.

Definition C.1 (Root). We say that a �IK process, P , has a root, rt(P ), defined as:

rt(0) = 0 rt(!P ) = !rt(P ) rt(P0|P1) = rt(P0)|rt(P1) rt(�.P ) = �.rt(P )
rt(P0 + P1) = rt(P0) + rt(P1) rt(�[m].P ) = �.rt(P ) rt((�x)P ) = (�x)rt(P )

Lemma C.2. Given a standard �IK process P , a �IK process P ′, a series of substi-

tutions [x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak], such that rt(P ′) ≡ P [x1 ∶= a1][x2 ∶=
a2]… [xk ∶= ak] using the definition of ≡ from Section 2, and a key [n], we get that

S(P ′, P , [n], x1) = P ′′ for some P ′′ such that

rt(P ′′) ≡ P [x1 ∶= a1[n] ][x2 ∶= a2]… [xk ∶= ak] .

Proof (Proof of Lemma C.2). We prove this by structural induction on P :

– Assume P = 0. Then P ′ = P [x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak] = 0 and

S(P [x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak], P , [n], x1) = 0.
– Assume P = b(c).Q Then either P ′ = d(e).Q′, or P ′ = d(e)[m].Q′, for some

d, e, m. We then get 4 cases: either b = x1, c = x1, b = c = x1, or b ≠ x1 and

c ≠ x1.
Assume b = x1 and c ≠ x1. Then d = a1, and

S(P ′, P , [n], x1) = d[n](c).S(Q′, Q, [n], x1) ,

and the result follows from induction.
Assume c = x1 and b ≠ x1. Then, since c is bound, P [x1 ∶= a1] = P [x1 ∶=
a1[n]] = P , and the result follows.

Assume b = c = x1. Then d = a1 and Q[x1 ∶= a1][x2 ∶= a2]… [xk ∶= ak] =
Q[x2 ∶= a2]… [xk ∶= ak] = Q′, and the result follows.
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– Assume P = b(c).Q. This is similar to the previous case.
– Assume P =

∑
i∈I

Pi. Then the result follows trivially from induction.

– Assume P = P0|P1. Then either P ′ = P ′
0
|P ′

1
, or P0 ≡ !P1 and P ′ = P ′

0
.

If P ′ = P ′
0
|P ′

1
then the result follows trivially from induction.

If P0 = !P1 and P ′ = P0, then P ′′ = S
(
!P ′

0
, P0, [n], x

) |S (
P ′
0
, P1, [n], x

)
, and the

result follows from induction.
– Assume P = (�b)Q. Then P ′ = (�c)Q′ and either b = x1 or b ≠ x1.

If b = x1, then P [x1 ∶= a1] = P [x1 ∶= a1[n]] = P .

If b ≠ x1, then the result follows from induction.
– Assume P = !Q. Then either P ′ = !Q′, or P ′ = P ′

0
|P ′

1
.

If P ′ = !Q′, the result follows trivially from induction.
Otherwise the case is similar to the second case on parallel composition.

Proof (Proof of Theorem 4.6). We first show that if there exists a location u such that

H ⊢ P
�
←←←←←←←→
u

H
′ ⊢ P ′, then there exists a key m, such that E(({(a, u, u) ∣ (a, u) ∈

H}, {(a, u, u) ∣ (a, u) ∈ H}, {(a, u, u) ∣ (a, u) ∈ H}) ⊢ P , P )
�[m]

E
(({(a, u, u) ∣

(a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢P ′, P ′) by induction

in the size of H ∪H ∪H and the structure of P :

Assume H = (∅, ∅, ∅). Then E(H ⊢P , P ) = P .

– Assume P = a(x).Q. Then � = a(b), u = [P ][Q[x ∶= b]], and H
′ ⊢ P ′ =

(∅, {(a(b), u)}, ∅) ⊢ Q[x ∶= b]. We then by Lemma C.2 get E(H′ ⊢ P ′, P ′) =
a(x) [[P ][Q[x ∶= b]]] .Q[x ∶= b[[P ][Q[x∶=b]]]], and the rest of the case follows nat-

urally.
– Assume P = a(x).Q. This case is similar to the previous.
– Assume P = P0|P1. Then either u = iu′, or u = ⟨0u0, 1u1⟩.

If u = 0u′, then (∅, ∅, ∅) ⊢P0
�
←←←←←←←←→
u′

H
′
0
⊢P ′

0
, H′ ⊢P ′ = (0H ′

0, 0H
′
0, 0H

′
0
) ⊢P ′

0
|P1,

and if � = a(b) then b ∉ fn(P1). By induction, P0
�[m]
←←←←←←←←←←←←←←←←←←→ E(H′

0
⊢P ′

0
, P0), and there-

fore P0|P1
�[m]
←←←←←←←←←←←←←←←←←←→ E(H′

0
⊢P ′

0
, P0)|P1 = E((0H ′

0, 0H
′
0, 0H

′
0
) ⊢P ′

0
|P1, P ′

0
|P1).

If u = 1u′, the case is similar to u = 0u′.

If u = ⟨0u0, 1u1⟩, then (∅, ∅, ∅) ⊢Pi
a(b)
←←←←←←←←←←←←←←←→
ui

H
′
i
⊢P ′

i
and (∅, ∅, ∅) ⊢P1−i

a(b)
←←←←←←←←←←←←←←←→
u′

H1−i ⊢

P ′
1−i

for some i ∈ {0, 1} and b ∉ fn(Pi) and H
′ ⊢ P ′ = (∅, ∅, {(a(b), a(b), u)}) ⊢

P ′
0
|P ′

1
. By induction, E((∅, ∅, ∅) ⊢Pi, Pi)

a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ E(H′

i
⊢P ′

i
, P ′

i
) and E((∅, ∅, ∅) ⊢

P1−i, P1−i)
a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→E(H′

1−i
⊢P ′

1−i
, Pi−1). Therefore

P0|P1
�[m]
←←←←←←←←←←←←←←←←←→ E((∅, ∅, {(a(b), a(b), ⟨0u0, 1u1⟩ , m)}) ⊢ (�b)(P ′

0
|P ′

1
), (�b)(P ′

0
|P ′

1
))

= (�b)E((∅, ∅, {(a(b), a(b), ⟨0u0, 1u1⟩ , m)}) ⊢ (P ′
0
|P ′

1
), (P ′

0
|P ′

1
))

– Assume P = (�x)Q. Then (∅, ∅, ∅) ⊢Q
�
←←←←←←←→
u

H
′ ⊢Q′, x ∉ n(�), and P ′ = (�x)Q′.

We then get by induction Q
�[m]
←←←←←←←←←←←←←←←←←←→ E(H′ ⊢ Q′, Q′), and therefore (�x)Q

�[m]
←←←←←←←←←←←←←←←←←←→

(�x)E(H′ ⊢Q′, Q′) = E(H′ ⊢ (�x)Q′, (�x)Q′).
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– Assume P = !Q. Then (∅, ∅, ∅) ⊢!Q|Q �
←←←←←←←→
u

H
′ ⊢P ′, and the rest follows from the

parallel case.

If for any (�′, u′) ∈ H ∪H ∪H , if there exists a location u such that H−(�′, u′) ⊢P
�
←←←←←←←→
u

H
′′ ⊢ P ′, then there exists a key m, such that E(H − (�′, u′) ⊢ P , P )

�[m]
←←←←←←←←←←←←←←←←←←→ E(H′′ ⊢

P ′, P ′), then E only adds past actions and unused choice branches to the process, both

of which one can easily propagate the action past.

We then show that if there exists a key,m, such thatE(({(a, u, u) ∣ (a, u) ∈ H}, {(a, u, u) ∣

(a, u) ∈ H}, {(a, u, u) ∣ (a, u) ∈ H}) ⊢ P , P )
�[m]

P ′′, then there exists a location,

u, and a �IH process, H′ ⊢P ′, such that H ⊢P
�

u
H

′ ⊢P ′ and P ′′ ≡ E(({(a, u, u) ∣

(a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢P ′, P ′) We again do

this by induction on the number of extrusions in H ∪H ∪H , and the structure of P .

Assume H ∪ H ∪ H = ∅. Then E(({(a, u, u) ∣ (a, u) ∈ H}, {(a, u, u) ∣ (a, u) ∈
H}, {(a, u, u) ∣ (a, u) ∈ H}) ⊢ P , P ) = P . Since we are only proving operational

correspondence up to structural congruence, we can discount any rules employing that.

– Assume P = a(x).Q. Then � = a(b), we select m = [[P ][Q[x ∶= b]]], and

E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢
P ′, P ′) = a(b)[[P ][Q[x ∶= b]]].Q[x ∶= b[[P ][Q[x∶=b]]]]. We say that u = [P ][Q[x ∶=
b]], H′ ⊢P ′ = (∅, {(a(b), [P ][Q[x ∶= b]], [P ][Q[x ∶= b]])}, ∅) ⊢Q[x ∶= b], and

by Lemma C.2 the result follows.
– Assume P = a(b).Q. This case is similar to the previous.

– AssumeP = P0|P1. Then eitherP0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′

0
andE(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣

(a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢ P ′, P ′) = P ′
0
|P1, P1

�[m]
←←←←←←←←←←←←←←←←←←→ P ′

1
and

E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢

P ′, P ′) = P0|P ′
1
, or Pi

a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

i
, P1−i

a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

1−i
, � = � , and E(({(a, u, u) ∣

(a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢ P ′, P ′) =
(�b)(P ′

0
|P ′

1
).

If P0
�[m]
←←←←←←←←←←←←←←←←←←→ P ′

0
and E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣

(a, u) ∈ H ′}) ⊢P ′, P ′) = P ′
0
|P1, then by induction, there exists u0 and H0 ⊢ P ′′

0

such that E(({(a, u, u) ∣ (a, u) ∈ H ′
0}, {(a, u, u) ∣ (a, u) ∈ H ′

0}, {(a, u, u) ∣ (a, u) ∈

H ′
0
}) ⊢P ′′

0
, P ′′

0
) = P ′

0
and (∅, ∅, ∅) ⊢P0

�
←←←←←←←←←→
u0

H0 ⊢P ′′
0

. We therefore get (∅, ∅, ∅) ⊢

P
�

←←←←←←←←←←←←←→
0u0

(0H0, 0H0, 0H0) ⊢P ′
0
|P1.

If P1
�[m]
←←←←←←←←←←←←←←←←←←→ P ′

1
and E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣

(a, u) ∈ H ′}) ⊢P ′, P ′) = P0|P ′
1
, then the case is similar to the previous.

IfPi
a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

i
,P1−i

a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

1−i
,� = � , andE(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣

(a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢ P ′, P ′) = (�b)(P ′
0
|P ′

1
), then by in-

duction we have ui and Hi ⊢ P ′′
i

, u1−i and H1−i ⊢ P ′′
1−i

such that E(({(a, u, u) ∣
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(a, u) ∈ H ′
0}, {(a, u, u) ∣ (a, u) ∈ H ′

0}, {(a, u, u) ∣ (a, u) ∈ H ′
0
}) ⊢P ′′

0
, P ′′

0
) = P ′

0

and E(({(a, u, u) ∣ (a, u) ∈ H ′
1}, {(a, u, u) ∣ (a, u) ∈ H ′

1}, {(a, u, u) ∣ (a, u) ∈

H ′
1
}) ⊢P ′′

1
, P ′′

1
) = P ′

1
and (∅, ∅, ∅) ⊢Pi

a(b)
←←←←←←←←←←←←←←←→
ui

Hi ⊢P ′′
i

and (∅, ∅, ∅) ⊢P1−i
a(b)
←←←←←←←←←←←←←←←←→
u1−i

H1−i ⊢P ′′
1−i

. We therefore say m = ⟨0u0, 1u1⟩, and get (∅, ∅, ∅) ⊢P0|P1
(

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→⟨0u0,1u1⟩
∅, ∅, {(a(b), a(b), ⟨0u0, 1u1⟩ , m)}) ⊢ (�b)(P ′′

0
|P ′′

1
).

– Assume P = (�x)Q. Then x ∉ n(�), E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈

H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢ P ′, P ′) = (�x)Q′ and Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′. We therefore

get P ′ = (�x)Q′′, and by induction H ⊢Q
�
←←←←←←←→
u

H
′ ⊢Q′, and therefore H ⊢P

�
←←←←←←←→
u

H
′ ⊢P ′.

– AssumeP = !Q. Then the transition must involve structural congruence, !Q|Q �[m]
←←←←←←←←←←←←←←←←←←→

P ′′′ for P ′′′ ≡ P ′′, and the rest follows from the parallel case.

If for any (�′, u′) ∈ H ∪H ∪H , if there exists a key m, such that E(H − (�′, u′) ⊢

P , P )
�[m]
←←←←←←←←←←←←←←←←←←→ E(H′′ ⊢ P ′, P ′), then there exists a location u such that H − (�′, u′) ⊢

P
�
←←←←←←←→
u

H
′′ ⊢P ′, then having more past extrusions does not stop H − (�′, u′) ⊢P from

performing any forwards actions and having more past actions does not allow E(H −
(�′, u′) ⊢P , P ) to perform additional forward actions.

We then need to prove that if there exists a location u such that H ⊢P
�

u
H

′ ⊢P ′,

then there exists a key m, such that E(({(a, u, u) ∣ (a, u) ∈ H}, {(a, u, u) ∣ (a, u) ∈

H}, {(a, u, u) ∣ (a, u) ∈ H}) ⊢ P , P )
�[m]

E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣
(a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢P ′, P ′).

This follows naturally from the above properties, and Propositions 3.1 and 2.4.

We finally need to prove that if there exists a key, m, such that E(({(a, u, u) ∣ (a, u) ∈

H}, {(a, u, u) ∣ (a, u) ∈ H}, {(a, u, u) ∣ (a, u) ∈ H}) ⊢ P , P )
�[m]

P ′′, then there

exists a location, u, and a �IH process, H′ ⊢P ′, such that H ⊢P
�

u
H

′ ⊢P ′ and P ′′ ≡

E(({(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢P ′, P ′).

As we have proven the above properties, and Propositions 3.1, and 2.4, we only need

to prove that there exists a �IH process H′ ⊢P ′, such that P ′′ ≡ E(({(a, u, u) ∣ (a, u) ∈

H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}, {(a, u, u) ∣ (a, u) ∈ H ′}) ⊢ P ′, P ′). Since none of the

transition rules - forward or reverse - in �IK can create unguarded choice from guarded

choice, and E only generates �I-calculus processes with guarded choice, we know P ′′

has guarded choice.

If P ′′ is a standard process, then H
′ ⊢ P ′ = (∅, ∅, ∅) ⊢ P ′′. Otherwise, by Theo-

rems B.4 and A.7, P ′′ must be forwards reachable from a standard processP ′′′ such that

P ′′′ ≡ E((∅, ∅, ∅) ⊢P ′′′, P ′′′), and by the above properties, H′ ⊢P ′ exists.
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D Section 6

Proposition D.1 (Structural Congruence). Given processes P and P ′ and a set of

names ⊇ n(P )∪n(P ′), ifP ≡ P ′,⦃P⦄ = ⟨ , Init, k⟩, and⦃P ′⦄ =
⟨
 ′, Init′, k′

⟩
,

then there exists an isomorphism f ∶  →  ′ such that f (Init) = Init′ and for all

e ∈ Init, k(e) = k′(f (e)).

Proof. We say that  = (E, F,↦, ♯,⊳, �,Act) and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′)
and do a case analysis on the Structural congruence rules:

P = P0|P1 and P ′ = P1|P0: Products are unique up to isomorphism, and

f (e) =

⎧
⎪⎨⎪⎩

(e1, e0) if e = (e0, e1)

(e1, ∗) if e = (∗, e1)

(∗, e0) if e = (e0, ∗)

clearly fulfils the conditions other conditions and remains a morphism after the en-

ablings and preventions describing the link dependencies are added to the product.

P = P0|(P1|P2) and P ′ = (P0|P1)|P2: Products are associative up to isomorphism, and

f ((e0, (e1, e2)) = ((e0, e1), e2) clearly fulfils the other conditions and remains a

morphism after the enablings and preventions describing the link dependencies are

added to the product.

P = P ′|0: If f ((e, ∗)) = e, then this clearly holds.

P = P0 + P1 and P ′ = P1 + P0: Coproducts are unique up to isomorphism, andf (i, e) =
(1 − i, e) clearly fulfils the other conditions.

P = P0 + (P1 + P2) and P ′ = (P0 + P1) + P2: Coproducts are associative up to isomor-

phism, and f ((e0, (e1, e2))) = ((e0, e1), e2) clearly fulfils the other conditions.

P = P ′ + 0: Clearly f (0, e) = e is an isomorphism, Init = {0} × Init′, and k(0, e) =
k′(e).

P = !Q and P ′ = !Q|Q: Obvious.

Proof (Proof of Theorem 6.3). Let  = (E, F,↦, ♯,⊳, �,Act) and  ′ = (E′, F ′,↦′, ♯′

,⊳′, �′,Act′). We prove the theorem by induction on P
�[m]
←←←←←←←←←←←←←←←←←←→ P ′:

1. Suppose P = a(x).Q, P ′ = a(x)[m].Q[x ∶= b[n]], std(Q), and � = a(b). Then

for all n ∈ ( ⧵ sbn(Q)) = ( ⧵ sbn(Q[x ∶= b[n]])), we have ⦃Q[x ∶= n]⦄ =

⟨n, Initn, kn⟩,
⦃
Q[x ∶= b[n]][b[n] ∶= n]

⦄
=

⟨
 ′
n, Init

′
n, k

′
n

⟩
, and an isomorphism

fn ∶ n →  ′
n. We define our isomorphism

f ((n, en)) =

{
(n, fn(en)) if en ∈ En

(n, e′n) for {e′n} = {e′ ∣ (n, e′) ∈ E′ and e′ ∉ E′
n} otherwise

Since all bound names are different from all other bound and free names, b ∉ bn(Q),
and therefore there exists an e ∈ E such that �(e) = a(b), and for all e′ ∈ E either

e′ = e, e′ ♯ e, or {e} ↦ e′. We therefore get Init = ∅
{e}
←←←←←←←←←←←←←→ X and f (X) = Init′, and

the rest of the conditions fulfilled.
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2. Suppose P = a(x).Q, P ′ = a(x)[m].Q, � = a(x), and std(Q). This case is similar

to the previous, without the choice of substitutions.

3. Suppose P = �[n].Q, P ′ = �[n].Q′, Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, m ≠ n, and if � = a(x) then x ∉

n(�). Then let ⦃Q⦄ =
⟨
Q, InitQ, kQ

⟩
and ⦃Q′⦄ =

⟨
 ′
Q
, Init′

Q
, k′

Q

⟩
. We have an

isomorphism fQ ∶ Q →  ′
Q

and a transition InitQ

eQ
←←←←←←←←←←←→ XQ such that �Q(eQ) = �,

f◦k′
Q
= kQ[eQ ↦ m], and f (XQ) = Init′

Q
. We define our isomorphism

f ((n, en)) =

{
(n, fn(en)) if en ∈ En

(n, e′
n
) for {e′

n
} = {e′ ∣ (n, e′) ∈ E′ and e′ ∉ E′

n
} otherwise

and e = (x, eQ) if � = a(x), and

f (e′) =

{
fQ(e

′) if e′ ∈ EQ

e′′ for {e′′} = {e′′′ ∣ e′′′ ∈ E′ and e′′′ ∉ E′
Q
} otherwise

and e = eQ if � = a(x). These clearly fulfil the conditions.

4. Suppose P = P0|P1, P ′ = P ′
0
|P1, P0

�[m]
←←←←←←←←←←←←←←←←←←→ P ′

0
, fsh[n](P1), and if � = a(x) then

x ∉ fn(P1). Then let ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃
P ′
0

⦄
=
⟨
 ′
0
, Init′

0
, k′

0

⟩
, and ⦃P1⦄ =

⟨1, Init1, k1⟩. We then have an isomorphism f0 ∶ 0 →  ′
0

and transition Init0
e0
←←←←←←←←←→

X0 such that �0(e0) = �, f0◦k
′
0
= k0[e0 ↦ m], and f0(X0) = Init′

0
. We define our

isomorphism

f (e′) =

⎧
⎪⎨⎪⎩

(f0(e
′
0
), ∗) if e′ = (e′

0
, ∗)

(∗, e′
1
) if e′ = (∗, e′

1
)

(f0(e
′
0
), e′

1
) if e′ = (e′

0
, e′

1
)

and e = (e0, ∗). Since sbn(P0) = sbn(P ′
0
) this is an isomorphism, and since all free

and bound names are different, no(�) ∩ sbn(P1) = ∅, implying Init
e
←←←←←→. The other

conditions are clearly fulfilled.

5. Suppose P = P0|P1, P ′ = (�x)(P ′
0
|P1), � = � , P0

a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

0
, and P1

a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ P ′

1
.

Then let ⦃P0⦄ = ⟨0, Init0, k0⟩,
⦃
P ′
0

⦄
=

⟨
 ′
0
, Init′

0
, k′

0

⟩
, ⦃P1⦄ = ⟨1, Init1, k1⟩,

and
⦃
P ′
1

⦄
=

⟨
 ′
1
, Init′1, k

′
1

⟩
. Then we have isomorphisms f0 ∶ 0 →  ′

0
and

f1 ∶ 1 →  ′
1

and transitions Init0
e0
←←←←←←←←←→ X0 and Init1

e1
←←←←←←←←←→ X1 such that �0(e0) = a(x),

�1(e1) = a(x), f0◦k
′
0
= k0[e0 ↦ m], f1◦k

′
1
= k1[e1 ↦ m], f0(X0) = Init′

0
, and

f1(X1) = Init′1. We then define our isomorphism

f (e′) =

⎧⎪⎨⎪⎩

(f0(e
′
0), ∗) if e′ = (e′

0
, ∗)

(∗, f1(e
′
1
)) if e′ = (∗, e′

1
)

(f0(e
′
0
), f1(e

′
1
)) if e′ = (e′

0
, e′

1
)

and e = (e0, e1). Since sbn(P0) = sbn(P ′
0
) and the existence of (f0(e0), f1(e1)) ∈

Init′ and a(x)[m] and a(x)[m] prevents (�x) from affecting  ′, f is an isomorphism,
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and since no(�) = ∅, we have a transition Init
e
←←←←←→. The other conditions are clearly

fulfilled.

6. Suppose P = P0 + P1, P ′ = P ′
0
+ P1, P0

�[m]
←←←←←←←←←←←←←←←←←←→ P ′

0
, and std(P1). Then let ⦃P0⦄ =

⟨0, Init0, k0⟩,
⦃
P ′
0

⦄
=

⟨
 ′
0
, Init′

0
, k′

0

⟩
, and ⦃P1⦄ = ⟨1, Init1, k1⟩. We then have

an isomorphism f0 ∶ 0 →  ′
0

and transition Init0
e0
←←←←←←←←←→ X0 such that �0(e0) = �,

f0◦k
′
0
= k0[e0 ↦ m], and f0(X0) = Init′

0
. We define out isomorphism

f ((i, ei)) =

{
(0, f0(e0)) if i=0

(1, e1) if i=1

and e = (0, e0). Isomorphism is preserved by the coproduct, and the remaining

conditions are clearly fulfilled.

7. Suppose P = (�x)Q, P ′ = (�x)Q′, Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′, and x ∉ n(�). Then let ⦃Q⦄ =⟨

Q, InitQ, kQ
⟩

and ⦃Q′⦄ =
⟨
 ′
Q
, Init′

Q
, k′

Q

⟩
. We have an isomorphism fQ ∶

Q →  ′
Q

and a transition InitQ

eQ
←←←←←←←←←←←→ XQ such that �Q(eQ) = �, f◦k′

Q
= kQ[eQ ↦

m], and f (XQ) = Init′
Q

. Either there exist past actions b(a)[m] and b(a)[m] in P

which are not guarded by a restriction (�a) in P or not. If such b(a)[m] and b(a)[m]

exist, then ⟨ , Init, k⟩ = ⟨
Q, InitQ, kQ

⟩
and

⟨
 ′, Init′, k′

⟩
=
⟨
 ′
Q
, Init′

Q
, k′

Q

⟩
, and

the rest follows trivially. Otherwise restriction preserves morphisms, and clearly

does not affect e = eQ.

Proof (Proof of Theorem 6.4). We prove this by structural induction on P :

– Suppose P = 0. Then E = ∅, and no transition Init
{e}
←←←←←←←←←←←←←→ X exists.

– Suppose P = a(x).Q. Let ⦃Q⦄ =
⟨
Q, InitQ, kQ

⟩
, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Then there exists e such

that E ⧵ EQ = {e}, and for all e′ ∈ E, if e′ ≠ e then {e} ↦ e′. Therefore this

is the only possible e such that Init
{e}
←←←←←←←←←←←←←→. Additionally we have �(e) = a(x) and

P
a(x)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ a(x)[m].Q for any key m, and the rest of the case is straightforward.

– Suppose P = a(x).Q. Then there must exist b ∈  ⧵ sbn(P ) such that �(e) = a(b),
and for all e′ ∈ E either e = e′, e ♯ e′, or {e} ↦ e′. There then exists a transition

P
a(b)[m]
←←←←←←←←←←←←←←←←←←←←←←←←←←→ a(b)[m].Q[x ∶= b[m]] and the rest of the case is straightforward.

– Suppose P = a(x)[n].Q. Let ⦃Q⦄ =
⟨
Q, InitQ, kQ

⟩
, Q = (EQ, FQ,↦Q

, ♯Q,⊳Q, �Q,ActQ), and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Then Init
{e}
←←←←←←←←←←←←←→ X im-

plies InitQ
{e}
←←←←←←←←←←←←←→ X ∩ EQ. We therefore have a transition Q

�[m]
←←←←←←←←←←←←←←←←←←→ Q′ such that

⦃Q′⦄ =
⟨
 ′
Q
, Init′

Q
, k′

Q

⟩
and an isomorphism fQ ∶ Q →  ′

Q
such that �Q(e) =

�, fQ◦k
′
Q

= kQ[e ↦ m], and fQ(X ∩ EQ) = Init′
Q

. This gives us a transition

P
�[m]
←←←←←←←←←←←←←←←←←←→ a(x)[n].Q′ and the rest of the case is straightforward.

– Suppose P = a(x)[n].Q. This case is a combination of the previous two.
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– Suppose P = Q + R and let ⦃Q⦄ =
⟨
Q, InitQ, kQ

⟩
, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), ⦃R⦄ = ⟨R, InitR, kR⟩, R = (ER, FR,↦R, ♯R,⊳R, �R,ActR),
and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Either e = (0, eQ) or e = (1, eR). In the first

case we get a transition transition Q
�[m]
←←←←←←←←←←←←←←←←←←→Q′ such that ⦃Q′⦄ =

⟨
 ′
Q
, Init′

Q
, k′

Q

⟩

and an isomorphism fQ ∶ Q →  ′
Q

such that �Q(eQ) = �, fQ◦k
′
Q
= kQ[eQ ↦ m],

and fQ({e
′
Q
|(0, e′

Q
) ∈ X}) = Init′

Q
. We therefore define

f (e) =

{
(0, fQ(eQ)) if e = (0, eQ)

e otherwise

and the rest of the case is straightforward. If e = (1, eR), the proof is similar.

– Suppose P = Q|R and let ⦃Q⦄ =
⟨
Q, InitQ, kQ

⟩
, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), ⦃R⦄ = ⟨R, InitR, kR⟩, R = (ER, FR,↦R, ♯R,⊳R, �R,ActR),
and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Either e = (eQ, ∗), e = (∗, eR), or e =

(eQ, eR). If e = (eQ, ∗) then we have a transition Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′⦄ =⟨

 ′
Q
, Init′

Q
, k′

Q

⟩
and an isomorphism fQ ∶ Q →  ′

Q
such that �Q(eQ) = �,

fQ◦k
′
Q

= kQ[eQ ↦ m], and fQ({e
′
Q
|(e′

Q
, ∗) ∈ X or (e′

Q
, e′

R
) ∈ X}) = Init′

Q
.

We therefore get P
�[m]
←←←←←←←←←←←←←←←←←←→Q′|R so long as fsh[m](R), and if not we can do the same

with a different m. We can then define

f (e′) =

⎧
⎪⎨⎪⎩

(f0(e
′
0
), ∗) if e′ = (e′

0
, ∗)

(∗, e′1) if e′ = (∗, e′
1
)

(f0(e
′
0
), e′

1
) if e′ = (e′

0
, e′

1
)

and the rest of the case is straightforward. If e = (∗, eR), the case is similar. If e =

(eQ, eR), then we have transition Q
�[m]
←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′⦄ =

⟨
 ′
Q
, Init′

Q
, k′

Q

⟩

and isomorphism fQ ∶ Q →  ′
Q

such that �Q(eQ) = �, fQ◦k
′
Q
= kQ[eQ ↦ m],

and fQ({e
′
Q
|(e′

Q
, ∗) ∈ X or (e′

Q
, e′

R
) ∈ X}) = Init′

Q
, and transition R

�′[m]
←←←←←←←←←←←←←←←←←←←←→ R′

such that ⦃R′⦄ =
⟨
 ′
R
, Init′

R
, k′

R

⟩
and isomorphism fR ∶ R →  ′

R
such that

�R(eR) = �′, fR◦k
′
R

= kR[eR ↦ m], and fR({e
′
R
|(∗, e′

R
) ∈ X or (e′

Q
, e′

R
) ∈

X}) = Init′
R

and there exist names a, b such that either � = a(b) and �′ = a(b)

or �′ = a(b) and � = a(b). We therefore get a transition P
�[m]
←←←←←←←←←←←←←←←←←→ (�b)(Q′|R′) and

define

f (e) =

⎧
⎪⎨⎪⎩

(f0(e
′
0
), ∗) if e = (e′

0
, ∗)

(∗, f1(e
′
1
)) if e = (∗, e′

1
)

(f0(e
′
0
), f1(e

′
1
)) if e = (e′

0
, e′

1
)

and the rest of the case is straightforward.

– Suppose P = (�a)Q. Let ⦃Q⦄ =
⟨
Q, InitQ, kQ

⟩
, Q = (EQ, FQ,↦Q, ♯Q

,⊳Q, �Q,ActQ), and  ′ = (E′, F ′,↦′, ♯′,⊳′, �′,Act′). Then either there exist past
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actions b(a)[m] and b(a)[m] in Q which are not guarded by a restriction (�a) in

Q or not. If such b(a)[m] and b(a)[m] do exist, then they must be in parallel, and

therefore there exists an event e′ ∈ E ⧵ Init such that �(e) = b(a), and for all

other events e′′ ∈ E, if �(e′) outputs a then e′ = e, and if a ∈ no(�(e′)) then

{e′} ↦ e′′. Additionally there exists e′′′ ∈ Init such that e′′′ ♯ e′ and �(e′′′) = � .

We therefore get that a ∉ n(e). Additionally InitQ = Init
{e}
←←←←←←←←←←←←←→ X and by induc-

tion we have a transition Q
�[m]
←←←←←←←←←←←←←←←←←←→ Q′ such that ⦃Q′⦄ =

⟨
 ′
Q
, Init′

Q
, k′

Q

⟩
and

an isomorphism fQ ∶ Q →  ′
Q

such that �Q(e) = �, fQ◦k
′
Q

= kQ[e ↦ m],

and fQ(X) = Init′
Q

= Init′. We define f = fQ and the result follows. If no such

b(a)[m] and b(a)[m] exist in Q then clearly a ∉ n(�(e)), and restriction preserves

morphisms, meaning the proof is straightforward.
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