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Abstract. CCSK is a reversible form of CCS which is causal, meaning that ac-
tions can be reversed if and only if each action caused by them has already been
reversed; there is no control on whether or when a computation reverses. We pro-
pose an event structure semantics for CCSK. For this purpose we define a cat-
egory of reversible bundle event structures, and use the causal subcategory to
model CCSK. We then modify CCSK to control the reversibility with a rollback
primitive, which reverses a specific action and all actions caused by it. To define
the event structure semantics of rollback, we change our reversible bundle event
structures by making the conflict relation asymmetric rather than symmetric, and
we exploit their capacity for non-causal reversibility.

1 Introduction

Reversible process calculi have been studied in works such as [5,7, 10, 19]. One feature
of such reversible processes is their ability to distinguish true concurrency in a way
forward-only processes cannot [15]. For instance, using CCS notation, the processes
alb and a.b + b.a are equivalent under interleaving semantics; however in a reversible
setting we can distinguish them by noting that a|b allows us to perform a followed by b
and then to reverse a, which is impossible for a.b + b.a. This motivates us to use event
structures [14] to describe truly concurrent semantics of a reversible process calculus.

Two reversible forms of CCS have been proposed: RCCS [7] and CCSK [19]. RCCS
creates separate memories to store past (executed) actions, while CCSK annotates past
actions with keys within the processes themselves. We formulate an event structure se-
mantics for CCSK rather than RCCS, since the semantics for past and future actions
can be defined in a similar manner, rather than having to encompass both processes and
memories. We note that Medi¢ and Mezzina [12] showed that RCCS and CCSK can
be encoded in each other, meaning one can use their encoding in conjunction with our
event structure semantics to obtain an event structure semantics for RCCS.

Event structures have been used for modelling forward-only process calculi [2,4,21].
Cristescu et al. [6] used rigid families [3], related to event structures, to describe the
semantics of Rz [5]. However, their semantics requires a process to first reverse all
actions to find the original process, map this process to a rigid family, and then ap-
ply each of the reversed memories in order to reach the current state of the process.
Aubert and Cristescu [1] used a similar approach to describe the semantics of RCCS
processes without auto-concurrency, auto-conflict, or recursion as configuration struc-
tures. By contrast, we map a CCSK process (with auto-concurrency, auto-conflict, and
recursion) with past actions directly to a (reversible) event structure in a strictly denota-
tional fashion.



Reversible forms of prime [16], asymmetric [16], and general [18] event structures
have already been defined, but the usual way of doing parallel composition of forward-
only prime (PES) and asymmetric event structures (AES) [20] does not translate into a
reversible setting, and general event structures are more expressive that is necessary for
modelling reversible CCSK. We therefore base our semantics on a reversible form of
bundle event structures (BESs) [11].

BESs were created with the specific purpose of allowing the same event to have
multiple conflicting causes, thereby making it possible to model parallel composition
without creating multiple copies of events. They do this by associating events with bun-
dles of conflicting events, X — e, where in order for event e to happen one of the events
of X must have already happened.

This approach can be used for modelling cases such as Example 1.1 below, where
an action a has multiple options for synchronisation, either of which would allow the
process to continue with the action b. If we model each synchronisation or lack thereof
as a separate event then we clearly need to let b have multiple possible causes, which we
can accomplish using BESs, but not using PESs.

Example 1.1 (Process easily representable by a bundle event structure).

The CCS process a.b | a can be described by a BES with
the events a, 7, a, b, the bundle {a,7} — b, and the conflicts
a ft T and a # 7. The process cannot be represented by a PES or
AES without splitting some events into multiple events, due to
b having multiple possible causes.
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We therefore define a category of reversible BESs (RBESs). Since the reversibil-
ity allowed in CCSK (as in RCCS) is causal, meaning that actions can be reversed if
and only if every action caused by them has already been reversed, we use the causal
subcategory of RBESs for defining a denotational semantics of CCSK.

Causal reversibility has the drawback of allowing a process to get into a loop do-
ing and undoing the same action indefinitely; there is no control on whether or when
a computation reverses. We modify CCSK to control reversibility by adding the roll-
back introduced for Roll-z in [9]. In Roll-CCSK every action receives a tag y, and the
process only reverses when reaching a roll y primitive, upon which the action tagged
with y, together with all actions caused by it, are reversed. As in Roll-z, the rollback
in Roll-CCSK is maximally permissive, meaning that any subset of reached rollbacks
may be executed, even if one of them rolls back the actions leading to another. The op-
erational semantics of rollback work somewhat differently in Roll-CCSK from Roll-z,
since Roll-7 has a set of memories describing past actions in addition to a z-calculus
process, while CCSK has the past actions incorporated into the structure of the process,
meaning that it is harder to know whether one has found all the actions necessary to
reverse. Roll-CCSK allows recursion using binding on tags. Mezzina and Koutava [13]
added rollback to a variant of CCS, though they use a set of memories to store their past
actions, making their semantics closer to Roll-x.

Once a roll y event has happened, we need to ensure that not only are the events
caused by the y-tagged action a, able to reverse, but they cannot re-occur until the roll-
back is complete, at which point the roll y event is reversed. This requires us to model



asymmetric conflict between roll y and events caused by a, (apart from roll y itself).
Asymmetric conflict is allowed in extended BESs (EBESs) [11]. We define a category
of reversible EBESs (REBESs) and use them to give an event structure semantics of
rollback. Note that we do not restrict ourselves to the causal subcategory of REBESs,
since reversibility in Roll-CCSK is not necessarily causal. An action a, tagged with y
is a cause of roll y, but we want a, to reverse before roll y does.

Contributions We formulate reversible forms of bundle, and extended bundle event
structures. We show that these form categories equipped with products and coproducts.
We extend CCSK with recursion and use the category of RBESs to define its event
structure semantics. We define the operational semantics of Roll-CCSK, which uses
rollback to control the reversibility in CCSK, showing that our rollbacks are both sound
(Theorem 6.6) and complete (Theorem 6.9) with respect to CCSK. We use the category
of REBESs to define the event structure semantics of Roll-CCSK. We prove operational
correspondence between the operational semantics and event structure semantics of both
CCSK and Roll-CCSK (Theorems 4.10, 7.5 and 7.7).

Outline Section 2 recalls the semantics of CCSK. Section 3 describes RBESs and their
category. Section 4 defines the event structure semantics of CCSK. Section 5 describes
REBESSs and their category. Section 6 introduces Roll-CCSK and its operational seman-
tics and Section 7 uses REBESs to describe the event structure semantics of Roll-CCSK.

2 CCSK

CCSK was defined in [19], and distinguishes itself from most reversible process calculi

by retaining the structure of the process when actions are performed, and annotating past
. . . . . . — . 7ln]
actions with keys instead of generating memories. For instance we have a.P | .0 —

a[n].P | a[n].Q, with the key n denoting that a and a have previously communicated,
and we therefore cannot reverse one without reversing the other.

We call the set of actions of CCSK A and let a, b, ¢ range over A, a, f range over
AU A, and u range over A U AU {r}. We let K be an infinite set of communication
keys and let m, n range over K.

CCSK then has the following syntax, very similar to CCS:

P::=aP | a[nlP | Py+P, | Py|P, | P\A | P[f]] O

Here P \ A restricts communication on actions in A U A and P[f] applies a function
f 1 A — Atoactions done by P.

Table 1 shows the forwards rules of the operational semantics of CCSK. As CCSK
is causal, the reverse rules can be derived from these. We use w to denote a reverse ac-
tion, std(P) to denote that P is a standard process, meaning it contains no past actions,
and fsh[n](P) to denote that the key » is fresh for P. The rules are slightly reformu-
lated compared to [19] in that we use structural congruence =. The rules for structural
congruence are:

P|O=P Py|P =P | P Pl (P | B)=F| P B

P+0=P Py+P =P+ P P+(P+P)=(Py+P)+ P



Table 1. Forwards semantics of CCSK [17]

std(P) PN P mtn Pp=0 o =p
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We extend CCSK with recursion as follows. We add process constants A (B), to-
gether with definitions A(@) = P,, where P, is a standard process and 4 is a tuple
containing the actions of P,. This leads us to expand our definition of structural con-
gruence with A (7)) = Py (Y;).

Definition 2.1. A process P is reachable if there exists a standard process Q such that
O(— U »)*P, and forwards-reachable if there exists a standard process Q such that
Q0 ->*P.

Since CCSK is causal all reachable processes are forwards-reachable ( [19], Propo-
sition 5.15; the proof still applies with recursion added).

3 Reversible Bundle Event Structures

Bundle event structures (BES) [11] extend prime event structures by allowing multiple
possible causes for the same event. They do this by replacing the causal relation with a
bundle set, so that if X — e then exactly one of the events in X must have happened
before e can happen, and all the events in X must be in conflict.

We define reversible bundle event structures (RBES) by extending the bundle rela-
tion to map to reverse events, denoted e, and adding a prevention relation, such that if
e > ¢ then e’ cannot be reversed from configurations containing e. We use e* to denote
either e or e.

Definition 3.1 (Reversible Bundle Event Structure). A reversible bundle event struc-
ture is a 5-tuple € = (E, F,—,§,>) where:

~

. E is the set of events;

. F C E is the set of reversible events;

the bundle set, — C 2E X (E U F), satisfies X — e* = Ve ,e, € X.e; #e, = e;
e,andforalle € F, {e} — e;

the conflict relation, § C E X E, is symmetric and irreflexive;

> C E X F is the prevention relation.
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In order to obtain a category of RBESs, we define a morphism in Definition 3.2.



Definition 3.2 (RBES-morphism). Given RBESs &, = (E, Fy, ¢, #y,>0) and £, =
(Ey, F|,~1,81,>1), an RBES-morphism from &, to &, is a partial function f : Ey, —
E, such that f(Fy) C F, and for all e,e’ € E,:

L if f(e)#; f(e/)thenetye;

2. if fley=f(')and e # €' then et €';

3. for X; C E| if X; = f(e)" then there exists X, C E, such that X, + e*,
f(Xo) C X, and if ' € X, then f(e') # L;

4. if fle)y> f(e') then e e

It can be checked that RBESs with this notion of morphism form a category RBES. We
define a product of RBESs in Definition 3.3. A coproduct can also be defined similarly
to other coproducts of event structures.

Definition 3.3 (Product of RBESs). Let &) = (E, Fy, ¢, g, ) and €, = (Ey, F|,
,#1,>1) be reversible bundle event structures. Their product £y X €, is the RBES € =
(E, F,—,H#,>) with projections 7o and 7ty where:

1. E=EyX, E ={(e,x)|e€ Ey}U{(x,e)|e€ E;}U{(e,e/) |e€ Eyand ¢ €
E};

2. F=FyX,F) ={(e,*) | e € Fy}u{(x,e) | e € F;}U{(e,e') | e € Fyand e’ € F,};

3. fori € {0,1} we have (e, e) € E, m;((egy, e)) = e;;

4. foranye* € EUF, X CE, X v e" iff there exists i € {0,1} and X; C E; such
that X; — m(e)* and X = {e' € E | m;(¢)) € X;};

5. for any e,e’ € E, e § € iff there exists i € {0,1} such that x;(e) #§; =,(¢'), or
n;(e) = mi(e") # L and m,_;(e) # m,_;(e');

6. foranye € E, ¢’ € F, e > €' iff there exists i € {0, 1} such that r;(e) >; m;(e’).

We wish to model RBESs as configuration systems (CSs), and therefore define a functor
from one category to the other in Definition 3.5. A CS consists of a set of events, some
of which are reversible, configurations of these events, and labelled transitions between
them, as described in Definition 3.4. We will later use the CSs corresponding to our
event structure semantics to describe the operational correspondence between our event
structure semantics and the operational semantics of CCSK.

Definition 3.4 (Configuration system [16]). A configuration system (CS) is a quadru-
ple C = (E, F,C,—) where E is a set of events, F C E is a set of reversible events,
C C 2F is the set of configurations, and —-C C x 2EVE x C is a labelled transition

AUB
relation such that if X —— Y then:

X, YEC ANX=0;BCXNF;andY = (X \ B)U A;
A'uB’ (A\A")U(B\B')
— forall A’ C Aand B' C B, we have X V4 Y, meaning
Z=(X\B)ud ecC

Definition 3.5 (From RBES to CS). The functor Cy, : RBES — CS is defined as:

1. Cy,((E, F,~,8,>)) = (E, F,C,—>) where:
(a) X € Cif X is conflict-free;



AUB
(b) For X,Y € C AC E, and B C F, there exists a transition X —— Y if:

. Y=X\BUA XNA=0; BC X, and X U A conflict-free;
ii. foralle € B, ife’ >ethene & X U A;
iii. foralle€ Aand X' CE, if X' = ethen X' n(X \ B) # @;
iv. foralle € Band X' CE, if X' = ethen X' N (X \ (B\ {e})) # 0.
2. Cbr(f):f~

Example 3.6 shows an RBES mapped to a CS. The config-

uration {b, c} is reachable despite b being required for ¢ to {a, b} {b,c}
happen and ¢ being a possible cause of b. O SN

{a} —— {b} {c}
Example 3.6 (RBES). AnRBES € = (E, F,—,#,>) where '

E = {a,b,c}, F = {a,b},a tl ¢, {a,c} —» b, {b} > ¢ \g
{a} = a, {b} » a,and {b} = b, gives the CS C,.(E).

We define a causal variant of RBESs in Definition 3.7. The subcategory CRBES
consists of CRBESs and the RBES-morphisms between them.

Definition 3.7 (Causal RBES). £ = (E, F,~,#,>) is a causal RBES (CRBES) if (1)
if e > €' then either e § ¢’ or there exists an X C E such that X — eand ¢’ € X, (2) if
X eande € XNF, thenereé, and (3)if X — ethene € X.

Proposition 3.8.

1. Givena CRBES, & = (E, F,~,#f,>) and corresponding CS C,,(€) = (E, F,C, —),
any reachable X € C is forwards-reachable.
2. If€ = (E,F,~,}#,>>) is a CRBES and C,.(€) = (E, F,C, —) then whenever X €

AUB BuA
C, X—— Y and AU B C F, we get a transition Y —— X.

Since our motivation for defining RBESs was modelling reversible processes, we
need to be able to label our events with a corresponding action from a process. For this
we use a labelled RBES (LRBES).

Definition 3.9 (Labelled Reversible Bundle Event Structure). An LRBES € = (E, F, —
8,1, A, Act) consists of an RBES (E, F,—,#,1>), a set of labels Act, and a surjective
labelling function A : E — Act.

Definition 3.10 (LRBES-morphism). Given LRBESs &, = (E, Fy, — ¢, 1, >0, 49> Acty)
and & = (Ey, Fi,~1,8;,>, 41, Act)), an LRBES-morphism f : &, — &, is a partial
function f : Ey — Ej such that [ : (Ey, Fy, ¢, 0, >0) = (Ep, Fl, >, 8;,>)) is an
RBES-morphism and for all e € E,, either f(e) = L or Ag(e) = A1(f(e)).

4 Event Structure Semantics of CCSK

Having defined RBESs, we will now use them to describe the semantics of CCSK [19].
Unlike the event structure semantics of CCS [2, 21], our semantics will generate both
an event structure and an initial configuration containing all the events corresponding
to past actions. This means that if P — P’ then P and P’ will be described by the same
event structure with different initial states.



First we define the operators we will use in the semantics, particularly restriction,
parallel composition, choice, and action prefixes. Restriction is achieved by simply re-
moving any events associated with the restricted action.

Definition 4.1 (Restriction). Given an LRBES, € = (E, F,~,#,1>, A, Act), restricting
Eto E' CEcreatesE | E' =(E',F',' ', X, Act’) where:

l. FF=FnE; 4. >’ =p>n(E'XF);
2. »' = nPE)X(E'UF)); 5. =2A1g;
3 =8nE xE; 6. Act is the range of A.

Parallel composition uses the product of RBESs, labels as = any event corresponding
to a synchronisation, and removes any invalid events describing an impossible synchro-
nisation.

Definition 4.2 (Parallel). Given LRBESs &, and &, §)||E; = (E, F, —, #,>, 4, Act) |
{e | /1(8) ;é O} Where'. (E’ F’ H’ﬁ3>) = (E()s F()3 '_)()s ﬁ()& D()) X (E]’ F19 '_)]’ﬁ19>]);
Aoley) ife=(ey,*)
Aley)) ife=(x,e)

if e = (e, eq) and Ay(ey) = Aq(e;)

0 ife = (90, el) and /10((30) # /11(61),'
and Act = Acty U Act; U {0, 7}.

Me) =

Choice, which acts as a coproduct of LRBESs, simply uses the coproduct of RBESs,
and defines the labels as expected.

Definition 4.3 (Choice). Given LRBESs &, and &,, £,&E, = (E, F,—~,1,1>, 4, Act)
Where: (E’ F’ =, ﬂ’ >) = (E()’ F()7 '_)()’ ﬂ()? >()) + (E17 Fl, H]’ ﬂp D]); A(l](e)) = )’j(e):
and Act = Acty U Act;.

Causally prefixing an action onto an event structure means the new event causes all
other events and is prevented from reversing by all other events.

Definition 4.4 (Causal Prefix). Given an LRBES £ = (E, F,—,#,>, A, Act), an event
e & E, and a label a, a(e).€ = (E', F',~' ', )/, Act’) where:

1. E' = EuU{e}; 5. >’ =p>U(E X {e});
2. F' = Fu/{e}; ’_ .

3 ' = U({{e}} X (E U {e))); 6. A'=Aler a]

4. =t; 7. Act’ = ActU {a}.

Now that we have defined the main operations of the process calculus, we define
the event structure semantics in Table 2. We do this using rules of the form {PJ};, =
(&, Init, k) wherein [ is the level of unfolding, which we use to model recursion, £ is an
LRBES, Init is the initial configuration, and k : Init — K is a function assigning com-
munication keys to the past actions, which we use in parallel composition to determine
which synchronisations of past actions to put in Init.



Table 2. RBES-semantics of CCSK

{op, = ((8,9,0,0,0,0,0),0,d)
{Py+ P}, = (§,&€&,, Init, k) where
Fori € {0,1}, { P}, = (&, Init;, k;)
Init = {(j,e) | j € {0, 1} and e € Init,}
k((j,e)) = k;(e) if e € Init;
{a.P]}, = (a(e).(E, F,—,8,>, A, Act), Init, k> for e fresh for E where
[P}, = {(E,F.~ 4,1, 4, Act), Init, k)
{alm].P}, = {a(e).(E, F,~.#,>, 4, Act), Init U {e}, k[e > m]) for e fresh for E where
{ P}, = ((E.F.~.t,>, 4, Act), Init, k)
{Py| P}, = {(E,F,~.t,>,4,Act),Init, k) where
Fori € {0,1}, { P}, = (&, Init,, k,)
(E, F,5, 8,1, A, Act) = &||€,
Init = {(ey, e)) | ey € Inity, e, € Init;, ky(ey) =k (e))}U
{(x,e)) | e, € Init, and Ze, € Inity.Ay(ey) = 4,(e;) and ky(ey) = k,(e;) U
{(eg, *) | eq € Inity and Ze; € Init;.Ag(eg) = A, (e;) and ky(ey) = ky(e;)}
koley) if e = (ey, *)
k(e) =1k (e;) ife=(xe)
koley) ife=(eye) —notethat ky(ey) =k (e,)
{P\AL, = (Et{e|lie) g A}, Initn{e| Ae) &€ A}, k | {e| A(e) & A}) where
{PL, = (&, Init, k)
A=AUA
{PLf1}, = ({(E,F,~.f.>, 4, Act), Init, k) where
(P}, = ((E.F,~.4,>, 4, Act), Init, k)
Act = f(Act))
A= foX
= ((4,0.0.9,0,0,0).9,8)
= {P,{"/}]},_, where A@) = P,

{42,
{4 @),

Note that the only difference between a future and a past action is that the event
corresponding to a past action is put in the initial state and given a communication key.

Example 4.5. The CCSK process a.b | a (cf. Example 1.1) can
be represented by the RBES with events labelled a, a, 7, and b,
the bundle {a,7} — b, the conflicts a f 7 and @ § 7, and the
preventions b > a and b > 7.

We say that { P} = sup,c {P]};- This means we need to show that there exists
such a least upper bound of the levels of unfolding. As shown in [8], ordering closed
BESs by restriction produces a complete partial order. Since our LRBESs do not have
overlapping bundles (X — ¢* and X’ — ¢* implies X # X' or X n X' = ) they are
closed, and we can use a similar ordering.

Definition 4.6 (Ordering of LRBESSs). Given LRBESs &y = (E, Fy, =, fo: 0> 405
Acty) and & = (E, Fy,— 1, 8,51, 41, Acty), & < & if Eg = & 1 E,.

Proposition 4.7 (Unfolding). Given a reachable process P and a level of unfolding I, if
{P]; = (& Init,k) and { Pl},_, = (&', Init’, k'), then & < &, nit = Init’, and k = k'



In order to prove that our event structure semantics correspond with the operational
semantics for CCSK defined in [17] we first show that our event structures are causal.

Proposition 4.8. Given a process P such that { P} = (&€, Init, k), € is causal.

Structurally congruent processes will generate isomorphic event structures:

Proposition 4.9 (Structural Congruence). Given processes P and P', if P = P/,
(P} = (&1Init,k), and {P']} = (8’,Init/,k’>, then there exists an isomorphism
f i & — & such that f(Init) = Init’ and for all e € Init, k(e) = k' (f(e)).

Finally we show in Theorem 4.10 that given a process P with a conflict-free initial

state, including any reachable process, there exists a transition P Pifand only if the
event structure corresponding to P is isomorphic to the event structure corresponding
to P’ and an event e labelled y exists such that e is available in P’s initial state, and P"’s
initial state is P’s initial state with e added.

Theorem 4.10. Let P be a process with | P} = (&, Init, k), £ = (E, F,~,#,1>, A, Act),
C,.(E) = (E, F,C,—), and Init conflict-free. Then

[m]
1. if there exists a P! with {P']} = <€’, Init’, k’> and a transition P —— P’ then

. e} . .
there exists a transition Init —> X and an isomorphism f : & — &' such that
Ae) = u, fok! = kle + m), and f(X) = Init’;

. . . ., e ; .
2. and if there exists a transition Init — X then there exists a P’ with {P'|} =

<8’, Init’, k’> and a transition PM» P’ and an isomorphism f . € — &' such
that Me) = pu, fok! = k[e — m), and f(X) = Init’.

Corollary 4.11. Let P be a process such that { P} = (&, Init, k). Then Init is forwards-
reachable in £ if and only if there exists a standard process Q such that Q —* P.

Since we showed in Proposition 4.8 that any event structures generated by processes
are causal, it follows that we get a similar correspondence between the reverse transitions
of processes and event structures.

5 Reversible Extended Bundle Event Structures

In CCSK a process can reverse actions at any time. Suppose that we wish to control
this reversibility by having a ‘rollback’ action that causes all actions, or all actions since
the last safe state, to be reversed before the process can continue, similar to the roll
command of [9]. RBESs can easily ensure that this rollback event roll is required for
other events to reverse; we simply say that {roll} — e for all e. However, preventing
events from happening during the roll in RBESs requires symmetric conflict, which
would mean the other events also prevent roll from occurring. To solve a similar problem,
Phillips and Ulidowski [16] use reversible asymmetric event structures, which replace
symmetric conflict with asymmetric. But since these use the same notion of causality
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Fig. 1. The reachable configurations of the REBES described in Example 5.1

as reversible prime event structures, they have trouble modelling concurrent processes
with synchronisation, as shown in Example 1.1.

Extended bundle event structures (EBES) [11] add asymmetric conflict; so defining
a reversible variant of these will allow us to model the above scenario.

Example 5.1 (The necessity of REBESs for modelling rollback). Consider a.b | a,.roll y,
where roll y means undo the action labelled y, that is a, and everything caused by it
before continuing. To model this we would need to expand the RBES from Exam-
ple 4.5 with a new event roll y, and split b into two different events depending on
whether it needs to be reversed during the rollback or not. This would give us an RBES
({a,7,a,b,, b, ,roll y},{a,z,a,b,,b,,roll y},—~,#1>) where {a} — b, {z} — b,,
{a,z} — roll y, {roll y} — =, {roll y} » a, {rolly} — b,,aff z,a 4 7, b, > a,
b,>1z,amroll y, and 7 > roll y. This would indeed ensure that a and the events caused
by it could only reverse if one of the roll events had occurred, but it would not force
them to do so before doing anything else. For this we use asymmetric conflict: roll y >a,
roll y>1, roll y>b_, giving us a CS with the reachable configurations shown in Figure 1.

We define a reversible version of EBESs in Definition 5.2, treating the asymmetric
conflict similarly to RAESs in [16].

Definition 5.2 (Reversible Extended Bundle Event Structure). An REBES is a 4-
tuple €& = (E, F,—,>) where:

1. E is the set of events;

2. F C E is the set of reversible events;

3. = C2E X (E U F) is the bundle set, satisfying X + e = Ve,,e, € X.(e; # e, =
e;>ey), andforalle € F, {e} — e;

4. > C EX(E U F) is the asymmetric conflict relation, which is irreflexive.

In order to define REBES-morphisms, we extend the RBES morphism in the obvious
way, letting the condition on preventions also apply to prevention on forwards events.
This gives us a category REBES, in which we can define products and coproducts much
like we did for RBESs, treating asymmetric conflict the same as we did symmetric.

We again model REBESs as CSs, defining configurations as sets of events on which
> is well-founded, and extending the requirements of prevention in transitions to for-
wards events.

10



Example 5.3 shows an REBES, which cannot be represented by an RBES, since
we get a transition § — {a}, but no {b} — {a, b}, despite {a, b} being a configuration.

Example 5.3 (REBES). An REBES € = (E,F,,>) {a,b}  {b.c}
where E = {a,b,c}, F = {a,b}, {a,c}) = b, {b} = ¢ AN TN
{a} » a, {b} » a, {b} » b,a>c,c>a,and b > a gives ta} (b} e}
the CS C,,(€) in the diagram. \ ;)

Since we are using our REBESs for modelling the semantics of rollback in CCSK, we
need a labelled variant, which we can define much as we did labelled RBESs.

6 Roll-CCSK

The operational semantics for roll-z [9] are not translatable directly to CCSK, as they
make use of the fact that one can know, when looking at a memory, whether the com-
munication it was associated with was with another process or not, and therefore, for a
given subprocess P and a memory m, one knows whether all the memories and subpro-
cesses caused by m are part of P. In CCSK, this is not as easy, as the roll in a subprocess
a,[n] ... roll y, where y is a tag denoting which rollback rolls back which action, may or
may not require rolling back the other end of the « communication, and all actions caused
by it. We therefore need to check at every instance of parallel composition whether any
communication has taken place, and if so roll back those actions and all actions caused
by them. This may include rolling back additional actions from the subprocess contain-
ing the roll as in a[nl].z[nz] | clns].Ca,[ny].roll y | bln,]), where it does not become
clear that b[n,] needs to be reversed during the roll until the outer parallel composition.
Unlike [9], we therefore do not provide low-level operational semantics for Roll-CCSK,
only providing high-level operational semantics in this section, and low-level denota-
tional event structure semantics in Section 7.
The syntax of Roll-CCSK is as follows:

P::=a,P|alnl.P| Py+P | PP, | P\A| P[f]]0|rolly | rollingy | (vy)P

Most of the syntax is the same as CCSK and CCS, but adding tags and rolls as
described above, and rolling y, which denotes a roll in progress, the necessity of which
is justified later. From now on we will use a. P to denote a, . P where no roll y exists in P.
Before presenting the operational semantics of rollback, we define causal dependence
and projection similarly to [9], on which we base our own semantics.

Definition 6.1 (Causal dependence). Let P be a process and I be the set of tags in P.
Then the binary relation <p is the smallest relation satisfying

— if there exists a process P' and past actions ay[n] and ﬂy/ [m] such that ay[n].P’ is
a subprocess of P and f,/[m] occurs in P theny <p y';

— if'there exist past actions a, [n] and ﬂy/ (n] in P with the same keys theny <p y';

— <p is reflexively and transitively closed.

11



Table 3. The main rules for rollback in the operational semantics of Roll-CCSK

roll y
Py P(; C={7/|7’SPO|P1 Y')

start roll y.
(start ROLL) roll y ™7 rolling y  (par ROLL) ol
Py | P (P I P)yc

roll y
P P Cc={y |ysay[}1]AP 7'}

roll
(ROLL) rolling ¥ Y roll y (act ROLL)
roll y
ay[n].P o ay.PéC
q P o . Pz o b
(bind ROLL) i bor (bind ROLL struct) oo
WP S (P p S p

Definition 6.2 (Projection). Given a process P and a set of tags C, P, ¢ is defined as:

(a,[n].P);c = a,[n].(P,c) ify €C 0,c =0 (P\A),c=(P,c)\ A
(o, [n].P),c = a,.(P,c) ify €C roll y,c =roll y Py | P1)4C=P0éc | PléC
rolling y, ¢ = rolling y ify & C A (B,y)éc =A(b.7) (vPP,c=Wy)(P,)
rollingy,c =rolly ify € C (a,.P),c =a,(P,c) (PIfD;c=P;clf]

(Po+P)yc=Fy, .+ P

Much as in [9] we perform our rollback in two steps, the first triggering the rollback,
and the second actually performing the rollback, in order to ensure that we can start
multiple rollbacks at the same time. For instance, in the process (a,.(d.0 | c.roll y) |

b, .(c | d.roll Y| a | b) \ {a,b,c,d} we will otherwise never be able to roll all the
way back to the beginning, as rolling back a, will stop us from reaching roll y" and vice
versa.

Table 3 shows the most important rules for reversing actions in Roll-CCSK. The
remaining rules permit the roll start y and roll y to propagate in the same way as actions
in CCSK (and past tag bindings), with the exception that in the rule for choice, if one
path has already triggered a roll, the other cannot trigger or perform a roll or a forwards
action. The semantics of forwards actions are otherwise identical to CCSK, except again
propagating past the tag bindings. By contrast, roll bound y does not propagate. We ex-
tend our process definitions A(@) = P, to also include a tuple of tags in Py, giving us
A(a,7) = P4, where P, is a standard process containing no instances of rolling y.

Since we want to be able to handle recursion without confusing instances of multiple
actions or rollbacks being associated with the same tags, we introduce binding of tags
(v y), which allows us to avoid clashes. We use ft(P) to denote the free tags of P. To
ensure that we cannot perform roll y in Q | (v y) P without rolling back all actions in Q
caused by y, we only have rule (bind ROLL struct) for bound tags, meaning that to roll
back a bound tag we must use structural congruence to move it to the outermost layer
of the process. This is also why we have the two rules allowing us to move (v y) from
one side of an action with a different tag to the other.

We also change the rule for applying definitions to ensure all tags are fresh for the
unfolded process. This is again to prevent the process from unfolding more rollbacks for
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a previous action, such as in a,.A{a, y) with A(b, 5) = bs.(A (b, 5) | roll §), where there
would otherwise be confusion about how far back one should roll each time.
Structural congruence for bound tags:

a,(vy)P = vy, Pify #y' a,[nl(vy)P = (v, [n]Pify # ¢
(P 1=y )P Q)ify g ft(Q)  (vy)P)+ 0 = (vy) (P +Q)ify & ft(Q)
)P\ A)=((v/)P)\ A wn(PLfD = (v PLSf]

A(b,5) = (vE)Py{%/;,) if A@,7) =Py (vy)(vy)P = (vy' )V y)P

Example 6.3 (Bound Tags). Consider the process P = a,[n].(v y)b,.roll y. This can

. b[m] start roll y .
clearly do the actions P—— a, [n].(v y)b, [m].rolly ————— a,[n](v y).b,[m].rolling y.

However, when actually performing the rollback, we need to use the structural congru-
ence rule to a-convert the bound y into 6 and move the binding to before a,[n] because
roll bound does not propagate through a,[n]. Then we can do a, [n].(v y)by[m].rolling y =
Il bound
(v 8)a, [n].bs[m].rolling & """ (v 8)a, [n].bs.roll 6.
In addition, to ensure every rollback is associated with exactly one action, we define
a consistent process.

Definition 6.4 (Consistent process). A Roll-CCSK process P is consistent if

1. there exists a standard process Q with no subprocess rolling y such that Q —* P;
2. there exists P! =, P, such that
(a) for any tag y, P’ has at most one subprocess roll y or rolling y;
(b) for any tag y, there exists exactly one a and at most one n such that a,, or a,[n]
occurin P';
(c) ifrolly is a subprocess of P' then there exists an action a and process P such
that roll y is a subprocess of P"" and either a,.P" is a subprocess of P' or there
exists a key n such that a,[n].P" is a subprocess of P';

3. ifA <B, 5> is a subprocess of P defined as A(a,7) = Py, then P, is consistent.

Proposition 6.5. Let P be a consistent process, P’ be a process, and either P = P/,
P — P!, or P~ P'. Then P’ is consistent.

We are then ready to prove Theorem 6.6, stating that for consistent subprocesses, any
rollback can be undone by a sequence of forwards actions.

Theorem 6.6 (Loop (Soundness)). Let Py and P, be consistent processes containing

i start roll y , .Toll bound "
no subprocesses rolling y, and such that Py ~~~"~" Py~ P|. Then P| —* P,

We will from now on use = ¢ gx and « gk to distinguish CCSK-transitions from
Roll-CCSK transitions, which will continue to be denoted by arrows without subscripts.
The last thing we need to prove about our rollback operational semantics before moving
on to event structure semantics is Theorem 6.9, stating that (1) our rollbacks only reverse
the actions caused by the action we are rolling back according to CCSK, and (2) our
rollbacks are maximally permissive, meaning that any subset of reached rollbacks may
be successfully executed.
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Definition 6.7 (Transforming Roll-CCSK to CCSK). We define a function, ¢, which
translates a Roll-CCSK process into CCSK:
@(rolly) =0 ¢(a,[n].P) = a[n].¢(P) ¢(a,.P)=a.¢p(P) ¢((vy)P)= p(P)

¢ is otherwise homomorphic on the remainder.

Definition 6.8. Let P be a CCSK process and T = {my, my, ... m,} be a set of keys. We

plm]
say that P wp P! if there exist actions u, v and a tag m such that P~ ccgx P’ and
vim;] <p ulm] for some m; € T.

Theorem 6.9 (Completeness). Let P be a consistent Roll-CCSK process with sub-
processes ay [mg] ... roll yq, @, [m]...roll ¥, ..., @, [m,]...roll y,. Then for all
0 1 n

T C {mg,my,...m,}, if p(P) =7, P’ o then there exists a Roll-CCSK process P"
such that ¢(P"") = P’ and P ~* P".

7 Event Structure semantics of Roll-CCSK

Having proved that our rollback semantics behave as intended, we are ready to translate
them into event structure semantics in Table 4. We use labelled REBESs.

To model roll y as an event structure, we have two events, one which triggers the
roll, labelled start roll y, and another, roll y, which denotes that the roll is in progress,
allowing the events caused by the associated action to begin reversing. When prefixing
a process P with an action a,, we now need to ensure that any action in P, and any
start roll associated with such an action, will be reversed by any roll y in P, and that the
rollback does not stop, signified by the event labelled roll y being reversed, until those
actions have all been reversed.

When composing the LREBESs of two processes, we also create a separate event for
each set of causes it might have (Definition 7.1). This allows us to say that an event can
be rolled back if it was caused by a communication with one of the events being rolled
back, but not if the communication went differently. Consider the process a,.roll y | a.b |
a,.roll y'. In this case we will want b to roll back if (a,, a) and roll y have happened, or
if (a,/, a) and roll v’ have happened, but not if any other combination of the four events
has happened, something which bundles cannot express unless b is split into multiple
events. In addition, we use the sets of causes to ensure that if e is in ¢’’s set of causes
and e,,;; can cause e to reverse, then e,,,;; can cause e’ to reverse.

Definition 7.1. Given an LREBES, € = (E, F,—,1>, 4, Act), the set of possible causes
for an event e € E, cause(e) = X, contains minimal sets of events such that if x € X
then:

1. if x' v e then there exists e’ such that x' N x = {e'};
2. if e’ € x then there exists x' € cause(e’) such that x' C x;
3. ife;,ey € X then we cannot have both ey > e and e| > e,.

When giving the semantics of restriction, we remove not only the actions associated
with the restricted labels, but also the actions caused by them. This is because we want
the event structures generated by P and O | P always to be isomorphic; if P = (a.b)\ {a},
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we will otherwise get an event b, which, having no possible causes, disappears once we
put P in parallel with any other process, since this involves generating a b event for each
set of possible causes.

Definition 7.2 (Removing labels and their dependants). Given an event structure € =
(E, F,—,>,A,Act) and a set of labels A C Act, we define p(A) = X as the maximum
subset of E such thatife € X then A(e) € A, and if e € X then there exists x € cause(e)
such that x C X.

We give the REBES-semantics of Roll-CCSK in Table 4.

Much as we did in Proposition 4.7, we need to show that there exists a least upper
bound of the event structures resulting from unfolding recursion. For this we first show
that our action prefix, parallel composition, and tag binding are monotonic.

Proposition 7.3 (Unfolding). Given a consistent process P and a level of unfolding 1, if
{ P}, = (& Init,k) and {Pl},_, = (&', Init’ k'), then &' < &, Init = Init’, and k = K'.

Structurally congruent processes result in isomorphic event structures:

Proposition 7.4 (Structural Congruence). Given consistent Roll-CCSK-processes P
and P', if P = P, {P]} = (&, Init,k), and {P']) = (€', Init’ k"), then there exists an
isomorphism f . €& — &' such that f(Init) = Init’ and for all e € Init, k(e) = k' (f(e)).

Table 4: LREBES-semantics of Roll-CCSK

frolly]l, = (({e,. e}, {e,. e}, >, >, 4, Act), 6, ) where:
{e.} e, (e} e {e,} > e.,and {e.} > e, e D>e ande. >e
roll y ife=e,

AMe) = Act = {roll y, start roll
N startrolly ife=e, trolly 7)

{rolling [}, = (({e,, e}, {e,. e, }, —,>, 4, Act), {e,}, @) where:

{e,} = e, e} —e {e,} = e.,and{e.} —>e e D>e. ande, >e,
roll y ife=e,

Ale) = . Act = {roll y, start roll y}
startrolly ife=e,

{a,.Pl}, = ((E, F,~,>, 4, Act), Init, k) where:

{P]} = ((Ep, Fp, > p,B>p, Ap, Actp), Init, k)

E =E, U {e,} where e, fresh

£ ={e@@ehwﬂmemmr }
Roll Ap(e) € {startroll y’ | Ap,n.p, or B,/[n] occurs in a,.P}

F=Fp,U{e,}

X—eif X —»,eor X ={e,},e€ Ep, and Ap(e) # roll y’

X—eif X ={e},ore=e,and X = {e' | 1p(e’) =roll y}, or

e€Egyand X —»peoreg Eg ), {e} #X —pe,and X = X' U{e | Ap(e') =roll y}

B =Dy U (Egy X (e, U (e, ) X (e, | Aple,) = roll y})u

({e, | 4p(e,) =roll y} X (Egyy U {e,})

Act = Actp U {a}

Ap(e
Foralle € E, A(e) = { r@)
a

ifee E,

ife=e,
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Table 4: LREBES-semantics of Roll-CCSK (continued)

{a,[m].P]}, = ((E, F,~,>, 4, Act), Init, k) where:
{[ay.P]} = <(E,F,»—>,>,/1,Act), Init',k’> {e,} ={e€ E|AMa)=aandAX CEX — ¢,}
K'(e) ifeelInitp

Init = Init' U {e,} k(e) = .
m ife=e,

A(b,5) |, = (4.9.9.0,0.0,9).0,0)

A(b,5) , = {v S)PA{’]’E/:},;}]}H where A(a,7) = P,and [ > 1

{Py | P}, =((E, F,~,>, 4, Act), Init, k) where:
(P =& = (E. F,,>,.,, A, Act,) for i € {0, 1}; &||€, = (E,. F,. >, >0 A Acty)
Init, = {(eg,e)) | ey € Inity, e; € Init;, ky(ey) = k;(e;)}U
{(x,e,) | e, € Init, Aey € Inity.Ag(eg) = A(e;), and ko(ey) = ky(e;)}U
{(eg,*) | g € Inity, Ae; € Init;.Ag(e) = A(e;), and ko(ey) = k(e;)}
£ {(X 0l® € E,, A (e) & {roll y,roll bound}, }
action >71 X € cause(e), and Ve’ € X.3X' € cause(e’). X' C X
E., =1{el|e€ E, and A (e) € {roll y,roll bound}}
E=EpionVEqis  Frion ={(X,0)€E|e€F ), F,=E,
We define x, and x; such that for (X, (e, e))) € E,, m,((X, (ey, €;))) = e;, and
for (e, e;) € E,, m;(ey, e)) = e,
{(X,e) | X' C X} (X', (epe))ife € X'
X (e, e)) if there exists X’ such that X’ —, e and X = {e’ | (z,(¢’), 7,(¢')) € X'}
i e {0,1},X; € E;. X; » 7;(e)
X eif X ={e}ore=(X",e,)and X = [J3 X" | or3e, € X' X, > 7,(ey) or
,and ¢’ € X" iff z,(¢') € X;
e = (e,, e;) and there exists X’ such that X’ —, e and X = {¢’ | (ny(e’), 7 (¢')) € X'}
e > ¢ if there exists i € {0, 1} such that x,(e) >; z,(¢’)*, or
me)=m(e)# L,ande# e, e* =¢,ore#e,andec X > ¢, ore" =¢ ande,e’ € E,
Act = Acty U Act; U {7}
T ife= (X, (e e))
Me) =4 Ag(ey) if e = (X, (e, %)) or e = (e, *)
Ae) ife=(X,(x,e))ore=(xr¢)
Init = {(X, e)| XU {e} Clnit,} U(E,, NInit,)
koley) ife=(X,(ey, %))
k(e) =4k, (e)) ife=(X,(xe)))
koley) ife=(X,(eye)) - notethat ky(ey) = k,(e;)

UF

roll

NF,: F=F

action

{(v )P}, = ((E, F,~,1>, A, Act), Init, k) where:
{P} = ((E, F,~,>, Ap, Actp), Init, k) Act = Actp U {roll bound} \ {roll y}
Ap(e) if Ap(e) #rolly

Foralle € E, A(e) = .
roll bound if A,(e) = roll y

1P\ A]}, = <é‘ } p(AUA), Tnitn p(AUA), k | p(A uZ)> where {| P}, = (&, Init, k)

. " . .

We next show that process P has a transition P — P’ if and only if P and P’

correspond to isomorphic event structures, and there exists a y-labelled transition from
the initial state of P’s event structure to the initial state of P’’s event structure.
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Theorem 7.5. Let P be a consistent Roll-CCSK process such that { P} = (&, Init, k),
€ =(E,F,~,>, A, Act), Init is conflict-free, and C,(£) = (E, F,C, —). Then
Hylm]
1. if there exists a process P' with { P']} = (8’, Init’, k'> and a transition P——s P’
then there exists a transition Initﬁ X and an isomorphism f . € — &' such that
AMe) = p, fok! = kle = m), and f(X) = Init';

. . . ., e} , ;
2. and if there exists a transition Init—> X then there exists a process P’ with {| P! |} =

Hy[m]
(8’, Init’, k’>, a transition P—— P', and an isomorphism f . € — &' such that
Me) = p, fok! = k[e — m], and f(X) = Init.

We then prove the same correspondence for start roll transitions.

Proposition 7.6. Let P be a consistent Roll-CCSK process such that { P[} = (&, Init, k),
E = (E, F,—~,>, A, Act), Init is conflict-free, and C,(£) = (E, F,C, —). Then

start roll y
1. if there exists a process P' with { P'], = (&, Init’, k") and a transition P

. e} . .
P’ then there exists a transition Init—> X and an isomorphism f : € — &' such
that A(e) = start roll y, fok’ =k, and f(X) = Init’;

. . o . e ; ;
2. and ifthere exists a transition Init—> X then there exists a process P' with | P']} =

start roll y
<€’, Init’, k’), a transition P~ P! and an isomorphism f : € — &' such

that Me) = startroll y, fok’ =k, and f(X) = Init'.

We finally show that a process P can make a roll y transition if and only if the REBES
corresponding to P can perform a roll y event, followed by reversing all the events cor-
responding to actions and start roll’s with tags causally dependent on y, and then finally
reversing the roll y event.

Theorem 7.7. Let P be a consistent process with {P} = (&,Init, k), &€ = (E, F,~
,B>, 4, Act), C,.(€) = (E, F,C, =), and Init conflict-free, and let p € {roll y, bound roll}
be a roll label. Then

)
1. if there exists a process P' with {P']y = (&', Init', k') and a transition P ~* P’,
le) teo) ten)
then there exist events e, and ey, e, ... e, such that Tnit——> Xo—™ X|...—/&@™
e}
X i1 — X gone and there exists an isomorphism f : € — &' such that A(e,) = p,
{eg.ey,...e,} = {e | Y.y <p v’ and either A(e), [k(e)] occurs in P or A(e) =
start roll ¥’ and rolling ¥ occursin P}, fok! = k | {e | f(e) € Init'}, and
F (X gone) = Init';
{er} fe} fen}
2. and if there exist events e, and ey, e, ... e, such that Init—— Xy—— X|...—
e}
X,41 — X gone then there exists a process P' with {P'], = (&', Init', k") and
p
a transition P~ P’ and there exists an isomorphism f : € — &' such that
AMe,) = p, {eg,eps-..e,} = {e | 'y <p v’ and either Ae),1[k(e)] occurs in
P or A(e) = start roll y’ and rolling y' occurs in P}, fok! =k | {e| f(e) € Init'},
and f(X yope) = Init’.
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8 Conclusion

We have defined a category of reversible bundle event structures, and used the causal
subcategory to model uncontrolled CCSK. Unlike previous work giving a truly concur-
rent semantics of a reversible process calculus using rigid families [6] or configuration
structures [1], we have used the way CCSK handles past actions to generate both the
event structure and the initial state directly from the process, rather than needing to first
undo past actions to get the original process and from there the rigid family or configu-
ration structure, and then redo the actions to get the initial state.

We have proposed a variant of CCSK called Roll-CCSK, which uses the rollback
described in [9] to control its reversibility. We have defined a category of reversible ex-
tended bundle event structures, which use asymmetric rather than symmetric conflict,
and used this category to model Roll-CCSK. Unlike in the case of CCSK, when mod-
elling rollbacks in Roll-CCSK we use non-causal reversible event structures.

We have proved operational correspondence between the operational and event struc-
ture semantics of both CCSK (Theorem 4.10) and Roll-CCSK (Theorems 7.5 and 7.7).

Future work: 'We would like to provide event structure semantics for other reversible
calculi. These mostly handle past actions using separate memories, which may prove
challenging, particularly if we wish to avoid basing the semantics on finding the fully
reversed process.

We also intend to explore the relationship between equivalences of processes and
equivalences of event structures.
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EP/K011715/1, EP/L00058X/1, EP/N027833/1 and EP/N028201/1; and EU COST Ac-
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Section 3

Al BES

Definition A.1 (Bundle Event Structures [11]). A bundle event structure (BES) is a
triple € = (E, —, 1) where:
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1. E is the set of events;
2. »C 2EXE is the bundle set, satisfying X — e = Ve ,e, € X.(e; # ey = e; 1 ey);
3. § C E X E is the irreflexive; and symmetric conflict relation.

Definition A.2 (BES configuration [11]). Given a BES € = (E, —, 1), a configuration
of € is a set X C E such that:

1. X is conflict-free;
2. there exists a sequence ey, ... e, (n > 0), such that X = {ey, ... ,e,} and for all i,
1<i<nifY — e, then{e,....,e,}NY #40.

A category of BESs has not, to our knowledge, been defined, so we define a BES-
morphism in Definition A.3. We want to say that the events of E, can behave the same
way as those they synchronise with in E|, but the bundle sets mean this is a bit trickier to
describe than in other event structures. If we said that f(X) — f(e)* implies X — e*,
we would be requiring X’ — e* for every X’ = X U X" wheree € X" = f(e) = L,
and by extension e § e’ if f(e) = f(¢’) = L. As we consider this too restrictive, we
came up with the constraint seen in Definition A.3.

Definition A.3 (BES-morphism). Given BESs &y = (Ey, . f}y) and £ = (E;,
,81), a BES-morphism from & to &, is a partial function f : Ey — E; such that and
Joralle,e' € Ey:

1. if fle)fty f(e') thenetye';

2. if fey=f(e')# Lande # ¢ thenef ¢';

3. for X; C E| if X| = f(e) then there exists Xy C E such that Xy —q e, f(Xy) C
X, and if e’ € Xy then f(e') # L.

We show that BES-morphisms preserve configurations.

Proposition A.4. Given BESs & = (Ej, ¢, o) and & = (E;,—,4,) and BES-
morphism f : Ey — E|, if X C E, is a configuration of &, then f(X) is a con-
Siguration of &;

Proof. We show that f(X) fulfils the conditions of Definition A.2:

1. Forany e,e’ € X, if f(e) ff; f(e'), then e ff, €', and therefore if X is conflict-free
then f(X) is conflict-free.

2. There exists a sequence e, ...,e, (n > 0), such that X = {ey,...,e,} and for
alli, 1 <i < n,ifY — ey then {e},...,e;} NY # @. Obviously f(X, =
{f(ey),..., f(e,)}, and for all i, if Y| — f(e;,;), then there exists ¥, such that
Yy e, f(Yy) €Yy, andif e’ € Y, then f(e') # L. Since Yy N {ey,...,e;} # 0,
we obviously get that Y; N { f(e)), ..., f(e;)} # 0.

Proposition A.5. BES consisting of BESs and BES-morphisms is a category

Proof. Partial functions are associative and f(e) = e functions as a an identity arrow,
so we need to show that the morphisms are composable:

If & = (Eg, 0, fl0), £ = (Ej, 1, 1)), and & = (E,, >, H,) are BESs and f :
Ey — E;and g : E; - E, are morphisms, we show that fog : Ey; — E, isalsoa
morphism:
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1. If g(f(e)) tt, g(f(e")) then f(e) #; f(e'), and therefore e #, ¢’

2. If g(f(e)) = g(f(e')) and e # €', then either f(e) = f(e’), in which case e #}, €', or
f(e) # f(€'), in which case f(e) #f; f(e'), and therefore e #;, ¢’.

3. If X, =, g(f(e)) then there exist X; € E; and X; C E, such that X; — f(e),
X, o e 8(X)) C Xy, f(Xy) C X;,ife; € X, then g(e;) # L, and if ¢y € X,
then f(ey) # L. This means that g(f(X,)) € X,,andife; € X then g(f(ey)) # L.

We also define a product in this category in Definition A.6.

Definition A.6 (Product of BESs). Let &, = (Ey, ¢, fly) and & = (E;,—~.1;) be
bundle event structures. Their product £y X &, is the BES & = (E, —, ) defined by:

1. E=Eyx, E,={(e,x)|e€ Eyj} U{(x,e)|e€ E;}U{(e,e)|e€ Eyand e’ €
E};

2. projections m,, &y are defined so that for (e, e;) € E, m;((ey, 1) = e;.

3. foranye € E, X C E, X — e iffthere exists i € {0,1} and X; C E; such that
X, o> m(e)and X = {' € E | m;(¢") € X,};

4. for any e,e’ € E, e §f ¢ iff there exists i € {0,1} such that m;(e) #; =, ("), or
ni(e) = mi(e') # L and m;_;(e) # m;_;(e").

Proposition A.7. Given BESs 80 = (Eo, =0, ﬂo) and 81 = (El’ Hl’ﬁl)’ 80 X 81 =
(E, >, 1) is a product.

Proof. We first show that 7 and 7z are morphisms:

1. If z;(e) #; m;(e’), then obviously e § ¢'.
2. If m;(e) = m;(¢") and e # €', then «,_;(e) # m;_;(¢’), and therefore e §f ¢’.
3. If X; —~ m(e), then {¢’ € E | (') € X;} — e. Clearly n;({¢’ € E | m;(e’) €

X;H)=X;,andforalle’ € {¢' € E | m;(¢') € X;}), m;(e) # L.

4. If X is a configuration of £, X £, then we show that z;(X) satisfies the requirements
of a configuration of &;:

(a) Asshown above ;(e) §f; 7;(¢e') = et ¢/, meaning X conflict free implies 7;(X)
conflict-free.

(b) If there exists a sequence ey, ..., e, such that X = {e,...,e,} andforall j, 1 <
J<nifY —e; then{e,....e;}nY # @, then 7;(X) = {x;(e)), ..., m;(e,)}
and if 7;(e; ;1) # L, then whenever Y; = z,(e;,), {¢’ € E | m;(¢) € V;} =
e;+1, meaning {¢ € E | z;(¢') € Y;} N {ey, ..., e;} # 0. Therefore, we must
get Y, n {m(ey), .. mle;)) # m(@) = 0.

We then show that for any BES, &, = (E,, >, t},), if there exist morphisms f, :
& = & and f| : & — &, then there exists a unique morphism f : & — &, such that
fromy = fyand from = f. Since BES-morphisms are functions, they are all unique.

We define f by f(e) = (fy(e), fi(e)), meaning the morphisms clearly commute as
described above, and prove it to be a morphism:

1. If f(e) # f(e') then there exists i € {0, 1} such that either z;(f (e)) §; m;(f(e’)), in
which case clearly f;(e) #f; f;(¢');, and therefore e #}, €', or ,(f (e))) = z;(f (")) #
L and 7;_;(f(e)) # m;_;(f(e)), in which case f;(e) = fi(¢/) # L, and e # ¢,
meaning e f}, e’.
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2. If f(e) = f(e') # L then fy(e) = fy(e') # Lor fi(e) = f(e') # L, meaning if
e#¢c thenet, ¢.

3. For X € E,if X — f(e), then there exists i € {0,1} and X; C E,; such that
X, » m(e)and X = {¢' € E | m;(¢’) € X;}. And since X; — f;(e), there exists
X, C E, such that X, =, e, f;(X,) C X;, and if ¢’ € X, then f;(¢’) # L. Clearly
F(Xy) € X.

4. If X is a configuration of &,, then we show that f(X) satisfies the requirements of
a configuration of &, X &;:

(a) As shown above, if f(e) #f f(e’), then e #, ¢’, meaning if X is conflict-free,
then f(X) is conflict-free.

(b) If there exists a sequence ey, ..., e, such that X = {e,...,e,} andforall j, 1 <
J<nifY —e; then ey, ....e;} nY # @, then f(X) = {f(e), ..., f(e,)}
and if f(e;,|) # L, then whenever Y/ = f(e;,)), {¢/ € E| f(¢/) €Y'} =
ej+1> meaning {¢’ € E | f(¢/) € Y'} n{ey,...,e;} # 0. Therefore, we must

getY' n{f(ep, ..., f(e))} # f(#) = 0.

Definition A.8 (BES coproduct). Given BESs &, = (Ey, =, ) and &, = (E|,~ .}
), their coproduct &y + €, = (E, —, 1) where:

E={0,e)|ec Ej}u{(l,e)| e€ E};

injections i, iy are defined so that for e € E;, i;(e) = (j,e) for j € {0,1};
X = (o) iffforall (j',e') € X, j = j" andi,(X) - e

G B eV iffj # ) oret e

Proposition A.9. If &, and &, are BESs, then &y + &, is their coproduct.

Proof. Obviously £ is a BES, and ij and i; are morphisms, so we simply need to prove
that if there exists a BES &, = (E,,,, ;) and morphisms f, : & — &, and f| :
& — &,, then there exists a unique BES-morphism f : € — &, such that the following
commutes:

i, €. i
VAN
80 f 81

PN

Since Ey + E|, ig, and i; make up a coproduct in the category of sets and partial
functions, f must be unique.
We define f as f((j,e)) = f;(e) and prove it to be a morphism:

- If f(e)#,f(e/) then e = (j,e;), ¢ = (j',e;) file;)) = f(e), fyley) = f(&)),
and either j # j' or j = j'. If j # j’, then obviously e § ¢’. If j = j’, then
fi(e;) #, f;(e;r), meaning e; f; e, and therefore e ff ¢’.

— If f(e)=f(¢) # Lthene = (j.e;) and & = (', e;) and f,(e;) = f(e) = f(¢/) =

fj/ (ej’)'
If j = j’ then e # ¢’ means that e; # e;;, which means that e;#;e;, and therefore
ette! .

If j # j’, then by definition e#e’.
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- If X, » f(e), thene = (j,ej), and there exists X; such that X; —j e, fj(Xj) C

Xz,andife; €X; thenfj(e;.) # L. This means {(j,e;.) | e;. EX;} e, f({(j,e;.) |
e;. € X;}) C X,,andif e’ € {(j,e;.) | e; € X;} thene’ # L.

The diagram obviously commutes.

A.2 Product and Coproduct

Proposition A.10. Given RBESs &, = (Ey, Fy, =, lp.>¢) and € = (E,, Fi,—~, 1
,B>1), & X &) is a product.

Proof. Similar to proof of Proposition A.7.
Proposition A.11. If &, and £, are RBESs, then &, + & is their coproduct.

Proof. Similar to proof of Proposition A.9.

A.3 Proposition A.12
Proposition A.12. RBES consisting of RBESs and RBES-morphisms is a category.

Proof. Partial functions are associative, and f(e) = e functions as a an identity arrow,
and the morphisms are obviously composable.

A4  Proof of Proposition 3.8
{e) (e ()

Proof. 1. There exists a trace @ G C ... C, where C, = C. Clearly
e, = e, and C is forwards-reachable, and we will show that if C; is forwards-
reachable for 0 < j < i, then C,; is forwards-reachable.

Ifer, | = e;;, then obviously C, | is forwards-reachable.
Ife = e then C;; = C;_;, which is obviously forwards-reachable.

If e;:l =e; for some 0 < j < i, then for all 0 < j’ < i, since %ej’ there does not
o . ) e
exist X C E such thate; € X and X ~ e,. This means obviously § — Cy—
tef ) tef) {ef)
C]... Cj—] Cj+1\{ej}_) Ci+1'
AUB

2. For any forwards-reachable configuration X € Cand A,B C F,if X —— (X U

A)\ Bthen (X U A)\ BB—UA> X according to Definition 3.5:

(a) obvious

(b) Foralle € Aand e’ € E, if ' > e, then either ¢’ {f e, or there exists X' C E
such that X’ — ¢’ and e € X'.
If ¢’ 4 e, then, as X U A is conflict-free, e/ & X U A.
If there exists X’ C E such that X’ — e’ and e € X’ then for all ¢”inX’ \ {e}
we know e’’ #f e, meaning ¢’ € X U A. This means X N X’ = @, and therefore

!
for all X" C X, X”76L>, and consequently e/ € X U A.
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(c) Foralle € Band X' C E, if X’ — e, then, since X is forwards-reachable,

X'NnX #@.1f X' n X \ B =, then there exists ¢ € X’ N B. But this means
AUB
e> ¢, conflicting with X ——.

(d) Forallee Aand X’ C E,if X'~ e, thene € X'.

B Section 4

B.1 Proposition B.1

Proposition B.1. If £ and £, are LRBESs, then Ey&E| = £ with injections iy and i,
such that i;(j, e) = e is their coproduct.

Proof. Obviously £ is an LRBES, and iy and i; are morphisms, so we simply need to
prove that if there exists an LRBES &, = (E,, F,, =, t}, >, 4, Act,) and morphisms
fo i & — & and f1 ¢ & — &, then there exists a unique LRBES-morphism f :
& — &, such that the following commutes:

i, € . i
VAN

PNV

Since Ej + E|, iy, and i; make up a coproduct in the category of sets and partial
functions, f must be unique.

We define f as f((j,e)) = fj(e) and prove it to be a morphism. Since (E, F, —
> = (Ep, Fy, =0, 0. 0) + (Ey, F, =, 81,5), we know f @ (E, F,~,4,>) —
(E,, Fy, >, 1, >,) is an RBES-morphism, and by definition A((e, j)) = Aj(e) = A (f;(e)).

The diagram obviously commutes.

B.2 <is a Complete Partial Order

< is clearly a partial order with the empty LRBES as its minimum.

Proposition B.2. Any w-chain £y < £ < &, ... has a least upper bound € = (E, F,—
., A, Act) where:

1. E= | E,;

new
2. F=J F,

new
3. X - e'ifforalln € wsuchthate € E,, (X N E,) — e*;
4. 4= U 8

new

5.0= Uy,

new
6. Ae) =1 if there exists n € w such that A,(e) = I;
7. Act= ] Act,;

new
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This means that, given a set of events A, with E 4 being the set of LRBESs (E, F, —
i,>, A, Act) such that E C A, (E 4, <) is a complete partial order. We then need to show
that our operations are monotonic.

Proof. Clearly € is an LRBES, and foralli € w, &; < &:

We therefore know that £ is an upper bound of the chain. We now show that £ is
the least upper bound of the chain: Given an upper bound &', it is obvious that E C E’,
F =EnF,andif X — e* then, foralln € w,ife € E, then X N E, —, e*,
meaning since &, < &' there exists X! C E’ such that X/  e* and X/ N E, = X,
and since for all ' > n, £, < & ande € E,;, X, N E,; +, e*. This means clearly
X'NnE=|J X,=X.Andfore € E,if X' =’ ¢/*, then forall n € wsuch thate € E,

new
X'NE, ~, e, meaning X' N E — e*. Similar arguments apply to #}, &>, 4, and Act.
This means, clearly £ < &', and € is the least upper bound of the chain.

B.3 Proof of Proposition 4.7

Proof. It should be obvious that all the operations used for defining the € and &' are
monotonic, so clearly £ < &, and since P has been generated from a standard process,
we cannot have any a[m] inside a recursion, as it would have to have been unfolded first.

B.4 Proof of Proposition 4.8
Proof. We prove this by induction in P:

— Suppose P = 0. Then £ is empty, and therefore obviously causal.

— Suppose P = Py+ P|,e € E and ¢’ € F. Then if er> ¢, then there exists i € {0, 1}
such that either e >; ¢’ or e € E; and ¢’ € F,_;. By induction, e I>; ¢/ means there
exists an X; C E; such that X; —; eand ¢’ € X;. As X; —; e, we get X; — e. And
E; X E,_; Cfl.

If there exists an X C E such that X — eand e’ € X, then there existsani € {0, 1}
such that X +; e. That by induction we get e I>; ¢/, implying e > ¢’.

X + ¢ if and only if there exists an i € {0, 1} such that X ~; ¢/. By induction,
this means ¢’ € X.

— Suppose P = a.P’,e € Eand ¢’ € F. Thenif er> ¢/, then either e’ ¢/, or ¢’ = ¢,
and e € E'. If e >’ ¢, then by induction there exists an X C E’ such that X ' e
ande’ € X,and X — e.If ¢’ = ¢, and e € E’ then we know {e,} — e.

If there exists an X C E such that X — e and ¢/ € X, then either X ' e, or
X = {e,} and e € E’. If X ' e, then by induction we get e >’ ¢/, and therefore
e>e If X ={e,} and e € E’, then we know e > e,,.

X ¢ ifand only if X ' ¢/ ore’ = e, and X = {e,}. By induction, if X ' ¢’
thene’ € X.

— Suppose P = a[m].P’. Then the proof is similar to the previous case.

— Suppose P = Py | Pj,e € E and ¢’ € F. Then if e > ¢, then there exists an
i € {0,1}, such that z;(e)>; x;(¢’). By induction, this means there exists an X; C E;
such that X; —; r;(e) and z;(¢e’) € X,. This means {¢" € E | n;(¢) € X;} — e,
and obviously ¢’ € {¢" € E | z;(¢") € X;}.
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If there exists an X C E such that X — e and ¢’ € X, then there exists ani € {0,1}
and X; C E; such that X; —; m;(e) and X = {¢’ € E | n;(¢"") € X;}, meaning
7;(¢') € X;. By induction we get r;(e) I>; 7;(e’), and therefore e 1> .
X ¢ if and only if there exists i € {0,1} and X; C E; such that X; —; z;(¢')
and X = {¢” € E | n;(¢’) € X;}. By induction, since X; +; x;(¢’) we know
m;(¢’) € X;, meaning clearly ¢/ € X.

— Suppose P = P\ A,e € Eand ¢’ € F. Then X — ¢'* if and only if X —' ¢’
and e > ¢ if and only if e >’ ¢’. The proof is trivial induction.

— Suppose P = P'[f]. Then the proof is trivial induction.

B.5 Proof of Proposition 4.9

Proof. We say that € = (E, F,~,8,>,4,Act) and & = (E', F',' f',>/, /', Act’)
and do a case analysis on the Structural congruence rules:

P=X|Y and P’ =Y | X: Products are unique up to isomorphism and
(ey.ex) ife=(ey,ey)
fle)=4q(ey,*) ife=(xey) clearly fulfils the conditions other conditions.
(x,ey) ife=(ey,*)
P=X|(X|Z)and P’ =(X |Y)| Z: Products are associative up to isomorphism,
and f((ey, (ey,ez)) = ((ex, ey), ez) clearly fulfills the other conditions.
P =P |0: If f((e,*)) = e, then this clearly holds.
P=X+Yand P =Y + X: Coproducts are unique up to isomorphism, and f(e) = e
clearly fulfil the other conditions.
P=(X+Y)+Zand P = (X +Y)+ Z: Coproducts are associative up to isomor-
phism, and f(e) = e clearly fulfils the other conditions.
P =P +0: Clearly &p = (E' UG, F'U@,~" U@t Ud,>" U@, A, Act’ U @), Init =
Init’, and k = k.
P=A(b)and P' = P,{/,} where A(d) = P,: Obvious

B.6 Lemma B.3

Lemma B.3 (standard). Given a reachable process P such that { P} = (&, Init, k), we
have std(P) if and only if Init = @.

Proof. As the only rule which can add events to an empty Init is {a[m].P]}, clearly
Init = @ if std(P).

If I = @, then clearly we cannot have any a[m] in P, which are not guarded by a
restriction on «. But if such a restricted communication has occurred in P, then there
must exist a parallel a[m] inside the same restriction, meaning the corresponding event
(e, ez) has the label 7, not @, and would therefore be in Init. Therefore we must have
std(P).
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B.7 Lemma B.4

Lemma B.4 (Reachable). Given a reachable process P, and {{ P]} = (&, Init, k), then
Init is conflict-free in £.

Proof. We show this by structural induction in P, which we can do because of Propo-
sition 5.5 of [19], the proof of which is not affected by adding definitions.

— Suppose P = 0. Then Init = @.

— Suppose P = a.P’. Then Init = Init’, and therefore Init is conflict-free.

— Suppose P = a[m].P’. Then Init = Init' U {e,}), Init’ is conflict-free, and therefore
Init is clearly conflict-free.

— Suppose P = P; + P,. Then Init = Init; U Init, and, since P is reachable from a
standard process, either Init; = @ or Init, = @, and both Init; and Init, are conflict-
free. Therefore, Init is conflict-free.

— Suppose P = P; | P,. Then, since P is reachable from a standard process, each key
appears at most once in P; and once in P,. Additionally, Init; is conflict-free and
Init, is conflict-free, meaning Init = {(ey, *) | ¢y € Inity and Ze; € Init;.Ay(eq) =
Ai(ey) and ko(eg) = ky(e)} U {(*,e)) | e; € Init; and Ae; € Inity.4g(ep) =
Ar(eq) and ky(eg) = kq(ep)} U {(eg, e1) | ey € Inity, e; € Inity, koley) = k(eq)} is
conflict-free.

— Suppose P = P’ \ A. Then Init’ is conflict-free, and Init C Init’, meaning Init is
conflict-free.

— Suppose P = P'[f]. then Init = Init’, which is conflict-free.

B.8 Proof of Theorem 4.10

. . ... ulm]
Proof. We first prove that if there exists a P’ and a transition P —— P’ then there

. .. . e} . .
exists a transition Inlt—e—> X and an isomorphism f : & — &’ such that A(e) = pu,
fok! = k[e = m], and f(X) = Init". We prove this by inductions on the transition
rules:

— Suppose P = a.Q, P! = a[m].Q, u = a, and std(Q). Then there exist. Epand e,

such that:

e, & Ep,

{o] = (€. Init, k),

E=EyuU{e,},

F=FyUl{e,},

X e'if X »geor X ={e,}ande” =e € Ep,

ﬂ=ﬂQ,

> =g U(Eg X {e_a}),

Act = Acty U {a},
Agle) ife€ Eg,
a ife=e,
and if Init # @ then foralle € E, {e} — eand foralle € F,e>e.

i

foralle € E, A(e) = {
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There also exists E’Q and ¢/, such that: e/ ¢ E’Q

1o} = <£’Q,Init’Q,k’Q>,
E = E/Q u{el},
F'=Fyu{e,},
. ’ * ’

;f_'_)/, e*if X 5 eforX ={e/}ande* =ec€ E,,
/ Q’/ !’ /
> =I>QU(EQ><{e_a}),
Act’ = Act), U {a},

! : !
foralle € E', M/ (e) = 4o(®) fee Fo

)

a ife= e;
Init’ = Init’Q u e},
!/ st
kQ(e) Ifee Inth

and k'(e) =
m Ife= e;

As &g and S’Q have been generated by the same process, we have an isomorphism
fo €~ S’Q. We say that /' = fple, efl], which is obviously an isomorphism.
Since Init is conflict-free and ﬁ:ﬂQ, X =Initu {e,} is conflict free, and therefore
a configuration of C,,.(£). And since no X’ C E exists such that X’ — e,, we get

{eq)
Inite—> {e,}, and clearly A(e,) = a and k(f(e)) = m.

[m] .
Suppose that P = a[n].Q, P’ = a[n].Q’, Qﬂ—m> Q’, and m # n. Then there exist
&p and e, such that:
ea ¢ EQ’
{0] = {&p. Inity, ky ).
E = EQ U {ea},
F = FQ U {ea},
X etif X »georX ={e,}ande” =e € Ep,
ﬂ=ﬁQ,
> =g U(Eg X {e_a}),
Act = Acty U {a},
Aple) ife€E
foralleeE,A(e):{ 0® . Q,
a ife=e,

Init = Inity U {e, },

ko(e) Ife e Init
and k(e) = 0 Q
m Ife=e,
And there exist £y and e/, such that:
e; ¢ EQ/,

o .
lo'h = <£Q,,,Ith,,kQ,>,

E/ = EQ! U {e,a}’

F = FQ/ U {ea},

Xw'e'if X sg eor X ={e}ande* =e € Egy,

ﬂ/=ﬂQu
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> =g U(Ey X {i}),
Act’ = Acty U {a},
ife (S EQ/

)

Aoy (e
foralle € E', V(e) = { @
a

ife= e;
Init’ = Inity U {e! },
k(e If e € Init,y
and k' (e) = @ 2
Ife=e,
By induction, we get an isomorphism f, : £, — & and a transition Init, ﬁ
X in Cp,(Ep) such that Ay (e) = p, koi(fp(e)) = m, and fp(Xp) = Inity.
We define f = fple, — e(’x]. Since Inity and X, are conflict-free in £y, Inity U
. . o
{e,} = Initand X, U {e,} = X are configurations of C,,(£), and clearly Inlt——e}—>
X.
Suppose P=Q | R, P = Q' | R, QM Q’, and fsh[m](R). Then there exist £y
and £ such that
{o] = {&p.Inity. ky ).
{R]} = (&R, Initg, k),
Ep = Epl|Er:
Init = {(eQ,*) | €Q (S Inth and ﬂeR S In|tR.),Q(eQ) = AR(ER) and kQ(eQ) =
kR(eR)} U {(eQ,eR) | eQ (S InitQ,eR S InitR, kQ(eQ) = kR(eR)},
koleg) Ife=(eg,*)
and k(e) = { krleg) Ife=(xep) .
kQ(eQ) Ife= (eQ,eR)
We also have (é'/, Init’, k’) similarly made up of some <8Q/, Initgy, kQ,> and <£;z’
Inithy, k') such that Q') = (Eqr, Inity/, ks ) and { R} = (&, Inith, kT ).
We clearly have isomorphisms f, : £y = €y and fp 1 Eg — 8;2 and a transition
. {eg}
inth—> XQ of Crb(gQ) such that AQ(@) = U, le(fQ(eQ)) =m, and fQ(XQ) =
nity.
o
Since Init is conflict-free and X, is conflict-free in &gy, clearly InitU {(eg, *)} = X

. . ., (eg®)
is conflict-free, and Init—— X.

(fole'),*) if e = (e, %)
We define our isomorphism as f(e) = { (%, fr(€))) ife=(x¢) .And,
(fole), fr(e") ife=( e
since fsh[m](R), f(X) = Init'. And the rest of the proof is straightforward.
Suppose P=Q | R, P'=Q' | R, QM o, RM R’, and y = 7. Then there
exist £y and Eg such that
{0] = (&p. Inity, ko ).
{R]} = (Er, Initg, kg),
Ep = EplIErs
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Init = {(eQ,*) | eQ S Inth and ﬂeR S In|tR).Q(eQ) = AR(QR) and kQ(eQ) =
krlep)} U {(x,eg) | eg € Initg and ﬂeQ € Inity.Ag(eg) = Ag(eg) and ky(ep) =
kR(eR)} U {(eQ,eR) | eQ S InitQ,eR S InitR, kQ(eQ) = kR(eR)},

kQ(eQ) Ife= (eQ, *)
al’ld k(e) = kR(eR) Ife = (*, eR) .

kQ(eQ) Ife= (EQ, eR)
We also have (€', Init’, k” ) similarly made up of some { £y, Inityr, ks ) and (Egr,
Initgs, kg ) such that Q') = (Eqr. Inityr. ko) and R} = (Egr, Initgr, kpr).
By induction, we have isomorphisms f, : &g — Ey and fgr @ Eg = Ep and

{eg}
transitions Init, 2, Xg of Cp(Ep) such that Ay(e) = a, kgi(fplep)) m,

{er} —

and fo(Xp) = Inity,, and Initg l Xpg of C,,(Eg) such that Ap(e) = a,
kR/(fR(eR)) =m, and fR(XR) = InitR/.

(fole'), %) ife= (e, %)
We define our isomorphism as f(e) = 4 (*, fr(€))) ife=(x¢)

(fole), fr(e") ife=(c.¢")
‘We know that Init, X 0 and X are conflict-free, so the only way Init U {(eQ, er)}
has conflict is if Inity or Initg contains an event with the key m, which we know
from Lemma 5.2 of [19], whcih is not affected by definitions, as they cannot define
processes with past actions, is not possible. The rest of the proof is straightforward.

Suppose P =Q+ R, P = Q' + R, Q—lini Q’, and std(R). Then there exist £y
and &g such that:

[0} = (&p.Tnity. kp ),

{R]} = (&g, Initg, kg),

E=EyU Ep,

F =FyU Fpg,

X + e* if there exists i € {Q, R} such that X —; e*,

f=fip U ir U(Ep X Eg) U (Eg X Ep),

l>=l>QUl>RU(EQ><ﬂ)U(ERxFQ),

Act = ActQ U Actpg, T

foralle € E,i € {Q, R}, AM(e) = Aj(e)ife € E,,

Init = Inity U Initg,

fori € {Q, R}, k(e) = k;(e) if e € Init;,

If Inity # ¥ and Init, # @ then for alle € E, {e} = eand foralle € F,e>e.

We also have <£’, Init’, k’> similarly made up of some <£Q,, InitQ,, kQ,> and <8’ , Init;q, k%)
such that Q'] = (&g, Initys, kg ) and R} = (Ef, Inith, k).

We clearly have isomorphisms f : £y = €y and fg 1 Eg — 6;{ and a transition

InitQ—{ei) X of C,5(Ep) such that 1p(e) = u, kg(fp(e)) = m, and f(X) = Inity.

frle) ife€ Eg’
Since std(R), Initg = @, and therefore Init = InitQ, which is conflict-free end there-

We define our isomorphism f(e) = {

. . . e} .
fore a configuration. Obviously Init—> X in C,; (&), and the rest follows.
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— Suppose P =Q\ A4, P = Q' \ 4, QM) Q', and u & A U A. Then there exists
&o such that:
{o] = (€. Inity. kp )
E=E el dgle) & AUA) B
Init = Inity N {e | Ap(e) & AU A}
k=ky 1 {e]dgle) & AU A}
And there exists Eor such that:
Q') = (&y. Inityr, ko )
E'=Ey 1 {e]| Ag(e) g AU A}
Init’ = Inity N {e | Agr(e) & AU A}
K =ky | {e] Agle) g AU A}

. . . . » . leg}
By inductions we have an isomorphism f, : £y — £y and a transition Init, —

XQ or Crb(gQ) such that AQ(@) = U, kQ/(fQ(eQ)) =L’n, and fQ(XQ) = Inthl “ie
define our isomorphism as f, | {e | Ap/(e) & AU A}. And since A(e) € AU A,
the rest of the proof is straightforward.

[m]
— Suppose P = Q[f'], P = Q'[f'], Ql> Q’.and f'(v) = u. Then there exist 4,
and Acty such that
{o] = §(E, F, 8,5, A, Acty), Init, k),
Act = f'(Acty)
and A = f'ol,.
And there exist Ay and Acty such that
(0] = ((E". F'.»" 4. Agr. Acty). Tnit' k'),
Act’ = f'(Acty)
and A= f'olg.

By induction, we get an isomorphism f, : £, — &y and a transition In|t——e}—> X
in C,;(&p) such that Ay(e) = v, k'(f'(e)) = m, and f(X) = Init’. We define our
isomorphisms f = f, and the rest of the proof is straightforward.

[m] . .
— Suppose P =Q, P/ = Q’, and Qﬂe Q'. Then the result follows from induction
and Proposition 4.9.

. . . . e} .
We then prove that if there exists a transition Init — X then there exist a P’ and

[m]
a transition P 27 P’ and an isomorphism f : €& — &’ and such that A(e) = p,
fok! = k[e — m], and f(X) = Init’.

— Suppose P = 0. Then E = @, and obviously no transitions exist in Cj,.(£).
— Suppose P = a.Q. Then {e,} — ¢ forall ¢ € E \ {e,}, meaning by definition
e = e,. In addition, since P is reachable, clearly std(P) meaning Init = @. This

[m]
means we get P RN a[m].Q for some fresh m, and the isomorphisms are similar
to this case in the first part of the proof.
— Suppose P = a[n].Q and {Q] = <€Q,InitQ,kQ>. Then e, € Init, and clearly

. e . . .. Ae)[m]
Inity —o X, meaning there exists a key m and a transition Q —— Q', such
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that Q') = <8Q/,InitQ/,kQ/> and there exists an isomorphism f, : £y — Eg

y!
such that ko (fp(e)) = mand fo(Xg) = Inity,. If m # n, then P% a[m].Q’.

Otherwise, we can chose a fresh m and still get a transition. We define our isomor-
phismas f = fgle, — e; ] and the rest of the proof is straightforward.

Suppose P = Py + Py, { B[} = (&, Inity, ko), Cp (&) = (Ep, Fo, Co. =), { P} =
(&1, Inity, ky), and C,,.(&)) = (E|, F|,C;, —). Then either Inito—e>0 X, and Init; =

e
@, or Init, —; X, and Init, = @.
. e . .. Ao@ml
If Inity —( X, then there exists a key m and a transition By ——— F, such

that {[P(;]} = <£’ ,Init6,k6> and there exists an isomorphism f, : & — 8(’) such
that k(’)(fo(e)) = mand fy(Xy) = Inité). Then, since Init; = @ means std(P,),

Ae)[m] . . .. . .
P——b P(; + Py, and the isomorphisms are similar to this case in the first part of

the proof.

e
If Init; —; X, then the proof is similar.
Suppose P = Py | Py, { By} = (&, Inity, ko), Cp,.(&y) = (Ep. Fo, Co, —0), { P} =
(&1, Inity, ky), and Cy.(&)) = (E|, F|,C;, —). Then either e = (ey, %), e = (*, e),
ore = (e, eq).
If e = (e, *), then whenever X - e, we get {¢’ € E | my(¢') € X} + e. And
whenever my(e’) #y 7y(e), we get €’ # e. This means Init, is conflict-free, 7y (X) is

e
conflict-free, and Init, —0>0 7o(X). There therefore exists a key m and a transition

Ao(ep)lm]
Poﬂ) Pé, such that {[ Pé]} = (8 ! Initg, k6> and there exists an isomorphism
fo : € — €} such that K(fo(e)) = m and fo(xo(X)) = Init).

Ag(eg)lm]
We chose an m, which is fresh for P;, and we get P = P(; | P,. We define

our isomorphism
(f()(eé))’ *) lf el = (e(’)s *)
feh=<2( ifel = (*,e'l) . Since &' = 8(’) X &, f is an isomorphism,

(folep),e)) if e’ = (ef,e))
and the rest of the case is straightforward.
If e = (eg, *), the argument is similar.
If e = (ey, e;), then for i € {0, 1}, whenever Xi’ —; e, weget{e € E|m)e
X!} = e. And whenever 7;(¢’) ; 7;(e), we get €’ f e. This means Init; is conflict-

free, 7;(X) is conflict-free, and Init; X ; 7;(X). There therefore exists a key m; and

.. Ai(ep)m;] . .
a transition P, ———— Pi’ , such that {[Pl’ ]} = (8{ , Inltl’., k:) and there exists an

isomorphism f; : & — & such that k/(f;(e;)) = m; and f;(z;(X)) = Init].
We say that m, = m, is a fresh m, and then since Ay(ey) = A;(e;) and A(e) = 7, we

Ae)[m] f ’ . .
get P—— Py | P|. We define our isomorphism

(f()(eé))i *) lf el = (66, *)
f) = ((*,fl(e’l)) ife! = (*,e’l) . Since &' = 86 X 8{, f is an isomor-

(fole) f1(€}) if e’ = (¢),e))

phism, and the rest of the case is straightforward.
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— Suppose P = Q \ A, {Q]} = (&p.Init, k), and Cy.(Ep) = (Eg, Fy,Cp, =)

Then A(e) € A U A and Init —e—>Q X, meaning there exists a key » and a transition

20(€)
Q—Q—> Q' such that {{Q']) = <8Q/, Initg, kQ/>, and there exists an isomorphism
fo i Eg = &y suchthat fyoky = [e = n] and fu(X) = Inity.

Jo(e)
This means P——— Q' \ A and the morphisms f | Eandg | {¢/ € E’Q | /I’Q(e’) &

AU A} clearly fulfil the remaining conditions.
— Suppose P = Q[f], {Q] = (&p.Init.k), and C}(Ey) = (Eg.Fp.Cp.—)-
Clearly Init—e—>Q X, and f(Ag(e)) = A(e), and the proof is straightforward.

B.9 Reverse operational correspondence

Theorem B.5. Let P and P’ be processes, u be an action, and m be a key such that
{P]} = (&, Init, k), € = (E, F,~, 1,1, 4, Act), Initis conflict-free, C,,(E) = (E, F,C, —>

Hlm]
), and {P']} = (&,1Init’,k"). Then there exists a transition P> P’ if and only if

(e}
there exists an isomorphism f : € — &' and a transition Init— X such that A(e) = p,
(fokN[e — m] =k, and f(X) = Init'.

Proof. Implied by Proposition 4.8, Theorem 4.10, and Corollary 4.11.

C Section 5

C.1 EBES

Definition C.1 (Extended Bundle Event Structure [11]). An EBES is a triple £ =
(E,,>) where:

1. E is the set of events;
2. »C 2E X E is the bundle set, satisfying X — e = Vey,e, € X.(e; # e; = e|>e,);
3. > C E X E is the asymmetric conflict relation, which is irreflexive.

Definition C.2 (EBES configuration [11]). Given an EBES £ = (E,—,>), a config-
uration of € is a set X C E such that there exists a sequence ey, ..., e, such that:

1. {eg,...,e,} =X;
2. ife;>ej then j <i;
3. if X e then X N{egy,...,e;_1} # 0.

A category of EBESs has not, to our knowledge, been defined, and so we define one
with product and coproduct.

Definition C.3 (EBES-morphism). Given EBESs £y = (Ey, —q,>) and £} = (E{,
,B>1), a EBES-morphism from &y to €| is a partial function f . Ey — E| such that and
foralle,e' € Ey:
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L iff(e)r f(e) thene> €.

2.0 fley=f(e')# Lande# ¢ thenerge';

3. for X; C E; if X| = f(e) then there exists Xy C E such that Xy —q e, f(Xy) C
X, andife’ € X, then f(e') # L;

4. forany X, C E,, if X, is a configuration of &, then f(X) is a configuration of &;.

Proposition C.4. Given EBESs &y = (Ey, —¢,>q) and £ = (E|,—,>) and EBES-
morphism f . Ey — E|,if X C Eyisaconfiguration of &, then f(X) is a configuration
Ofgl.

Proof. Similar to proof of Proposition A.4.
Proposition C.5. EBES consisting of EBESs and EBES-morphisms is a category.

Proof. Partial functions are associative and f(e) = e works as a an identity arrow, so
we need to show that the morphisms are composable:

If & = (Ey,=q.>¢), & = (E1,=1,B>1), and & = (E,, —,,>,) are EBESs and
f i Ey— E;and g : E; - E, are morphisms, we show that fog : E;, — E, is also
a morphism:

1. If g(f(e)) >, g(f(e")) then f(e) > f(e'), and therefore e > ¢’

2. If g(f(e)) = g(f(¢')) and e # €', then either f(e) = f(e'), in which case e > ', or
f(e) # f(e'), in which case f(e) > f(¢'), and therefore e > ¢’.

3. If X, =, g(f(e)) then there exist X; € E; and X; C E, such that X| — f(e),
Xo e 8X)) CX,, f(Xy) € X andife; € X then g(e;) # Landif ¢y € X,
then f(eqy) # L. This means that g(f (X)) € X5, andif e; € X then g(f(ey)) # L.

4. If X, is a configuration of &, then f(X|) is a configuration of £, and therefore
g(f(Xy)) is a configurations of &,.

We also define a product in this category in Definition C.6.

Definition C.6 (Product of EBESSs). Let £y = (Ey, =, >q) and £ = (E|,—,>) be
bundle event structures. Their product £y X €| is the EBES € = (E,—,>>) define by:

1. E=Eyx, E,={(e,x)|e€ Ej} U{(x,e)|e€ E;}U{(e,e) | e€ Eyand e’ €
E,).

2. projections ny, | are defined so that for (ey, e|) € E, m;((ey, e1) = e;.

3. foranye € E, X C E, X = eiffthere exists i € {0,1} and X; C E; such that
X, r(e)and X ={' € E | m,(e) € X;}.

4. for any e,e’ € E, e > ¢ iff there exists i € {0,1} such that z;(e) >; m;(¢"), or
mi(e) = mi(e') # L and m;_;(e) # m;_;(e’).

Proposition C.7. Given EBESs £y = (Ey, —(,>q) and £ = (Eq,~,>1), & X & =
(E,—,>) is a product.

Proof. We first show that 7y and 7, are morphisms:
1. If x;(e) >; x;(e’), then obviously e > €.

2. If m;(e) = m;(¢’) and e # €/, then x;_;(e) # m,_;(¢’), and therefore e > ¢’.
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3.

4.

If X; ~ m;(e), then {¢’ € E | (') € X;} — e. Clearly n;({¢’ € E | m(e') €

X;Hh =X, andforalle’ € {¢’ € E | m;(¢)) € X;}), m;(e') # L.

If X is a configuration of ;X &, then we show that 7;(X) satisfies the requirements

of a configuration of &£;. We show that if the requirements of Definition C.2 hold for

ey, €, then they hold for x;(ey), ..., 7;(e,):

(a) Obviously {r;(ey), ..., m(e,)} = m;(X).

(b) If m;(e;) >; m;(e;s), then as shown above, e; > e 7, meaning Jj <.

(c) Whenever Y; + ,(e;,), we know {¢’ € E | z;(¢') € Y} + e;,, mean-
ing {¢/ € E | mi(e') € Y;} n{e,....e;} # @. Therefore, we must get
Y, 0 {miey). ... mi(e))} # m(@) = .

We then show that for any EBES, &, = (E,, —=,,>,), if there exist morphisms f, :

& — & and f1 ¢ & — &, then there exists a unique morphism f : & — &, such
that foomy = fy and fyomr; = f;. Since EBES-morphisms are functions, they are all
unique.

We define f by f(e) = (fy(e)., fi(e)), meaning the morphisms clearly commute as

described above, and prove it to be a morphism:

1.

If f(e) > f(e’) then there exists i € {0, 1} such that either z;(f(e)) &>; 7;(f(e')), in

which case clearly f;(e)>; f;(¢');, and therefore e, e’, or z;(f (€))) = m,(f (') # L

and m_;(f(e)) # m_;(f(e')), in which case f;(e) = fi(¢') # L, and e # ¢,

meaning e >, ¢’

If f(e) = f(e') # L then fy(e) = fy(e') # Lor fi(e) = f(e') # L, meaning if

e#e thened,e'.

For X C E,if X — f(e), then there exists i € {0,1} and X; C E; such that

X; ~ m(e)and X = {¢’ € E | m;(¢') € X;}. And since X; — f;(e), there exists

X, C E, such that X, =, e, f;(X,) C X;, and if ¢’ € X, then f;(¢’) # L. Clearly

f(Xy) C X.

If X is a configuration of &,, then we show that f(X) satisfies the requirements of

a configuration of &, X £;. We show that if the requirements of Definition C.2 hold

for ey, ,e,, then they hold for f(ey), ..., f(e,):

(2) Obviously { f(eg), .., f(e,)} = f(X).

(b) If f(e;) > f(ej), then as shown above, e; >, e/, meaning Jj <.

(c) Whenever Y + f(e;;), we know {¢/ € E | f(¢) € Y} ~ e;,,, mean-
ing {¢/ € E| f(¢') € Y} n{ey,...,e;} # @. Therefore, we must get ¥ N
{fler),....flep)} # fF@B) = 8.

Definition C.8 (EBES coproduct). Given EBESs £, = (E(, =, >o) and £, = (E|,
,B>1), their coproduct £y + & = (E, —,>) where:

E={0e) e Ej}u{(l,e)|e€ E};

injections i, iy are defined so that for e € E;, i;(e) = (j,e) for j € {0,1};
X = (e iffforall (j',e') € X, j=j" andi,(X) - e

oo (e iffj # ) orew; .

Proposition C.9. If &, and &€, are EBESs, then &£y X &, is their coproduct.

Proof. Similar to that of BES coproduct.
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C.2 REBES Category

Definition C.10 (REBES-morphism). Given REBESs &y = (E, Fy, =, >g) and £ =
(Ey, F{,=,>), an REBES-morphism from &y to &, is a partial function f . Ey — E;
such that f(Fy) C F, and forall e,e’ € Ey:

1. iffley=f(e')and e # ¢ thene ffy €';

2. for X, C E, if X| — f(e)* then there exists X, C E such that f(X,) C X, if
e € Xythen f(') # L, and X — e*;

3. if fle)r> f(e) thene>ye™.

Definition C.11 (Product of REBESS). Let &, = (E), Fy, =, >¢) and £ = (Eq, F}, =
,B>1) be reversible bundle event structures. Their product &y X &, is the REBES € =
(E, F,—,1>) define by:

1. E=Eyx, E ={(e,x)|e € Ej}U{(x,e)|e€ E;}U{(e,e') |e € Eyand e’ €
E\};

2. F=FyX,F; ={(e,*) | e € Fy}u{(x,e) | e € F;}U{(e,e') | e € Fyand e’ € F,};

3. projections ny, m| are defined so that for (ey, e;) € E, m;((ey, e1) = e;;

4. foranye* € EUF, X C E, X v e" iff there exists i € {0,1} and X; C E; such
that X; — m(e)* and X = {e' € E | m;(¢)) € X;};

5. foranye € E, "* € EUF, exe'* iff there exists i € {0, 1} such that n;(e)>; 7;(e’)*.

Proposition C.12. Given REBESs &, = (Ey, Fy,=q.>q) and £ = (E|, F|,—~,>}),
Eyx & = (E, F,~,>) is a product.

Proof. Similar to proof of Proposition C.7.

Definition C.13 (REBES coproduct). Given REBESs &, = (E, Fy, —=(,>g) and & =
(Eq, Fy,—1,>), their coproduct £y + €| = (E, F, —,>) where:

E={0,e)|lec Ejju{(l,e)|e€ E};
F={0,e)|ecFuil,e|eec F};

injections iy, i| are defined so that for e € E;, i;(e) = (j,e) for j € {0,1};
X & (j,e) iffforall (j',e') € X, j = j andi;(X) +; e*;

oo & () iffj # ' ore* i) ¢

Proposition C.14. If &, and &, are REBESs, then &, + £, is their coproduct.

Definition C.15 (From REBES to CS). The functor C,, : REBES — CS is defined
as:

1. C,((E,F,~,>))=(E, F,C,—) where:
(a) X € Cif> is well-founded on X;
AUB

(b) For X,Y € C, AC E, and B C F, there exists a transition X —— Y if:
i Y=(X\BUA; XNA=0;and BC X;
ii. foralle* € AUB, ife' >e*thene & X U A;
iii. foralle€ Aand X' CE,if X' — ethen X' n (X \ B) # §;
iv. foralle€e Band X' CE, if X' — ethen X' n(X \ (B\ {e})) # 0.
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2. C(f) = f.

The definition of a causal REBES (Definition C.16) is of course practically identical to
that of a CRBES.

Definition C.16 (Causal REBES). (E, F,~,,>, A, Act) is a causal REBES (CREBES)
if (1) if e> € then either e § €’ or there exists an X C E such that X — eand e’ € X,
(2)ifee orX —»eande’ € XNF, thene>é, and (3)if X — ethene € X.

Proposition C.17.

1. Given a CREBES, € = (E, F,~,1>) and corresponding CS C,.(£) = (E, F,C, =),
any reachable C € C is forwards-reachable.

2. If &€ = (E,F,~,#,>>) is a CREBES and C,,(§) = (E, F,C,—) then whenever
AUB BuUA
X eC X—= Y and AU B C F, we get a transition Y —— X.

Proof. Similar to the proof of Proposition 3.8

Definition C.18 (Labelled Reversible Bundle Event Structure (LREBES)). A la-
belled reversible extended bundle event structure £ = (E, F,—,>, A, Act) consist of
an REBES (E, F,—,1>), a set of labels Act, and a surjective labelling function A : E —
Act.

Definition C.19 (LRBES-morphism). Given LREBESs &, = (E, Fy, =, i, >0, Ao, Acty)
and & = (E\, F;,~, 8,5, A, Act|), a LREBES morphism f : & — & is a par-
tial function f : Ey — Ej such that [ . (Ey, Fy,—q,>0) = (E|, Fj,—,>) is an
REBES-morphism and for all e € E, either f(e) = L or Ag(e) = A(f(e)).

D Section 6

D.1 Propagation Rules
D.2 Lemma D.1

Lemma D.1. Let P be a consistent process with no subprocess rolling y and let C be a
set of tags such that if y € C andy <p y' theny' € C. Then P;c —* P.

Proof. We prove this by induction on the size of C.

Suppose C = ). Then P, = P.

Suppose P,c; —* P and C = C" U {y} for some y such that if y’ <p y then
y' & C’. Then if there does not exist an action « and key n such that a,[n] occurs in P,
then P, = P, —* P.If there exists a process P’, an action a and key n such that
a,[n].P’ is asubprocess of P then all past actions of P’ are in C’, meaning Pé’ c= rt(P"),

a,[n]

and since y’ <py =7y & C’, we getPéCy—> P,cr —* P.

D.3 Proof of Theorem 6.6

Proof. Follows from Lemma D.1.
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(bound)

(prop ROLL 1)

(prop ROLL 2)

(prop ROLL 3)

(prop ROLL 4)

(prop ROLL 5)

(prop ROLL start 7)

(prop ROLL 6)

ulm]

start roll y
GAAAAAAD

P—= P P’
] ; (prop ROLL start 1) start roll 7
(vy)P— (vy)P a,[n].P a, [n].P’
roll y start roll y.
PPy #y Py Py
(prop ROLL start 2)
roll y , start roll y
B, [m].P oy B, [m].P Py | P, PO’ | P,
p roll y P’ start roll y ,
M ‘) P
roll y (prop ROLL start 3) start roll y
B, P By P P\ A P'\A
P, pr sty
0 0
o (prop ROLL start 4) st ol 7
B /
Py+ P~ P4 P, PIf] P'If]
P pr 2L
P
(prop ROLL start 5) ;
roll y , start roll y
P\A™7 P\ A (V)P 7 (vy) P
P roll y P p= start roll y’ Q’ _p
- (prop ROLL start 6) —— —
roll v, , start roll y’
P[f] * P'[f] P’
start roll y
Ay P; std(P) rolling ¥’ is not a subprocess of P,
start roll y
P+ P, P+ P,
roll ¥/ roll y’
P~ P oyl 4y P=Q™™Q =P
(prop ROLL 7)
roll 7/ roll y/

WP (vy) P!

Table 5. The operational semantics for propagation of rolls and bound tags in Roll-CCSK
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D.4 Proof of Theorem 6.9

start roll ; roll bound roll y;
Proof. To get P” we apply first ™ for every m; € T and then ~"7 or ~"

for every m; € T to P. We show that this is the correct P”.

Let P, be P with every rolling y replaced with roll y. Then P, w* P/, where P!’ is
P" with every rolling y replaced with roll y using the same rules as P ~»* P/,

By the loop theorem we get P/’ —* P.. And since ¢(P,) = ¢(P) and ¢(P) =
@(P"), we can translate this computation into CCSK: ¢(P"") =gk P(P). From the
loop lemma of CCSK, this gives us ¢(P) »¢. ok @(P"). And obviously ¢(P"") f>p.

We then only need to show that if ¢(P) 7. P’ fop, then P! = ¢(P"). We then
only need to show that if ¢(P) w7, P’ fop, then P’ = ¢(P"). Since they both reverse
all the keys causally dependent on keys in 7', this follows from proposition 5.16 of [19].

E Section 7

E.1 Proof of Proposition 7.3
We use the following lemmas:

Lemma E.1. Let Py and P, be consistent processes such that {{ Py[} = (&g, Inity, k),
{P ]} = (&, Init;, k), and &y < &,. If there exists A (b, 5) in Py such that A(G,7) = Py
and P; = PO{A<b’5>/(V 5YPA(37/55) }, and an action a,, such that {[ay.PO]} = (8’, Initg, k6>
and {{a,.P; [} = (€], Init|, K" ), then & < €.

Proof. Obviously Ej C E| and Fj = F| n E,

If X |—>6 e then either X —( e, or X = {e,}, e € Ey, and Ay(e) # roll y'.

If X +—( e then there exists some X; C E; such that X; N Ey = Xy and X| = e,
meaning X, =/ eand X n Ej = X,.

If X = {e,}, e € Ey, and Ag(e) # roll y’ then e € E| and A,(e) = Ay(e) # roll ',
meaning {e,} »—>’1 e.

IfX —/ eande € E(’) then either X + e,or X = {e,},e € E,and 4,(e) # roll y’.

If X = eand e € Ej then X N Ey = X N E| = e, meaning X N E| = e.

Ife € E), X = {e,), ¢ € E;, and 4;(e) # roll ', then 4y(e) = 4,(e) # roll 7,
meaning {e, } »—>6 e.

If X > e then either X = {e},ore = ¢, and X = {¢’ € E, | Ay(¢') = roll v},
or 4y(e) € {roll ', roll bound} U {start roll y" | Af,n.p,, or B,/[n] occurs in a,. Py} and
X ¢ e,or Ay(e) & {rolly’,roll bound}u{start rolly" | Af,n.p,, or B,/ [n] occurs in a,. Py},
{e} # X' —ge,and X = X' U {e | Ag(e') =roll y}.

If X = {e} then obviously X »—>’1 e.

Ife=c,and X = {' € Ey | Ag(¢) =rolly} then X = {¢' € E; | A,(¢) =
rolly} N Eqand {e’ € E; | 44(e’) =rolly} = e.

If Ag(e) € {roll y’,roll bound} U {startroll y' | Ap,n.p,, or B,/[n] occurs in a,. Py}
and X +, ethen A;(e) € {rolly’, roll bound}u{start rolly’ | Ap, n.p,, or B, [n] occurs in @, . Py }
and there exists X such that X, n E; = X and X| ~ e, meaning X »—>’1 e.
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If Ag(e) & {roll y’,roll bound} U {startroll y’ | B, n.p, or f,i[n] occurs in a,. Py},
{e} # X' g e, and X = X' U {e | Ay(e/) = roll y} then there exists X{ C E, such
that X N Ey = X’ and X| | e. This means X| U {¢’ € E| | A;(¢/) =roll y} »" e,
and clearly {¢/ € E; | 41(¢/) =rolly} n E, = {e' € Ey | Ay(e’) = roll y}, meaning
XUl e E | 4()=rollyhNnE) = X.

IfX ' eandee E(’) then either X = {e},ore =¢, and X = {’ € E| | 4;(¢/) =
rolly},or 4,(e) € {rolly’, roll bound}u{start rolly" | Af,n.p, or §,/[n] occurs in a,.P; }
and X > e, or 4y(e) & {roll y’,roll bound} U {startroll y" | A4, n.p, or f,[n] occurs
ina,.P}, {e} # X' =) e,and X = X" U {¢/ | 44(e) =roll y}.

If X = {e} then obviously X |—>6 e.

Ife=e,and X = {¢’ € E; | 4;(¢') =roll y} then {&’ € Ey | Ag(e’) =roll v} t—»E) e
and obviously X N E(’) ={e € Ey| Ay(e) =roll y}.

If A;(e) € {roll y’,roll bound} U {startroll y" | A, n.p,s or f,/[n] occurs in a,.P; }
and X + e then Ay(e) € {roll y’, roll bound} U {start roll y' | A, n.p,. or f,/[n] occurs
ina,.Py}, and X N E; = e, meaning X N Ej = e.

If A;(e) & {roll y’,roll bound} U {start roll y’ | Af,n.p, or p,/[n] occurs in a,. P, },
{e} # X' —, e;and X = X' U {e | A4;(¢/) = roll y} then X" N E; > e, meaning
(X' Eg) U {e | Ag(e’) = roll y} = e, and obviously X N E; = (X' n Ey) U {e’ |
Ag(e") = roll y}.

If e l>6 e’* then either 4(e) € {roll y’, roll bound} U {start roll y" | Af,n.,/ or B,[n]
occurs in a,. Py} and e* = e, or e = e,, e’* = ¢’ and Ay(e’) = roll y, or Ay(e) = roll y
and e* = e,, or Ay(e) = rolly, ¢’* = ¢/, and Ao(e") & {roll y’, roll bound} U {start roll y |
Ap.n.p, or p,[n] occurs in a,.Py}.

If Ag(e) € {roll y’,roll bound} U {startroll y’ | B, n.p,, or p,/[n] occurs in a,.Py}
and e’* = e,, then A;(e) € {rolly’, roll bound} U {start roll y" | A, n.,s or §,/[n] occurs
in a,.P, }, and therefore e > .

Ife =e,, e = ¢ and Ay(e) = roll y then 4,(¢’) = roll y, and therefore e, >/ .

If A(e) = roll y and ¢"* = e,, then 4,(e) = roll y, and therefore e > e,,.

If Ag(e) = roll y, & = ¢, and Ay(e’) & {roll y’,roll bound} U {startroll y" |
Ap.n.p, or f,[n] occurs in a,. Py}, then 4, (e) = rolly and 4,(e") & {roll y’, roll bound}u
{startroll y [ AB,n.p,/ or f,[n] occurs in a,. Py}, meaning e >/ ¢’.

Ife l>'1 e/* for e, e’ € E, then the argument is similar.

Obviously Ay = A | £y and Act is the range of Ag

Lemma E.2. Let P, and P, be consistent processes such that { Py]} = (&, Inity, k),
(P} = (&.Init), k), and & < &,. If there exists A (b,5) in Py such that A(a,7) =

P, and P = PO{A<E’S>/(V S)PA{’;’S/@?}}’ and an action a, such that {[ay[m].Poﬂ =

<8’,Init('),k6> and {[ay[m].Pl]} = (é’l’, Init’l, k'1 > we get 86 < 8{.

Proof. Follows from Lemma E.1 and the definitions of {[ay[m].Po]} and {[ay [m].Pl]}

Lemma E.3. Let Py | P,, P, | P, be consistent processes such that {{ Py[} = (&, Initg, k),
[P} = (&.Inity, ky), [Py | Py = (&), Init), k), { Py | Py} = (€], Init], k"), and
E) S & Then £ < &].
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Proof. Foralle € Ejweknow eithere € EyX, E, and A (e) € {roll y, start roll y, roll bound,
ore = (X,e') for some ¢/ € Ey X, E, and X € causes(¢’). If e € E, X, E, and
%(e) € {roll y,start roll y,roll bound then obviously e € E; If e = (X,€) then if

e’ = (e, *) then for each (e[, ¢}) € X there exists X, such that ej € X, and X, = €.
This means there exists X; € Ej such that X; —; ey and X, = X; n E,. In ad-
dition, for any X| C E; such that X| ~, ey, we have X| N E; > e, and therefore
(X; X E,)NX # 0. We therefore gete € E{ If ¢’ = (x, e,) then obviously e,’s causes are

the same in € I and therefore ¢’ € E i If ¢’ = (e, ;) then the argument is a combination

of the first two cases.

Obviously Fj = E;n E|.

If X »—»6 e then either e = (X', ¢'), X = {(X",e") | X" C X'}, and e’ € X/, or
e = (ey, e,) and there exists X’ such that X’ ., e and X = {€’ | (my(e’), my(€))) €
X',

Ife=(X",e), X ={(X",e")| X" C X'}, and ¢’ € X’ then clearly X »—>’1 e.

If e = (e, e,) and there exists X’ such that X" ., eand X = {e’ | (zy(e’), my(e')) €
X'} then X’ ., e,and obviously {€’ | (my(e’), my(e')) € X'} = {€’ | (m ('), my(e")) €
X'} n E.

If X » eande € E(') then either e = (X', ¢’), X = {(X",¢") | X" C X'},
and ¢’ € X', or e = (e}, e,) and there exists X’ such that X’ ., eand X = {¢’ |
(m(e), my(e)) € X'}

Ife=(X",e), X ={(X", )| X" C X'}, and ¢" € X' then since e € E(’), for all
e e X', n (") € Ey, meaning X C E(/), and X |—>6 e.

If e = (e, e,) and there exists X’ such that X" ., eand X = {¢’ | (z;(e’), m,(e')) €
X'} then e; € Ey U {x}, and X' N (Ey X, E;) >y e, meaning X N E(’) = { |
(ﬂo(e,), 7[2(@,)) (S X, n (EO Xy Ez)} = e.

If X > e then either X = {e}, ore = (X', (ey, e,)) and X = |J

Ji € 0,2}, X, € E, X, = m,(e)
X"\ orde, € X' X; — m(ey) ,or e = (e, e;) and there exists X’ such that
,and ¢’ € X" iff m;(¢) € X;
X' oy, eand X = {' | (my(e'), 7, (") € X'}.
If X = {e} then obviously X ~/ e.

i€ {0,2},X;, € E;. X, —; m;(e)
Ife =(X',(ep ey))and X =4 X" | orJey, € X' X; >, mi(ey) ~ Ythen (1) for
,and ¢’ € X" iff m;(¢) € X;
each X, such that X, = e, there exists X such that X; =, e, and X| N E, = X,

and (2) for each X, such that there exists (36, e}) € X', such that X, |—>6 e, there exists
X, such that X; = e and X; N Ej = X, meaning

die {1.2},X; € E;.X; —; m;(e)
x| or3eg € X' X; =y mi(ey) NEy=X
,and e’ € X" iff m;(¢) € X;
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If e = (e, e;) and there exists X’ such that X’ ., e and X = {€' | (zy(e’), 7, (') €
X'}, then since || is monotonic, there exists X"’ such that X’ = X" n (E; X, E,) and
X" 1y e, meaning {e’ | (x;(e"), 7;(e')) € X"} n—)’l e.

If X ») eande € E’ then X = {e}, ore = (X', (e,ey)) and X = J{X" |

i € {0,1}. ﬂ(X”) e or 3¢’ € X'.7y(X") —; mi(e)}. If X = {e} then obviously
3i € (1,2}, X, € E,.X, v, m,(e)
X pyelfe= (X" (e,e))and X = J{X"| orIe, € X".X; =, mi(e,)
,and ¢’ € X" iff m;(¢') € X;
then for each X such that X; — e, we know X; N E; — ey, and for each X such
that there exists (¢, e)) € X’ such that X ! =
X N Ey > ey. Therefore X N E| = e;.

If e >) ¢’ then there exists i € {0,2} such that either (1) 7z;(e) >; 7;(e)*, or (2)
mi(e) =mi(e') # Lior(3)e* =€, e# ¢, ande € X — €, or (4) and there exist ,
y" such that A(e) = roll y and A(e’) = roll y’. In all these cases it is clear that the same
conditions will apply in .

Similar logic applies if e | ¢* and e, ¢’ € E|.

Obviously 4j = 4 | E and Act is the range of A|.

ey, since e € E(/), e

| € E,, meaning

Lemma E4. Let Py and P, be consistent processes such that {{ Py[} = (&g, Inity, k),
(P} = (&,Init;, k), and & < &,. If there exists a tag y such that {(vy)Py]} =
(&), Initg, k[ ) and {[(v y)P |y = (€], Init], k| ), we get €] < £].

Proof. Obvious
And having those lemmas makes the proof simple.

Proof. Follows from Lemmas E.1, E.2, E.3, and E.4 and Proposition 4.7.

E.2 Lemma E.5

Lemma E.5 (Causal consistency of actions). Let P be a process and { P]} = (&, Init, k).
Then for any events e,e’, if e € X v ¢ and ¢’ Pe, then there exists y such that
A"y € {roll y, roll bound, start roll y }.

Proof. We prove this by structural induction in P.

Suppose P = 0. Then there are no events and the lemma is trivially true.

Suppose P = roll y. Thene € X — ¢ means e = ¢, and ¢/ = e,, and obviously
A" =roll y.

Suppose P = rolling y. Then the argument is the same as the previous case.

Suppose P = a,/.P’. Then { P’} = (&', Init, k) and either X ' ¢’ or X = {e,}. If
X ' e thene' # ea and by inductionife’ /’ethen A(e’) € {rolly, roll bound, start roll y }.
If X = {e,} then, ¢’ > e, unless A(e’) € {roll y, roll bound, start roll y }.

Suppose P = a,, [m]P’. Then the argument is the same as the prev10us case.

Suppose P = P0+P1 Then e = (i,e;), ¢ = (i, e) e; e ande />;e;, meaning

/li(e;) € {rolly, roll bound, start roll y }, and therefore A(e’) € {roII y, roll bound, start roll y }.
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Suppose P = Py | P;. Thenife’ = (Y',e"), e = (Y,e¢'") and ¢’ € Y’, meaning there
exists i € {0,1} such that z;(e) € X; —; m;(¢’). By induction we get that, if elf %ie;
then there exists y such that Ai(el’.) € {roll y, roll bound, start roll ¥}, meaning e’l_i =%
and A(e’) € {roll y,roll bound, start roll y}, and if e} 1>, e; then ¢’ > e. If ¢’ € E, then

Me") € {roll y, roll bound, start roll y }

Suppose P = P’ \ A. Then the lemma follows from induction.
Suppose P = (v y’)P’. Then the lemma follows from induction.
Suppose P = A (5, 5 ) Then the lemma holds if it holds for P,.

E.3 Lemma E.6

Lemma E.6 (Transitive causation). Let P be a process and (P} = (&, Init, k). Then
whenever X — e € X' — ¢/, we have X + ¢/, or there exists a y such that A(e') €
{roll y, roll bound}.

Proof. We prove this by structural induction on P.

— Suppose P = 0. Then there are no events and the lemma is trivially true.

— Suppose P =roll y. Thenno X, X', e, e’ existsuchthat X —» e € X' — ¢'.

— Suppose P = rolling y. Then the argument is the same as the previous case.

— Suppose P = a,,.P". Then { P’} = (£’,Init, k), X' =’ ¢’, and either X = {e,},
or X »' e.If X = {e,}, then X — ¢ whenever A(e’) # roll y'. If X ' e and
X' »' ¢’ then by induction, X — ¢’.

— Suppose P = a,, .[m]P’. Then the argument is the same as the previous case.

— Suppose P = Py+P,;. Thenthereexistsani € {0, 1} suchthate = (i, ¢;), ¢’ = (i, e;),
{el! | (i,e) € X'} +»; ¢}, and {e]' | (i,e]) € X} +; e;, meaning by induction
{el | (i,e!') € X} >, e, and therefore X + ¢'.

— Suppose P = Py | P,. Thene' = (Y’, (e{), e’l )) or there exists a y such that A(e’) €
{roll y,roll bound}. If e’ = (Y',(eg,e’l)) then e = (Y, (ey,e;)) and (ey,e;) € Y/,
meaning there exists i € {0, 1} such that e; € X; -, e!. Similarly, X = {(Y", ") |
(Y",e") e E} forsome '’ € Y. Since Y € cause(e) and e € Y' € cause(e’), there
exists Y’ € cause(e’) such that Y C Y”'. This means X ~ e.

— Suppose P = P'\ A. Then the lemma obviously follows from induction.

— Suppose P = (v ") P’. Then the lemma obviously follows from induction.

— Suppose P = A (b, 5). Then the lemma holds if it holds for P,.

E4 Lemma E.7

Lemma E.7 (forwards bundles). Let P be a process and {P]} = (&,1Init, k). Then
whenever X v e, either there exists ' such that X = {e'}, or there exists a y such that
A(e) € {roll y, roll bound}.

Proof. We prove this be structural induction on P.

— Suppose P = 0. Then E = @ and the case is trivial.
— Suppose P =roll y. Then e’ = ¢, and e = e,..
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— Suppose P =rolling y. Then ¢’ = ¢, and e = e,..

— Suppose P = a,.P’. Then by induction, if X + p/ e, then there exists an e’ such
that X = {e’}. If X 5 ps e, then X = {e,}.

— Suppose P = a, [m].P’. Then by induction, if X + p/ e, there exists an e’ such that
X ={}.If X tbp e, then X = {e,}.

— Suppose P = Py + P;. Then, by induction if e = (i,¢;) and X, +; ¢;, then X; = ¢/,
and ' = (i, €)).

— Suppose P = P, | P;. Then either e = (Y, ey ) or there exists a y such that A(e) €
{roll y,roll bound}. If e = (Y,e,) then X = {(Y",¢") | (Y",e") € E} for some
e’ € Y. We therefore need to show that given an event ¢/’ € Y, there exists exactly
one Y € cause(e’”) such that Y/ C Y. This follows naturally from items 2 and 3
of Definition 7.1.

— Suppose P = P’ \ A. Then the lemma obviously follows from the definition of p.

— Suppose P = (vy)P'. Then the lemma obviously follows from induction.

— Suppose P = A (b,5). Then the lemma holds if it holds for P,.

E.5 LemmaE.8

Lemma E.8 (Reverse inverse causality). Let P be a process and { P} = (&, Init, k).
Then whenever e’ € X — eand e # €, we get ¢’ 1> e.

Proof. We prove this by structural induction on P:

— Suppose P = 0. Then E = @ and the case is trivial.

— Suppose P =roll y. Then ¢’ = ¢, and e = e,.

— Suppose P = rolling y. Then ¢’ = ¢, and e = e,.

— Suppose P = a,.P’. Then either e = e, and X = {e" | ﬂ;,,(e”) = roll y}, or
Apr(e) € {roll y/,rollbound} and X +p/ e, or /I’P,(e”) & {roll ¥/, roll bound},
{e} #X' —pe,and X = X' U {e” | A;,(e”) =roll y}.

In either case, it is clear that e’ > e.

— Suppose P = a, [m]).P’. Then the argument is similar to the previous case.

— Suppose P = Py + P;. Then, by induction if e = (i,e;) and e/ € X, >, ¢;, then
el’. >e;, and e’ = (i, el’.), meaning ¢’ > e.

- Suppgse P = Py | P;. Then the lemma holds by definition.

— Suppose P = P’ \ A. Then the lemma obviously follows from induction.

— Suppose P = (vy)P'. Then the lemma obviously follows from induction.
— Suppose P = A (b, 5). Then the lemma holds if it holds for P,.

E.6 Lemma E.9

Lemma E.9 (Single backwards bundle). Given a process P suchthat {{ P} = (&, Init, k),
for any event e € F, there exists at most one bundle X + e such that X # {e}.

Proof. We prove this by structural induction in P:

— Suppose P = 0. Then E = @ and the case is trivial.
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Suppose P =roll y. Then X = {e,.} and e = ¢,.

Suppose P = rolling y. Then X = {e,} and e = e,.

Suppose P = a,.P’. Then either e = ¢, and X = {e” | /1;)/(6") = roll y}, or
Apr(e) € {roll y/,rollbound} and X +—p/ e, or /l;,,(e”) & {roll ¥/, roll bound},
{e} # X' —pre,and X = X' U {" | A;,,(e”) =roll y}.

In either case, it is clear that there exists only one X.

Suppose P = a, [m].P’. Then the argument is similar to the previous case.
Suppose P = P, + P;. Then, by induction if e = (i, ¢;) then there exists at most one
X; such that e/ € X; -, ¢;, meaning {i} X X; - e.

Suppose P = Py | P;. Then either e = (X', /), in which case the lemma obviously
holds, or there exists X’ such that X’ —, e and X = {¢’ | (zy('), 7;(e)) € X'}.
By induction, since there exists an i € {0, 1} such that x;(e) = L, there can only
exist one such X'.

Suppose P = P’ \ A. Then the lemma obviously follows from induction.

Suppose P = (vy)P’. Then the lemma obviously follows from induction.

Suppose P = A (b, 5). Then the lemma holds if it holds for P,.

E.7 Lemma E.10

Lemma E.10 (Reverse transitivity). Let P be a process and { P|} = (&€, Init, k). Then
whenever e’ € X — e, X' — e/, X' # {€'}, and A(e) = u, there must exist X" 2 X'
such that X"+ e.

Proof. We prove this by structural induction in P:

Suppose P = 0, then E = (J and the case is trivial.

Suppose P = roll y. Then there does not exist any e such that A(e) = u.

Suppose P = rolling y. Then there does not exist any e such that A(e) = u.
Suppose P = a,.P’. Then either X +p/ eor X = {e,} and e € Ep/.

If X —ps e then there exists an X p/ such that Xp/ —p e and X' = Xp/ U {€” |
Apr(€"") = roll y}. This means there exists X', such that X, =pr ¢/, Xpr C X7,
and X7, U {" | Ap/(e") =rolly} = X" > underlinee.

If X = {e,} and e € Eps then X' = {e"" | Ap/(e’") = roll y} and there exists an
X pr such that X pr = pr eand X" = XpU{e” | Api(e”) = roll y}, meaning clearly
X'cx".

Suppose P = a, [m].P’. Then the argument is similar to the previous case.
Suppose P = Py + Py. Then, if e = (i, ¢;) and ¢’ = (i, ¢}) then there exists X| such
that X’ = {i} x X] and X| > e/, meaning there exists X" D X such that X" > ¢;

and therefore {i} x X/ = X" e.
Suppose P = Py | P;. Then either e = (Y, e,), or there exists X’ such that X' e
and X = {¢’ | (my(e)), 71(e)) € X'}.
Ife=(Y,e,) thene’ = (Y',el)and Y’ U {e[ } C Y, and
3ie€{0,1},X; € E;.X; —; m;(¢))
X' =X | or Ele;! eY' X, —, n',»(e;/)
,and ¢’ € X" iff m; (") € X;
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3i € (0,1}, X, € E,.X, v, m,(e)
We define X" = |J X | or3e! € Y.X; =, m(¢!) ~ band show that X’ C
,and e’ € X" iff m,(¢) € X,
X", By definition, since e, € Y’, whenever X; — x;(¢’) we get n(e’) € X, iff
¢’ € X". And if there exists e/, € Y’ such that X; - ;(el)) then, since Y’ C Y,
e/, € Y and therefore z(e’) € X; iff ¢ € X"
— Suppose P = P’ \ A. Then the lemma obviously follows from induction.

— Suppose P = (vy)P'. Then the lemma obviously follows from induction.
— Suppose P = A (b, 5). Then the lemma holds if it holds for P,.

E.8 Proof of Proposition 7.4
We use Lemmas E.5-E.10.

Proof. We say that £ = (E, F,—,>, A, Act) and & = (E’, F',~',p', /', Act’) and do
a case analysis on the Structural congruence rules:

P=Q | Rand P’ = R| Q: Then there exist &o and £y such that for i € {Q, R},
{ P} = ((E;, F;, =>4, A, Acty), Init;, k;) and (&, Init, k) is composed of them as
defined in the event structure semantics.

And there exist S’Q and EJ’R such that for i € {Q, R}, {P,]} = ((El' Fi’, »—>l’., l>§, A;,
Act; ), Init;, k:> and (8 ! Init’ k' ) is composed of them as defined in the event struc-
ture semantics.

And by induction we have isomorphisms f, @ &g — & ’Q and fr 1 Eg = & ;(
fulfilling the conditions.

(fr(er)s fQ(eQ)) ife= (eQ, eR)

We first define a helper function f/(e) = { (fr(eg), *) ife=(xeg) ,and
(x, folep)) ife=(eg,*)
re N " c X , re ! f — X, !
then our isomorphism f(e) = ({,f (@) le b fe)) ife (, ¢ . Since
S otherwise

the definition of parallel compositions treat both parts the same way, this clearly
fulfils the conditions.

P=Py| (P | P,)and P' = (P, | P;) | P,: Then there exist &), &, &, and &}, such
that { Pyl} = (&, Initg, ko), ([ Py} = (€, Inity, ky), ([ Py] = (&, Inity, ky), (€
Inity,, k1|2> ismade up of (&, Init;, k) and (&,, Init,, k,) as described in the paral-
lel composition rule, and (&, Init, k) is made up of (&, Inity, k) and <€1|2, Init1|2, k1|2>
as described in the parallel composition rule.

And there exist &), £/, &), and &, such that {By]} = (8’,Init6,k6>, (P =
(&), Init), k" ), { Py ] = (&}, Inith, kL ), ( Egy1» Inityyy. koyp ) is made up of (&, Initq, ko)
and (&, Init;, k) as described in the parallel composition rule, and (8 ! Init’, k! >
is made up of (£,,Init,, k) and (80“, Inity, k0|1> as described in the parallel
composition rule. And there exist isomorphisms f : & — 8(’), fi:& ~ 8{ , and

fri &= 85 satisfying the conditions of the proposition.
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We define a helper function f;((eg, e;)) = (fo(eg). fi(e1)) if ey € Eyand e; € E;
and define the morphism

(fOl((e07e1))a fz(ez)) ife= (eo»(epez))
Y (Y, for((egs e))), fo(e2))) if e = (X, (e, (X', (e}, €2)))),

Y= {for1((ep, €))) | 3, X" (eg, (X", (e}, €)) € X

and e € X, € cause(e) or ¢ € X, € cause(e;)},
fle) =1 and Y = {((fo;(Y"), fo1((eg, € f2(€5) € Egpixa |
X" (e, (X", (€} €,))) € X and
for all (e(’)’, e’l’) eYy”, e6 € X,) € cause(e) or

el € X, € cause(e;) and
fo@"Hu {f(n((ef),e,]))} cY'}

We first show that for any e = (X, (eg, (X', (e}, €5)))), there exists at most one pos-
sible f(e) € E’: Since causes must be conflict free, there can at most exist one e’2
and X"’ for each e(’) and e’1 such that (e(’), X", (e’l, e’z))) € X, meaning there can
only exist one Y’ and Y fulfilling the conditions.
We then show that for any e = (X, (g, (X', (e}, €5)))), there exists f(e') = (Y, ((Y’,
(eg.€))).€)) € E": By induction, ¢ € E|, ¢/ € E|, and ) € EJ, so we show
that (Y, (e6, e)) € Eg;. We know there exists X; € cause(e;) such that X; C
(X' = 71 (7 (X)), and there exists X, € cause(ey) such that X, C 7y(X).
And since for all e € Y, either ¢, € X, € cause(ey) ore}, € Xy € cause(e),
we get that Y/ € cause((fy(ey), f1(e;))), and therefore (Y, (fy(eg), f1(e1))) €
Ej);- And for similar reasons Y € cause(((Y’, (fo(eg), f1(e1))), f(e5))), meaning
(Y, (Y, (foleg), f1(e)), f2(e))) € E'.
We then show that for any ¢/ = (X, ((X’,(e(’),e’l)), e’z)) € E’, there exists e =
(Y, (eg, (Y, (e}, €,)))) € E such that f(e) = ¢’. By induction, there obviously exist
eg, e1, €, such that fo(eg) = e, fi(e;) = e}, and f;(e;) = ¢,. We also know there
exist X, € cause(e{)), X, € cause(e)), and X, € cause(e)) such that (1) whenever
x", (eg, e)),ell)) € X, either eg € X, ore! € X, orell € X,, and for each
(eé”,e’{') € X", there exists X"’ C X" and e’z” such that ((X"’,(eg’,e’l”)), e’z”) €
X; and (2) whenever ¢; € X, there exists (X" ,(eg ,e’l’ )), e’2’ )) € X such that
e; € {e(’)’,e’l’,e’z’}.
Fori € {0,1,2}, since f; is an isomorphism, fi‘l(X,») € cause(e;), meaning if we
set Y/ = {(f71 D), £ | (X", (ef,e])),ef)) € Xand el € X, ore] €
Xy} and Y = {(fo_l(eg), (Y",(fl_l(elll), f;l(e;’)))) | 3X"-((X”,(€g,€'l/)), 9/2') €
X and (Y, (f71(€)), /7€) € Y'}, we have e = (Y, (ep, (Y', (e}, ¢,))) € E
and f(e) =¢'.
We then show that f is a morphism, meaning for e, ¢’ € E:
— Obviously A(e) = A'(f(e)).
— If f(e) = f(e') then either e = (e, (e}, e,)) = €', or e = (X, (ey, (Y, (e}, €))))
and e = (X', (eq, (Y',(e,€5)))), and (e(’)',(Y”,(e’l’,e’z’))) € X if and only if
there exists (e(’)’, ', (e’l’, e’2’))) € X'.However,since YY" € cause(e’l’, e’z’),
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either Y = Y'", or there exist y”” € Y and y’"’ € Y such that y’' § 1 | 2y'".
And in addition, there exist eg’ , eg ", Y,n,and Y,y such that (e(’)’ LY,y EX
and (e(’)’ ", (Yyn,y"")) € X'. Since X and x’ must be conflict-free, X = X'.

- If X »' f(e)*, then either e* = (e, (e1,e3)), e* = (Y, (ey, (Y', (e}, e2)))),
e* = (eO’ (e]s ez)), or e* = (Y9 (e09 (Y/’ (elv 62))))
If e = (ey, (e, e,)) then there exists i € 0,1 | 2 and X, such that X; —; x;(e),

0 1 €2 i i i i

and X = {¢" | m;(¢") € X}, meaning if i = 0, then {&” | my(e") € X;} ~
(eg, €;) and therefore {e’ | ﬂo(ﬂ0|1(e”)) € X;} ~ ((eg, €1), ey), and obviously
fe” | my(mp (") € X;}) = X. If i = 1| 2 then there exists j € 1,2
and X; such that X; —; 7;(e), and X = {¢ | z;(m (")) € X}, and by
similar logic if j = 1 then {e" | z;(ry (")) € X;} + ((eg,e)).e,), and
fAe" | m(moi(e”) € X;}) = X and if j = 2 then {” | my(e”) € X;}
((e()v el)s 92), and f({e,/ | 77.'2(6/’) € X/}) =X.
If e = (Y,(ep, (Y',(e1, ) and f(e) = (Z,((Z',(fo(ep). f1(e1))), f2(e2)))
then there exists e/ = ((Z”,(eé),e’l)), 9’2) € Z such that X = {(X',¢/) | X' C
Z}. This means there exists Y/, eg, e’l’, e’z’ such that fo(ei)’) = eé), i (e’l’) = e’l,
fz(e’z’) = e’2, and (eg, ", (e’l’,e’z’))) € Y. Additionally, either (Z", (e(’), e’l)) e
cause((Z’, (fo(ep), f1(e1))) ore’2 € cause(e,). Andif (Z”, (e(’), e’l)) € cause((Z’,
(foleg), f1(er))) then either {e(’)” | (eg’,e’l”) € Z'} € cause(fy(ey)) or {e’l” |
(ey’.e)") € Z'"} € cause(f(e;)) We therefore get {(Y"", (e, (Y, (e}, e})))) |
Y" C Y} e and f({(Y”’,(eg,(Y”,(e’]’,e’z’)))) Y CY})=X.
If e* = (e, (e}, ey)), or e* = (Y, (e, (Y', (e, e,)))), the cases are similar to the

previous two.
We can use similar logic to argue that f~! is a morphism.

P = P’ | 0: Then thereexists £ and £ such that { P’ |} = (8’, Init/, k’>, {P]} = (&, Init, k),
and € is composed of &' and the empty LREBES, & as described in the parallel
composition rule.

e ife=(X,(,x%))
We define f(e) = { ;. ,
e ife=(e,x%)

And show that f : & — &’ is a morphism, meaning for all ey.e; € E:

— Clearly A(ey) = A'(f(ep)).

— If f(ey) = f(ey) then there exists e such that either e; = (e, *) = e, or there
exist X and X such that e; = (X(e, %)) and e; = (X, (e, *)). However, by
Lemma E.7, we know that whenever X 6 e X (’) contains exactly one event,
e6. Since that event cannot synchronise with anything from E,, e6 must be in
every possible cause of e, and similarly for the causes of 96’ , meaning e can only
have one cause in £’||&,, and therefore e = e.

- For X' C E',if X" = f(ep)" then f(ey) = e; and either ¢y = (e[, *) or
ey = (Xo» (e6, *)).

Ife; = (e(’), %), then {e | 3¢’ € X'.e = (X, (¢/,*)) ore = (&', %)}  ¢,. Clearly
{e]3e’ € X .e=(X,(,x)ore=(e,%)} ={e]| fe) € X'}

If ef = (X, (e(’), x)) then by Lemma E.7 there exists e such that X’ = {e}.
Clearly this requires that (e, %) € X;, which means {(X/, (e, %)) | X(’) C Xy}~
eg, and clearly f({(X!,(e,*)) | X! C X,}) = {e}.
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If e = (e(’),*) then {e | e = (X,(/,*)ore=(,%)fore’ € X'} — ey
If eg = (Xo,(ep,#) then J{X" | 3X" € E' X" ' ¢ ord(e,+) €
Xo. X" »!' e ande” € X" iff f(¢) € X"} — ey» by Lemmas E.9 and
E.10, we know that for all e € X, if X" — e, then X" C X', meaning
X' = (X" | 3X" € E'X" =/ ¢} or A, %) € Xo. X" ' ¢, and ¢ €
X" iff f(e!) e X"}, -

— If f(ep) > f(eq)* then by definition, e > e *.

We then prove f is bijective: We already showed above, that f is injective, and it is

clear that it is also surjective.

In order to show f is an isomorphism, we therefore only need to show that £~ is a

morphism, meaning for e{), e'1 € E":

— Again, clearly A(f_l(e(’))) = A'(e’o).

- If ! (eé)) = f-1 (e’l) then we already know f is a bijection, so e6 = e’l.

- ForX CE,if X » f‘l(ef))* then f‘l(e6) = ¢ and either ¢, = (ef,*) or
e() = (X()9 (eéy *))
If ef = (e(’), %), then {e | (e, *) € X or AX' (X', (e,*)) € X} — eg.
If ez'; = (X, (96, x)) then by Lemma E.7 we know there exists an e such that
X = {e}. This means there exists X’ such thate = (X', (¢/, %)) and (¢’, *) € X,
meaning {¢'} —’ e(’).

Ifej = (e, *) then either X = {e(}, and obviously {e}} > e, or there exists an

X’ such that X’ > ey and X = {e| 3¢’ € X'.e = (¢, %) or e = (X", (¢, %))}.

If ey = (X, (66’ %)) then either X = {e,}, and obviously {96} - eg, or X =
(X" | £(X") = e ord(e,*) € X,.f(X") =" €'}. Clearl any of these

0 0 & y any

X"'s can be used to fulfil the condition.

- If f—l(eg) > f~'(e})* then either (1) ep > e, (2) e) = ¢ and e #
f_l(ell)*, (B e =¢, _1(66) # f_l(ell)*, and f_l(ef)) EX f‘l(e’l), or
(4) e]" = ¢ and there exist 7, and y; such that /l(f‘l(e(’))) € {roll y,, roll bound}
and A(f~!(e;)) € {roll y,, roll bound}.

In case 1, the condition is trivially fulfilled. Case 2 will never occur. In case 3,
as shown above, e(’) € f(X) e’l, and by Lemma E.8, this means e(’) > e’l. In

case 4, since the eg and e’l must both have been caused by a roll at the end of
a subprocess, they were either in parallel or different option in a choice, and in

either case clearly e) >’ e.

And obviously from Lemma E.6 and the definition of Init, we see that f(Init) = Init’
and fok' = k.

P=X+Yand P’ =Y + X: Selection works the same in roll-CCSK as in CCSK, so
this case is the same as in Proposition 4.9.

P=(X+Y)+Zand P =(X +Y)+ Z: Selection works the same in roll-CCSK as
in CCSK, so this case is the same as in Proposition 4.9.

P = P’ + 0: Selection works the same in roll-CCSK as in CCSK, so this case is the
same as in Proposition 4.9.
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P=0Q\A,P =0 \Aand Q =Q': Then {Q] = (&p.Inity,ky ), and {Q'] =
<8Q/, InitQ/, kQ/>,there exist an isomorphism fQ : é'Q - £Q/ such that fQ(InitQ) =
Inityr and for all e € Inity, kp(e) = ko (fple)), and

(&, Tnit, k) = <5Q | p(A U A), Tnity N p(A U A), kg | p(AU X)) and (&, Tnit', k') =
(€00 1 (AU, Tnitg N p(AU D) kg T p(AUAD)).

We now show that e € p(A U Z) if and only if f(e) € p(A U X).
For any e € E,, obviously Ay(e) € AU A iff Ay/(f(e)) € AU A. We show that for
any X C Ej, X € causes(e) if and only if f(X) € cause(f(e)) by induction in the
size of X.
If X = @ then there does not exist x C E, such that x o e, and by definition of an
morphism, there cannot exist x’ C Ey such that x' = f(e), meaning @ € cause(e).
And since f is an isomorphism the same argument can be used for £~
If X contains n events, and for all events ¢’ and X’ € cause(e’) such that X’ contains
less that n events, X’ C p(AU A) if and only if f(X') € cause(f(e')) then whenever
x! o f(e), there exists x C Eg such that x —4 e and f(x) C x', meaning there
exists ¢/’ such that x N X = {e”}, and x' N f(X) 2 {f(e")}. And by induction if
X" — e"” € X then X" C X and therefore f(X"') € causes(e’’). And since X
is conflict-free, obviously f(X) is conflict free. And since f is an isomorphism the
same argument can be used for f~!.
P=A @, 5)and P’ = (v 5)P,{"%/,;} where A(d,7) = P,: Obvious
=, P’ Obvious.
All the structural induction on bound tags cases follow naturally from induction.

E.9 Proof of Theorem 7.5

sy Lm]
Proof. We first prove that if there exists a P’ and transition P —— P’ then there

. . . .. . fe}
exists an isomorphism f : €& — &’ and a transition Inlt—e> X such that A(e) = pu,
fok! = kle = m], and f(X) = Init’. We prove this by induction on the transition
M P,:

— Suppose P = ay.Q, P = ay[m].Q, 1 = a, and std(Q). Then there exist &o and
e, such that {Q]} = ((Eg, Fg.—¢.>0. 40, Actp), Init, k) and (&, Init, k) is con-
structed based on this as described in the prefix rule.
And there exist £y and e; suchthat {Q]}; = ((EQ,, Forim 0o, /lQ/,ActQ/),InitQ/,kQ/>
and (8 ! Init', k' > is constructed from this a described in the past prefix rule.
By induction, there must exist an isomorphism f, : & — &y, and we define
f=roleg e; ], which is clearly an isomorphism.
ea
Since std(Q), ,meaning Init = @, and since no X exists such that X — e,, Init—
{e,}, and the rest of the conditions are obviously satisfied.

[m]
— Suppose that P = a, [1].0, P = ay[n].Q’, Q—& Q',and n # m.
Then there exist £y and e, such that {Q]} = ((EQ, Fp.=0,>0, 40, Actp), Initg, kg >/
Then there exist £, and e, such that { O]} = <(EQ, Fg,=0,>0, Ag> Actp), Initg, kQ>
and (&, Init, k) is constructed based on this as described in the past prefix rule.
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And there exist £y and e; suchthat {Q]}; = <(EQ,, For,=00,B>0rs Agr, Acty), Initgr, kg >
and (8 ! Init', K/ > is constructed from this a described in the past prefix rule.

By induction, we get an isomorphism f, : £y — &y and a transition Init, i
XQ in Cer(gQ) such that ),Q(e) = U, le(fQ(e)) =m, and fQ(XQ) = In|th
We define /' = fple, — e; 1. Since Init, and X, are conflict-free in &gy, Inity U

{e,} = Initand XyU{e,} = X are configurations of C,,.(£), and clearly Initﬁ X.

Suppose P = Py | P, P' = P(; | Py, POM P!, and fsh[m](P,). Then there exist

&y and &; such that for i € {0, 1}, { P} = ((E;, F;, —~;,>;, 4;, Act;), Init;, k;), and

(&, Init, k) is constructed as described in the parallel composition rule.

And there exist £y and &, such that { Py [} = ((Ey, Fy, =, Bqr» Ay > Acty), Inity, ko),
(P} = ((Eyr, Fyr, 10,50, Ap, Acty), Inity, ko), and (€7, Init’, k') is constructed

as described in the parallel composition rule.

We have isomorphisms f : & — &y and f] @ & — &/, and there exists a

e
transition Inito—”> X in C,,.(&) such that Ap(e,,) = u, ki (fo(e)) = mand fo(X) =
InitO/.
(foleg), *) if e = (ep, *)
We define a helper function f”(e) = 4 (x, fi(e))) if e = (%,e;) and our iso-
(foleg), fi(ep)) ife=(ep. ;)
. (F10.f1@) ife=(X,e)
morphism as: f(e) = { , . .
f'(e) otherwise
It is clear that fof~! = I, and f~lof = I,
We show that f : & — &’ is a morphism, meaning for all e, e’ € E:

« Obviously A(e) = A'(f(e))

o If f(e) = f(e’) then since f, and f are injective, e = ¢’.

e For X’ C E',if X’ »’ f(e)* then either e* = (Y, e, and there exists e,y €
F(Y)suchthat X" = {(Y',e) | Y' C f/(Y)}, or e* € E, and there exists X"’
such that X" =/ f(e) and X’ = {¢ | (ﬂ(’)(e’), ﬂ;(e’)) € X"}, ore* =(Y,ey)
and X' = {f(e)}, ore* = (Y, e,) and

3i € {0,1}, X, € E/.X! =/ z/(f(e))
X'=|J3X"| ordey € F(¥).X] =] xl(ey)
,and ¢ € X" iff /(") € X;

or ¢* € E, and there exists X" such that X" =/ f(e) and X" = {¢’ |
(e, () € X"}

If e* = (Y, e, and there exists e,, € f(Y) such that X’ = {(Y',e) | Y' C
f(Y)} then there exists an e;imes € Y such that f (e;) = ey and clearly
(Y)Y CY} b (Y, e.

If e* € E, and there exists X such that X" ! f(e) and X' = {e’ |
(n(’)(e/ ), 7 (e')) € X"} then by induction and since || is an REBES product,
there exists X! C E, such that X" —, e, f(X"") C X", and if ' € X"’
then f(e') # L. This means {¢’ | (zy(e'), 7;(¢')) € X"} > e.

51



Ife* =(Y,e, ) and X' = {f(e)}, ore* = (Y,e,) and
o |3iet01},x! € ELX ! l(f(e)
X'=JqX"| ordey € f(Y).X] =] xl(ex) then by induction, since
.and ¢” € X" iff z/(e") € X;
f~!is amorphism for each X; ~; z;(e), f(X;) C X] =1 z/(f(e)), and for each
X, o, m(e) €Y, f(X) C X! ! 2/(f(e])) meaning

3i €{0,1}, X; € E;. X; =, m;(e) 3i € {0,1}.X; € E/. X =/ 7/(f(e)
X"| ordel, € Y.X; =, mi(el) C1X"| ordey € f(Y).X] ! 7l(ey)
,and e” € X" iff z/(e") € X; ,and ¢” € X" iff /(") € X;

If e* € E, and there exists X such that X" ! f(e) and X' = {e’ |

(ﬂ(’)(e’ ), ﬂi (")) € X"} then by induction and because || is an REBES prod-
uct, there exists X" C E, such that f(X"") C X" and X"’ — e. This means
{e/ | (mp(e)), my (") € X"} 1> e
o If f(e)>' f(¢')" then there exists i € {0, 1} such thateither z(f (e))>!7](f (e))*,

or 7/(f(e)) = #/(f(e')) # L, and f(e) # f(e'), or f(')* = f(¢)), f(e) #
f(€),and f(e) € X »' f(e'), or f(e')* = f(e') and there exist y, y’ such that
A'(f(e)) € {roll y,roll bound} and A'(f(e’)) € {roll y’, roll bound}.
If 7/ (f(e)) > z/(f(e’))* then by induction 7;(e) I>; 7;(¢’)*, meaning e* 1> e.
If 7' (f(0)) = 7/(f(¢) # L, and f(e) # f(¢') then 7,(e) = m,(¢') # L and
e # ¢/, meaning e > e'*.
If f(e"* = f(e), f(e) # f('),and f(e) € X =’ f(e) then, since, by similar
arguments to the previous case, f‘l(X) — f(e/),and e € f~1(X), e> e*.
If f(e")* = f(e') and there exist y, ¥’ such that A’(f(e)) € {roll y, roll bound}
and A'(f(e")) € {rolly’, roll bound}, then A(e) € {rolly, roll bound} and A(e’) €
{roll ¥, roll bound}, meaning e &> e'*.

By similar arguments, f~! is a morphism too.

We now show that there exists an event (Y, (e, *)) € E suchthat {e’ | (zo(e’), 7,(e")) €

{e,}
Y} C Init. Since Inito——‘—>, for every X = e,, Xo N Inity = X, = {ey}, and if
X, F e then by Lemma E.6, X = e,,, and therefore X 5,) N Inity # @. Therefore
there must exist one (Y, (e, *)) € E such that {e’ | (zy(e), 7(e')) € Y} C Init.

. 2 . .
We use this (Y, (eﬂ, %)) as our e and show that Inlt——e—>: Since Y C Init, for every
X + e, X nInit # @. And if ¢’ > e then it must that either zy(e’) > e, in which
case my(e’) & Inity, and therefore ¢’ & Init, or zy(e’) = e, and e # ¢, in which

{e,}
case, since Inito—”>, ¢’ ¢ Inity, and therefore ¢/ ¢ Init,ore’ € X — eande’ # e,
in which case zy(e') € X = e, or zy(e') € X, = my(e”) for ¢’ € Y, and by
Lemmas E.8 and E.10, zo(e’) > e,,, meaning 7y(e’) & Inity, and e’ & I.

We therefore have Init—{—e-i» I'U {e}, and obviously A(e) = Ag(e,) = u and fok' =
kle + m], and since fo(Inity U {e,}) = Init; and f;(Init;) = Init], and there only
exists one (Y, (e,, *)) € E such that {¢’ | (zy(e'), 7;(e')) € Y} C Init, f(Init U
{e}) = Init’.
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/ / / alm] / alm] '
— Suppose P = Py | P, P' = P | P|, h— Pj, — P/, and p = 7.
Then the construction of (&, Init, k) and (8’ JInit’ K > and the isomorphisms is

. . . . . ., leg)
similar to the previous case. And by induction we have transitions Inity —— and

{e1}
Init; IR fulfilling the conditions.
For similar reasons to the previous case there exists exactly one (Y, (e, e;) such that
{e/ | (my(e"), = (")) € Y} C Init, and we use this (Y, (e, €;)) as e, and the rest of
the proof follows similarly.

— Suppose P = Py + P, P' = P, + P, P, i, P;, and std(P;). Then the rule for
selection is the same in roll-CCSK as in CCSK, and the case is therefore identical
to Theorem 4.10. -

— Suppose P =Q\ A, P =Q'\ A, Q—ﬂ Q’,and y & AU A. Then there exist &o
and £, such that [ Q] = (£p.Init, k), (') = (&), Inity, ki, ), and & and €’

are constructed from EQ and £ ’Q as described in the restriction rule, and there exists

{eg}

an isomorphism f, : £&; — 8’Q and a transition Init, 2, where Ag(ep) = u,
fon,Q = kQ[eq = m], and fQ(Ir"tQ U {eQ}) = Inlt,Q

Since there exists a standard process P such that P —* P, there cannot exist
e’ € Init such that A(e’) € AU A or for all x € cause(e’), there exists ¢’ € x such
that A(e’’) € A U A, meaning Init N p(A U A) = Init, and, since ey € p(4 U A),

e

Tnit—. .

— Suppose P = Q[f], P! = Q'[f], Q—>v i Q’, and f'(v) = p. Then the rule for
functions is the same in roll-CCSK as in CCSK, and the case is therefore identical
to Theorem 4.10. -

— Suppose P = (vy)Q, P' = (vy)Q’, and Qﬂ> Q’. Then there exist A, and Act

such that {Qf} = ((E, F,~,1>, Ag,Actp),Init, k) and (&, Init, k) is constructed
based on this as described in the tag binding rule. And there exist Ay and Acty,
such that Q') = ((E/, F',/,>', Agr. Acty), Init’, k') and (&', Init’, k") is con-
structed based on this as described in the tag binding rule.
And there exists an isomorphisms fQ : (E,F,—>,>, /IQ, ActQ) - (E',F',»'
>, AQ,, ActQ,) and a transition Init—e> XinC,.((E,F,~,>, AQ, ActQ)) such that
Ao(e) = u, fok! = kle = m], and f(X) = Init'". Clearly this all still holds for &
and &'.

[m]
— Suppose P =Q, P/ = Q’, and Qﬂe O’. Then the result follows from induction
and Proposition 7.4.

. . - . e} .
We then prove that if there exists a transition Init — X then there exists a P’ and a

pylm]
transition P —— P’ and an isomorphism f : € — &' such that A(e) = y, fok’ =
k[e = m], and f(X) = Init’". We prove this by induction on P.

— Suppose P = 0. Then E = fJ, and obviously no transitions exist in Cp,(E).
— Suppose P = roll y. Then there does not exist e € E such that A(e) = u.
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Suppose P = rolling y. Then there does not exist e € E such that A(e) = u.
Suppose P = a,.P". Then {e,} ~ ¢’ foralle’ € E \ {e,} such that A(e) = p,
meaning by definition e = e,. In addition, by Lemma E.5, whenever e € Init,

. . [m]
A(e") € {roll y’, start roll ¥, roll bound} meaning std(P). This means we get p

a[m].P" for some fresh m, and the isomorphisms are similar to this case in the proof
of Theorem 4.10.
Suppose P = a[n].P” and {P"]} = (&",Init” k" ). Then e, € Init, and clearly

TR " . . .. g Melm] "
Init" — X", meaning there exists a key m and a transition P ——— P'", such

that { P}y = (&, Init"’, k""" and there exists an isomorphism f” : &’ —

. A)im]
E" such that K"’ (f"(e)) = m and f"(X") = Init"”. It m # n, then P ——s

a[m].P"". Otherwise, we can chose a fresh m and still get a transition. We define
our isomorphism as f = f'[e, — e(’l ] and the rest of the proof is straightforward.
Suppose P = P, + P;. Then the proof is similar to the same case in CCSK, as the
choice semantics are the same.

Suppose P = Py | Pi, { Py} = (&, Inity, kq), Cp (&) = (Eg, Fy, Co, =), (P} =
(&1, Inity, ky), and Cp.(&;) = (Ey, F},Cy,—). Then either e = (Y, (e, *)), e =
(Y, (*,ep)), ore = (Y, (ey, e;)).

If e = (Y, (eg, *)), then whenever X6 > €, there exists ¢’ € Y such that z(e’) €
X, and {e'} — e. And whenever zy(e’) > 7y(e), we get e’ 1> e. This means Init is

4
conflict-free, 7y (X) is conflict-free, and Init, _0’0 7o(X). There therefore exists a
Ag(eg)lm]

key m and a transition P)———— P/, such that {[P(;]} = <8’, Init('), k6> and there

exists an isomorphism f;, : & — 8(’) such that ké)(fo(eo)) = m and fy(my(X)) =
Init;.

C Aoleg)lm]
We chose an m, which is fresh for P;, and we get P ——— P0 | P;. We define
our isomorphisms similarly to the corresponding case in the first part of the proof,
and the proof of them being isomorphisms is similar.
If e = (Y, (%, e;)), the argument is similar.
If e = (Y,(ep,ep)), then for i € {0, 1}, whenever Xi’ ~; e;, there exists =

Y such that z;(¢) € X] and {¢’} +~ e. And whenever z;(¢) #; 7;(e), we get

e,
¢’ #f e. This means Init; is conflict-free, x;(X) is conflict-free, and Init; —0>i m(X).
. . Ai(ep)lm;]
There therefore exists a key m;, and a transition P, ——— P!, such that {[P:/ ]} =

(&/,Init], k/') and there exists an isomorphism f; : & — &/ such that k/(f;(e))) =
m; and f;(z;(X)) = Init].
We say that m, = m, is a fresh m, and then since Ay(ey) = A;(e;) and A(e) = 7, we

A(e)[m] . . . .
get P AN P(; | Pl’ . We define our isomorphism similarly to the corresponding

case in the first part of the proof, and the proof of them being isomorphism is similar
to that case. The rest of the case is straightforward.

Suppose P = P\ A, {P"|} = (&£”,Init, k), and C,(E") = (E", F",C",>").
Then A(e) € AU A _and there exists at least one Y € cause(e) such that if ey
then A(e’) € (A U A). And since P is reachable, for all ¢/ € Init, A(e’) &€ (AU

_ e I
A). We therefore know Init” = Init — X, meaning there exists a key n and a
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.. V') . .
transition P’ —— P'" such that {P""']} = <€”’, Init"”’, k”’>, and there exists an

isomorphism f’ : £ — £ such that ok’ = [e = n] and f'(X) = Init"”’.

AN
This means Pi P\ A and the isomorphism f | E clearly fulfils the remain-

ing conditions.
— Suppose P = P"[f], {P"]} = (£”,Init, k). Then the case is similar to the corre-
sponding case of Theorem 4.10.

E.10 Lemma E.11

Lemma E.11. Let P be a roll-CCSK process. If { P} = ((E, F,—,>, 4, Act), Init, k)
where e,e’ € E, e # e, and there exist y,y’ such that Ae) € {roll y,bound roll} and
A"y € {roll y’, bound roll}, then e > €.

Proof. It is obvious from the syntax that e and e’ come from parallel subprocesses, and
the result follows from the parallel composition rule.

E.11 Lemma E.12

Lemma E.12. Let P be a roll-CCSK process. If { P} = ((E, F,~,>, 4, Act), Init, k)
and e € E where A(e) & {roll y,bound roll}. Then whenever X ~ e, either X = {e} or
forall e’ € X, Ale") & {roll y, bound roll}.

Proof. Obvious in most cases. In parallel composition we use the fact that we never have
e € X" — ' where A(e'"") € {roll y, bound roll}.

E.12 Lemma E.13

Lemma E.13. Let P be a roll-CCSK process. If { P} = ((E, F,—~,>, 4, Act), Init, k)
and e,e’ € Init then e’ 1> e if and only if there exist y,y' such thaty <p y', either A(e) =
start roll y or A(e),[k(e)] occurs in P, and either A(e') = startroll y" or A(e’),/[k(e)]
occurs in P.

Proof. We prove this by induction on P.

— Itis trivial in all cases except P = ayn [#]l.P'and P = Py | P,.

— Suppose P = a,»[n].P’. Then if ¢’ 1> ¢ either e = e, or the result follows from
induction and the fact that e € Init means A(e) & {roll y”,roll bound}. If e = e,
then ¢’ > e unless A(e’) = start roll y’ for some y" #p y.

And if there exist y,y’ such that y <p y’, either A(e) = startroll y or A(e),[k(e)]
occurs in P, and either A(e’) = start roll y’ or A(e"),/[k(e)] occurs in P then either
e = e, or the result follows from induction. And if e = e,, then {e | Ap(e) €
{roll y’, roll bound} U {start roll y" | A8, n.B,s or B,/[n] occurs in a,.P}} X {e,} C .

— Suppose P = P, | P;. Then there exists i € {0, 1} such that either z;(e’) >; 7;(e)

or m;(e') = m;(e). If m;(¢’) >; 7;(e) then the result follows from induction, and if

n;(e') = m;(e) then that contradicts e, ¢’ € Init.
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E.13 Proof of Theorem 7.7

p
Proof. We first prove that if there exists a P’ and a transition P =~ P’ then there ex-

. . . . e}
ists an isomorphism f : €& — &’ and events e, and ¢, e, ... e, such that Init N
{60} {en} {er}
Xo— X ... — Xpp1 — Xyone> Me,) = p, {eg,eq,...e,} = {e | Iy <p
y" and either A(e), [k(e)] occurs in P or A(e) = start roll y’ and rolling y” occurs in P},
fok! =kt {e]| f(e) €Init'}, and f(X ) = Init’.
roll y
We prove this through induction on the derivation of P~ P’ first if p = roll y:

(ROLL): Suppose P = rolling y and P’ = roll y. Then E = {e,,e,} and E' =
{e/,el} with the rest of £ and & as defined in the semantics, and Init = {e,}

fe,) ter) ter}
and Init" = @, and obviously Init AN {e,,e;} — {e,} — @, and we define

e ife=e, . ..
f(e) = , which fulfils the conditions

f
e; ife=e,
roll y
(act ROLL): Suppose P = «a,[m].R, P' = «a,.R, lr<pr'ys R ~~> R, {R] =
(g, Tnitg, kg), and {|Ré {y,lyspy,}]} = (g, Initgr, k). Then (7 | 7 <p 7]
is y and all y’s for which some B, or B,[n] occurs in P. It is clear from the seman-

tic rules that this means Init’ = {e | A(e) € {startroll y’ | rolling y’ occurs in P and
Ap, n.p, or p,,[m] occurs in P} and there exists an isomorphism f : £ — e

{e,} {eo} {ew) {e}
In addition, by induction we have Initg Xog Xip oo Xpy1,—
Xaonegs Megs 15 ... ne, ) = {ay[m] |y <g y" and a,[m]" occurs in R}U{start rolly" |

v <g r" androlling y" occurs in R} and f(Xy,,,) = Initgs. Since Init = Initg U

{e/}
{e,}, and no new preventions are added to e,, we get Init——, and forall e € E such
that A(e) & {roll y’, roll bound} U {start roll y/ | ﬂﬂ,n.ﬁy/ or f,/[n] occurs in @, . P},
{e,} feo} len}
whenever X — e, we have e, € X, meaning, Init — X; — X, ... —
{e,}

X1 = Xones Me,) = rolly, A({eg, ey, ..., e,}) = {a,[m] | y <p y" and a,[m]’ occurs in P}u

{startroll y' | y <p y’ and rolling y" occurs in P} = Init\ {e,}.
roll y
(par ROLL): Suppose P = QO | R, P = (Q | B yiy<prys Q ~r 0L 0] =

(€. Initg, ko ), {R] = (Eg, Initg, kg), (€, Init, k) is constructed from ( €y, Inity, k¢ )
and (Eg, Initg, k z) as described in the semantics, {[Qé lr<pr') ]} = <€(’2, Inité, k’Q>,
{[Ré {r’lyspy’}]} = <8’  Initl, k%>, and <8’, Init’, k’> is constructed from <£’ , Init'Q, k’Q>

and <81'2, Init'R, k%} as described in the semantics.
It is clear from the semantics that there exists an isomorphism f : & — &’.

) (eo! few) (e}
In addition, by induction we have Init, Xo, — X g — X, +1g —
Xd,meQ,A({eO,el, coosep)) ={a,[ml |y <gy"and @, [m]" occurs in R}u{start roll y’ |

v <g v" and rolling " occurs in R} and f(X oy ,,) = Initpr.
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From this we get that (e,, *) € E, and for each X +— (e,, *), we have an Xg e,
such that X = {e € E | 7p(e) € Xy}, and therefore X N Init # @. Addition-
ally, if e B> (e, *), then either zy(e) > e,, or A(e) € {roll y’,bound roll}, meaning

e & Init. We therefore get Init ﬂ Since by Lemma E.11 Z¢’ € I.A(¢') =

roll ¥’ or bound roll, we get that by Lemma E.12 for ¢;, 0 < i < n, whenever

X; — e, either X; = {e;}, or e, € X;, meaning for any e € E such that zy(e) €
{eg.eq,...e,}, whenever X — e, either X = {e} or (e,, *) € X. The rest follows
from Lemma E.10 and Lemma E.13.

(prop ROLL 1): Suppose P = f/[m'].R, P = p)[m'l.R",y" # v, { R]} = (Eg, Initg, kg),

{e,} {e}

roll y
{R']} = (Eps,Initgr, kpsd, and R > R’. Then by induction Initg
{90} {en} {e,}

Xg— X;...— X,,1 — X o and there exists an isomorphism fp :
Er — Ep fulfilling the conditions. Then it is clear from the semantics that the

result holds using the isomorphism f = fr[e, = e’ ].
(prop ROLL 2): Suppose P = ﬂ}’,.R, P = ﬁ)’/.R’, {R]} = (Eg,Initg, kg), {R']} =

{e,} e/} feo} fen) ler}

(Epr, Initgs, k), and Inity Xy Xy ...m™ X,11— Xone> and
there exists an isomorphism f : £g — Eps such that fr(X,) = Initg,. Then itis
clear from the semantics that the result holds using the isomorphism f = fr[e, —
el
(prop ROLL 3): Suppose P = Py + P, P’ = P/ + P, [P} = (&), Tnity. ko),

. . roll y .
(P} = (&, Inity, k;) {[P(;]} = (Epr, Initgs, k), and Py ™ P;. Then by induc-

e} ler} {egy } {eny ) ler}
tion Init, 0p— X1, ---— Xpt1,—— Xdone,> and there exists
anisomorphism fj, : & — &y fulfilling the conditions. Then, since P is consistent,
(e} {O.eq)) (O}
std(P;), and therefore {0} xInity——— {0} x X ——— {0}xX; ...———

{Or))
{0} X X, 1,— {0} X X44pe, and the rest obviously holds.
(prop ROLL 4): Suppose P = R\ A, P’ = R'\ A, {R]} = (Eg, Initg, ki), {R']} =

. roll y . . . e fe) teo}
(Egr, Initgr, kgr), and R ™ R’. Then by induction Initg Xo

{en} {e,}
X ...— X,11 — Xone and there exists an isomorphism fp : £ = Eps

such that fr(X,) = Initg. Then, since P is consistent, if a, [m] occurs in R, a &

AU Z, and by Thoerem 7.5, whenever e € Inity, there exists X € cause(e) such

that X C p(A U A), and the result follows.
(prop ROLL 5): Suppose P = R[f], P' = R'[f], 7" # 7, {R]} = (Eg.Initg, k),
{e,) fe)

roll y
{R']} = (Eps,Initgr, kps), and R > R’. Then by induction Initg
{eg} {e,} {e,}
Xg— X;...— X,,1 — X_one and there exists an isomorphism fp :
Er = Ep fulfilling the conditions, and the result follows.
(prop ROLL 6): Suppose P = (vy )R, P’ = (vy")R',y' #v, {R]} = (Eg, Initg, k),

roll {e.} {e/}
_—

v
{R']} = (Eps,Initgr, kps), and R > R’. Then by induction Initg
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{eg} {en} {e,}
Xg— X;...— X,,1 — X o and there exists an isomorphism fp :

Er = Ep fulfilling the conditions, and the result follows.

If p = bound roll the proof is similar.

. . . e

We then prove that if there exists events e, and ey, ey, ... e, such that Init —
(e} {en) {e} P

Xo— X, ...— X, ;1 — Xy then there exists a P’ and a transition P ~* P’

and an isomorphism f : & — &’ such that A(e,) = p, {ey,e;,...¢,} = {e | I ¥y <p
y" and either A(e), [k(e)] occurs in P or A(e) = start roll y’ and rolling ¥’ occurs in P},
fok! =k I {e| f(e) € Init'}, and (X ,,,) = Init'.

By Lemma E.12, whenever A(e) & {roll y,roll bound}, there exists X such that
X + e, and for all e/ € X, Ae") & {roll y,roll bound}. Additionally, whenever A(e) €

{e/}
{roll y, roll bound}, e & Init. This means if Init L), then A(e) € {roll y, roll bound}.
In addition, since whenever X — e, we have X N Init # @, it must be that a rolling y
occurs in P, such that if A(e) = bound roll then rolling y is bound by some (vy) and if

Mey)
Ae) = roll y then rolling y is free, meaning we get P > P’ The rest follows from
Lemma E.13.
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