
Deadlock-Free Asynchronous Message Reordering in
Rust with Multiparty Session Types

Zak Cutner
Imperial College London

London, UK

Nobuko Yoshida
Imperial College London

London, UK

Martin Vassor
Imperial College London

London, UK

Abstract
Rust is a modern systems language focused on performance
and reliability. Complementing Rust’s promise to provide
"fearless concurrency", developers frequently exploit asyn-
chronous message passing. Unfortunately, sending and re-
ceivingmessages in an arbitrary order tomaximise computation-
communication overlap (a popular optimisation in message-
passing applications) opens up a Pandora’s box of subtle
concurrency bugs.

To guarantee deadlock-freedom by construction, we present
Rumpsteak: a new Rust framework based on multiparty ses-
sion types. Previous session type implementations in Rust are
either built upon synchronous and blocking communication
and/or are limited to two-party interactions. Crucially, none
support the arbitrary ordering of messages for efficiency.
Rumpsteak instead targets asynchronous async/await

code. Its unique ability is allowing developers to arbitrar-
ily order send/receive messages while preserving deadlock-
freedom. For this, Rumpsteak incorporates two recent ad-
vanced session type theories: (1) 𝑘-multiparty compatibility
(𝑘-MC), which globally verifies the safety of a set of partici-
pants, and (2) asynchronous multiparty session subtyping,
which locally verifies optimisations in the context of a single
participant. Specifically, we propose a novel algorithm for
asynchronous subtyping that is both sound and decidable.
We first evaluate the performance and expressiveness of

Rumpsteak against three previous Rust implementations.
We discover that Rumpsteak is around 1.7–8.6x more effi-
cient and can safely express many more examples by virtue
of offering arbitrary ordering of messages. Secondly, we anal-
yse the complexity of our new algorithm and benchmark it
against 𝑘-MC and a binary session subtyping algorithm. We
find they are exponentially slower than Rumpsteak’s.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9204-4/22/02. . . $15.00
https://doi.org/10.1145/3503221.3508404

CCS Concepts: • Software and its engineering→Devel-
opment frameworks and environments; Source code
generation; • Computer systems organization→ Relia-
bility.

Keywords: Rust, Asynchronous Message Passing, Message
Reordering, Computation-Communication Overlap, Multi-
party Session Types

1 Introduction
Rust is a statically-typed language designed for systems soft-
ware development. It is rapidly growing in popularity and
has been voted “most loved language” over five years of sur-
veys by Stack Overflow [19]. Rust aims to offer the safety of
a high-level language without compromising on the perfor-
mance enjoyed by low-level languages.Message passing over
typed channels is common in concurrent Rust applications,
where (low-level) threads or (high-level) actors communicate
efficiently and safely by sending messages containing data.
To improve performance by maximising computation-

communication overlap [14, 37, 56], developers often wish
to arbitrarily change the order of sending and receiving
messages—we will present several examples of this tech-
nique, which we refer to as asynchronous message reordering
(AMR). Our challenge is to remedy communication errors
such as deadlocks, which can easily occur inmessage-passing
applications, particularly those that leverage AMR.

To achieve this, we introduce Rumpsteak: a framework for
efficiently coordinating message-passing processes in Rust
using multiparty session types. Session types [28, 57] (see
[62] for a gentle introduction and [23] for a more exhaustive
one) coordinate interactions through linearly typed channels,
that must be used exactly once, ensuring protocol compliance
without deadlocks or communication mismatches.

Current state of the art. Since Rust’s affine type sys-
tem is particularly well-suited to session types by statically
guaranteeing a linear usage of session channels, there are
several previous attempts at implementing session types in
Rust [12, 34, 38, 41]. However, their current limitations pre-
vent them from guaranteeing all four of deadlock-freedom,
multiparty communication, asynchronous execution and AMR.

Our framework. We motivate the importance of each
feature and explain how Rumpsteak incorporates this.
Deadlock-freedom. One of the most important proper-

ties of concurrent/parallel systems is that their computations

ar
X

iv
:2

11
2.

12
69

3v
2

 [
cs

.P
L

]
 2

 F
eb

 2
02

2

https://orcid.org/0000-0001-7180-4530
https://orcid.org/0000-0002-3925-8557
https://orcid.org/ 0000-0002-2057-0495
https://doi.org/10.1145/3503221.3508404

G Global Type M Finite State Machine (FSM) M′
Optimised FSM A Rust API P Rust Process

G

. . .M2M1 M𝑛

M
′
1 M

′
2 . . . M

′
𝑛

A1 A2 . . . A𝑛

P1 P2 . . . P𝑛

A
s
y
n
c
h
r
o
n
o
u
s

S
u
b
t
y
p
i
n
g

R
u
s
t
T
y
p
e
c
h
e
c
k

(a) Top-down

User-Written Generated

M
′
1 M

′
2 . . . M

′
𝑛

A1 A2 . . . A𝑛

P1 P2 . . . P𝑛

𝑘-Multiparty Compatibility [43]

R
u
s
t
T
y
p
e
c
h
e
c
k

(b) Bottom-up

G

. . .M2M1 M𝑛

M
′
1 M

′
2 . . . M

′
𝑛

A1 A2 . . . A𝑛

P1 P2 . . . P𝑛

A
s
y
n
c
h
r
o
n
o
u
s

S
u
b
t
y
p
i
n
g

R
u
s
t
T
y
p
e
c
h
e
c
k

(c) Hybrid

Figure 1. Workflow of the Rumpsteak framework (three approaches).

are not blocked. Deadlock-freedom in our context states that
the system can always either make progress by exchanging
messages or properly terminate.

Multiparty communication. Many previous Rust im-
plementations [12, 34, 38] support only binary session types,
which is limited to two-party communication. On the other
hand, the majority of real-world communication protocols
consist of more than two participants. Rumpsteak there-
fore uses multiparty session types (MPST) [29, 30] to ensure
deadlock-freedom in protocols with any number of partici-
pants (or roles).

Asynchronous execution. Most previous Rust imple-
mentations [34, 38, 41] use synchronous communication chan-
nels. This approach suffers from performance limitations
since threads are blocked while waiting to receive messages.
Rumpsteak instead uses asynchronous communication, where
lightweight asynchronous tasks share a pool of threads.
When one task is blocked, another’s work can be scheduled
in the meantime to prevent the wasting of computational
resources.

Although [12] is also based on asynchronous communica-
tion, only Rumpsteak closely integrates with Rust’s modern
async/await syntax, allowing asynchronous programs to be
written sequentially. To achieve this, asynchronous functions
are annotated with async, causing them to return futures.
Developers can await calls to these functions, denoting that
execution should continue elsewhere until a result is ready.

Asynchronous message reordering. Our main contri-
bution is offering AMR, which no existing work can provide
while preserving deadlock-freedom. To motivate this, we
introduce a running example of the double buffering proto-
col [33]. Buffering is frequently used in multimedia applica-
tions where a continuous stream of data must be sent from
a source (e.g. a graphics card) to a sink (e.g. a CPU). To pre-
vent the source from being blocked while the sink is busy, it
writes to a buffer, which is later read by the sink.

S
o
u
r
c
e

B
u
ff
e
r
s

S
i
n
k

Single Buffer

Time

Double Buffer

Time

Figure 2. Illustration of the double buffering protocol.

We illustrate this effect in Fig. 2. With a single buffer, both
the source and sink are constantly blocked as we cannot read
and write simultaneously. However, adding a second buffer
allows the source and sink to operate on different buffers at
once so that (in the best case) they are never blocked and
throughput can increase twofold.

As we will see in § 2, the double buffering protocol takes
advantage of AMR so it cannot be expressed with standard
MPST theory [29]; communication with the source and sink
are overlapped so both buffers can be accessed at once. The
goal of this paper is to provide a method for ensuring that
protocols optimised in this way preserve deadlock-freedom.

Rumpsteak framework. Weachieve these featureswhile
allowing three different approaches, summarised in Fig. 1.

In the top-down approach, the developer writes a global
type, which describes the entire protocol (see § 2 for an
example). We project this onto each participant to obtain a
local finite state machine (FSM), which describes the protocol
from that participant’s perspective. Next, the developer uses
AMR to propose optimised FSMs for each participant. We
locally verify that each optimised FSM is compatible with the
projected one using an asynchronous subtyping algorithm.
From each optimised FSM, we generate an API so that the
developer can write a Rust process implementation. Our

API uses Rust’s type checker to ensure that these processes
conform to the protocol, and are therefore deadlock-free.
In the bottom-up approach, the developer manually

writes an API and process implementation for each partici-
pant. We derive the optimised FSMs directly from these APIs
and ensure that they are safe using 𝑘-multiparty compatibil-
ity (𝑘-MC) [43]. 𝑘-MC globally verifies that multiple FSMs
are compatible with each other without using a global type.
Finally, we propose a hybrid approach where the pro-

jected FSMs are generated from a global type on one side (as
in the top-down approach). On the other side, the developer
writes both the APIs and process implementations directly,
and we derive the optimised FSMs (as in the bottom-up ap-
proach). We then locally verify that the optimised FSMs are
asynchronous subtypes of the projected FSMs.
To summarise, our subtyping algorithm used in the top-

down/hybrid approaches locally verifies the correctness of
optimisations. This makes it far more scalable than 𝑘-MC as
we will see in § 4. These approaches are also more intuitive
to the developer since they use safety by construction—it is
much easier to write a global type than to determine why a
𝑘-MC analysis has failed for a complex protocol.

Contribution and outline. In § 2, we give an overview
of the design and implementation of Rumpsteak. In § 3, we
present our new asynchronous subtyping algorithm used to
check that an optimised FSM is correct. We prove our new
algorithm is sound (Theorem 7) against the precise MPST
asynchronous subtyping theory [25], terminates (Theorem 6)
and analyse its complexity (Theorem 9). In § 4, we compare
the performance and expressiveness of our framework with
existing work [7, 12, 38, 41, 43]. We show (1) Rumpsteak’s
runtime is faster and can express many more asynchronous
protocols than other Rust implementations [12, 38, 41]; and
(2) our subtyping algorithm is more efficient than existing
algorithms [7, 43], confirming our complexity analysis. § 5
discusses related work and concludes. The supplementary
materials available in the full version [17] contain further
examples and proofs of the theorems. We include our source
code and benchmarks in a public GitHub repository [3].

2 Design and Implementation
This section presents Rumpsteak and explains its threework-
flows: a top-down approach using asynchronous subtyping,
a bottom-up approach using 𝑘-multiparty compatibility (𝑘-
MC) [43] and a hybrid approach combining the two.

2.1 Top-Down Approach
All three approaches result in the same final application, so
we use the example of the top-down workflow (Fig. 1a) to
give a general overview of Rumpsteak’s implementation.

Two-party protocol. Before going into the details of the
top-down approach, we first give an informal insight into

how the protocol is represented at each stage, shown in Fig. 3.
For this, we use the example of a simple streaming protocol,
later introduced in § 4.
Aglobal session type describes the protocol from a global

perspective and includes all participants in the protocol. The
global type for the streaming protocol (shown below) is read
as follows: participant t first sends ready to participant s.
Next, s replies to t with two possible messages: either value
or stop. In the latter case, the protocol terminates (type end).
In the former case, the protocol continues with x, which is
a type variable that is bound by 𝜇x., i.e. the protocol starts
over.

GST = 𝜇x.t → s : {ready.s → t : {value.x, stop.end}}
In Rumpsteak, developers express global types syntactically
with Scribble [55, 63]: a widely used and target-agnostic
language for describing multiparty protocols. We show the
corresponding Scribble description for the streaming proto-
col in Fig. 3a.

A local finite statemachine describes the protocol from
the perspective of a single participant. It shows the send and
receive actions of that participant, independent of what other
participants may be doing in the meantime.
In Fig. 3b, we show the local FSMs for each participant

in the streaming protocol, where ! and ? denote send and
receive respectively in session type syntax [62]. For example,
the FSM for the source first receives ready from the sink,
then chooses to either send value and start over or simply
send stop and finish.
The Rust API is an encoding of a local FSM as Rust code.

This code then uses Rust’s type checker to confirm that a
process implementation, also written in Rust, conforms to
the FSM. For example, the encodings for the source and sink
are shown in Fig. 3c.

Multiparty protocol. In the remainder of this section, we
use a more complex example (the double buffering protocol
from § 1), which allows us to illustrate how Rumpsteak can
verify multiparty protocols. We carefully go through each
step of the top-down approach, closely following Fig. 1a.
To guarantee safety in our double buffering example us-

ingMPST, the developer defines a global type GDB for the
protocol. This protocol has three participants: a source s, a
kernel k (which controls both of the buffers) and a sink t.
We also show the corresponding Scribble description for the
double buffering protocol in Listing 1.

GDB = 𝜇x.k → s : {ready.s → k : {
value.t → k : {ready.k → t : {value.x}}}}

Projection. Once we have created a global type, we use a
projection algorithm to derive the local FSM for each partic-
ipant. In Rumpsteak, we perform projection using 𝜈Scr [2]:
a new lightweight and extensible Scribble toolchain imple-
mented in OCaml.

1 global protocol Ring(role s,
2 role t) {
3 rec loop {
4 ready () from t to s;
5 choice at s {
6 value () from s to t;
7 continue loop;
8 } or {
9 stop() from s to t;
10 }
11 }
12 }

(a) Scribble protocol description

t?ready

t!value
t!stop

s!ready

s?value
s?stop

(b) FSMs for the source and sink

1 type Source = Receive <T, Ready ,
2 Select <T, SourceChoice >>;
3

4 enum SourceChoice {
5 Value(Value , Source),
6 Stop(Stop , End) }
7

8 type Sink = Send <S, Ready ,
9 Branch <S, SinkChoice >>;
10

11 enum SinkChoice {
12 Value(Value , Sink),
13 Stop(Stop , End) }

(c) Rust API code (simplified excerpt)

Figure 3. Different session type representations used within Rumpsteak.

Listing 1. Scribble representation of the double buffering
protocol.

1 global protocol DoubleBuffering(role s,
2 role k, role t) {
3 rec loop {
4 ready () from k to s;
5 value () from s to k;
6 ready () from t to k;
7 value () from k to t;
8 continue loop;
9 }
10 }

s!ready

s?value

t?ready

t!value

(a) Projected FSM for k
(Mk)

s!ready s!ready

s?value

t?ready

t!value

(b) Optimised FSM for k (M′
k)

k?ready

k!value

(c) Projected FSM for s (Ms)

k!ready

k?value

(d) Projected FSM for t (Mt)

Figure 4. FSMs for roles k, t and s of the double buffering
protocol.

We show the projected local FSM for each of the partici-
pants in Fig. 4. For instance, the kernel, whose projected type
Mk is shown in Fig. 4a, (1) informs the source that it is ready
to receive; (2) receives a value from the source; (3) waits for
the sink to become ready; (4) sends a value to the sink; and
(5) repeats from step 1.

Asynchronousmessage reordering. Unfortunately, global
types cannot represent overlapping communication. There-
fore, the projection Mk cannot achieve the simultaneous
interactions we saw in Fig. 2. In practice, developers use
AMR to produce an optimised FSM for the kernelM′

k (shown
in Fig. 4b). Here, the kernel initially sends two ready mes-
sages to the source. This allows the source to write to the
second buffer while the sink is busy reading from the first.
Note that the asynchronous queue is effectively acting as the
second buffer—the second message from the source waits in
the queue while the kernel is processing the first.

Crucially, Rumpsteak verifies thatM′
k is safe to use in the

place ofMk without causing deadlocks or other communi-
cation errors. Otherwise, we would be throwing away the
safety benefits that come with MPST. To achieve this, we
must determine thatM′

k is an asynchronous subtype ofMk,
which we perform using our algorithm presented in § 3.

API design. Once we arrive at an optimised FSMM
′
𝑖 for

each participant, our challenge is to create a Rust API A𝑖 ,
which uses Rust’s type checker to ensure that a developer-
written process P𝑖 conforms toM

′
𝑖 (a relevant introduction

to the Rust programming language can be found in Jung’s
thesis [36, Chapter 8]). In the top-down approach, this API
is automatically generated from an optimised FSM.
To illustrate, we show the API for the kernel (Ak) in List-

ing 2, which checks conformance to M
′
k. To ensure that our

API remains readable by developers and to eliminate ex-
tensive boilerplate code, we make use of Rust’s procedural
macros [58]. By decorating types with #[...], these macros
perform additional compile-time code generation.

Roles (Participants). Each role is represented as a struct,
which stores its communication channels with other roles.
The struct for the kernel (ls. 1 to 6) contains channels to and
from s and t. Developers can in fact use any custom chan-
nel that implements Rust’s standard Sink or Stream inter-
faces [15] for asynchronous sends and receives respectively.
This approach minimises the expensive creation of channels

Listing 2. Rumpsteak API for the kernel.

1 #[derive(Role)]
2 #[message(Label)]
3 struct K(
4 #[route(S)] Channel ,
5 #[route(T)] Channel
6);
7

8 #[derive(Message)]
9 enum Label {
10 Ready(Ready),
11 Value(Value),
12 }
13

14 struct Ready;
15 struct Value(i32);
16

17 #[session]
18 type Kernel = Send <S, Ready , KernelLoop >;
19

20 #[session]
21 struct KernelLoop(Send <S, Ready , Receive <S, Value ,
22 Receive <T, Ready , Send <T, Value , Self >>>>);

in cases where only bounded or unidirectional channels are
required.

Our #[derive(Role)] macro generates methods for pro-
grammatically retrieving these channels from the struct.
Moreover, an optional #[derive(Roles)] macro can be ap-
plied on a struct containing every role to also generate code
for automatically instantiating all roles at once. This will
create the necessary combination of channels and assign
them to the correct structs in order to reduce human error.

Sessions. Following the approach of MultiCrusty [41],
we build a set of generic primitives to construct a simple API.
For instance, the Send primitive (l. 21) takes a role, label
and continuation as generic parameters. In contrast to the
standard approach of creating a type for every state [31],
these primitives reduce the number of types required and
avoid arbitrary naming of these ‘state types’. For brevity, our
API elides two additional parameters used to store channels
at runtime, which are reinserted with the #[session]macro.

Labels. Internally, Rumpsteak sends a Label enum (l. 9)
over reusable channels to communicate with other partici-
pants. Each label is represented as a type (ls. 14 to 15) and
our #[derive(Message)]macro generates methods for con-
verting to and from the Label enum.

Choice. The kernel’s API does not contain choice but we
show an example of this below. Choice is represented as an
enumwhere each branch contains the label sent/received and
a continuation. This design allows processes to patternmatch
on external choices to determine which label was received.
Methods allowing the enum to be used with Branch (an
external choice, l. 3) or Select (an internal choice) are also
generated with the #[session]macro. Even so, the enum is

Listing 3. Process implementation for the kernel.

1 async fn kernel(role: &mut K) -> Result <()> {
2 try_session(role , |s: Kernel <'_, _>| async {
3 let mut t = s.send(Ready).await?;
4 loop {
5 let s = t.into_session ().send(Ready).await?;
6 let (Value(value), s) = s.receive ().await?;
7 let (Ready , s) = s.receive ().await?;
8 t = s.send(Value(value)).await?;
9 }
10 }).await
11 }

still necessary since Rust’s lack of variadic generics means
choice cannot be easily implemented as its own primitive.

1 #[session]
2 enum Choice {
3 Continue(Continue , Branch <A, Self >),
4 Stop(Stop , End),
5 }

Process implementation. Using the API Ak, the devel-
oper writes an implementation for the process Pk; we show
an example in Listing 3. We discuss how our API uses Rust’s
type system to check that Pk conforms to the protocol.

Linearity. The linear usage of channels is checked by
Rust’s affine type system, preventing channels from being
used multiple times. When a primitive is executed, it con-
sumes itself, preventing reuse, and returns its continuation.
Developers are prevented from constructing primitives

directly using visibility modifiers. They must instead use
try_session (l. 2). This function accepts a reference to the
role being implemented and a closure (or function pointer)
to its process implementation. The closure takes the input
session type as an argument and returns the terminal type
End. If a session is discarded, thereby breaking linearity, then
the developer will have no End to return and Rust’s compiler
will complain that the closure does not satisfy its type.

Infinite recursion. At first glance, it seems impossible
to implement processes with infinitely recursive types us-
ing this approach. Nevertheless, for types without an End
primitive, such as Kernel, we can use an infinite loop (l. 4)
to get around this problem. Conveniently, infinite loops are
assigned !, Rust’s never (or bottom) type, which can be im-
plicitly cast to any other type. This allows the type of the
loop to be coerced to End, enabling the closure to pass the
type checker as before.

Channel reuse. We allow roles to be reused across ses-
sions since the channels they contain are usually expen-
sive to create. Crucially, to prevent communication mis-
matches between different sessions, we must ensure that
the same role is not used in multiple sessions at once. There-
fore, try_session takes an exclusive reference to the role,
causing Rust’s borrow checker to enforce this requirement.

2.2 Bottom-Up Approach
In the top-down approach, we generate a Rust API A𝑖 from
an optimised FSMM

′
𝑖 . In the bottom-up approach (Fig. 1b),

we do the reverse: we serialise each API A𝑖 to obtain an
FSM M

′
𝑖 . Next, we use 𝑘-MC on the set of FSMs M′

1...𝑛 . If
they are indeed compatible, then the processes P1...𝑛 , which
implement their respective APIs, are free from deadlocks.
𝑘-MC takes the optimised FSMs of all participants and

verifies deadlock freedom. In contrast, asynchronous subtyp-
ing checks the optimisation of a single participant’s FSM in
isolation. Therefore, 𝑘-MC can be seen as a global analysis of
the protocol and asynchronous subtyping as a local analysis
of a single participant.
To perform the serialisation of an API to an FSM we pro-

vide a Rust function serialize<S>() -> Fsm (this is a sim-
plified version). It takes a session type API (such as Kernel
from § 2.1) as a generic type parameter S and returns its
corresponding FSM. This FSM can be printed in a variety of
formats and passed into the 𝑘-MC tool for verification.

2.3 Hybrid Approach
Developers may naturally prefer the bottom-up approach
since code generation, as used in the top-down approach,
can be quite opaque and difficult to understand or debug.
Nevertheless, the top-down approach has the advantage of
using asynchronous subtyping rather than 𝑘-MC—analysing
the local types for all participants in the protocol at once is
challenging to do scalably (see § 4).

Moreover, when a 𝑘-MC analysis fails, it can be difficult to
determine how a developer should update a complex protocol
to make it free from deadlocks. Safety by construction, as
used in the top-down approach, is easier to work with since
verification is done locally on each participant.

Therefore, we also propose a third, hybrid approach (Fig. 1c).
In this workflow, a global typeG is provided by the developer
and projected to obtain the FSMsM1...𝑛 as before. Rather than
the developer proposing the optimised FSMs M′

1...𝑛 directly,
they instead simply write the APIs A1...𝑛 (as in the bottom-
up approach). These are serialised to M

′
1...𝑛 which can (as

in the top-down approach) be checked for safety against
M1...𝑛 using asynchronous subtyping. In essence, the hybrid
approach uses the same theory as the top-down approach,
but presents a more developer-friendly interface that uses
serialisation rather than code generation.

3 A Sound Asynchronous Multiparty
Session Subtyping Algorithm

This section proposes an algorithm for asynchronous mul-
tiparty subtyping (§ 3.2), shows its soundness (Theorem 7),
termination (Theorem 6) and complexity (Theorem 9), and
sketches its implementation.

We begin by formally defining global and local session
types. In the remainder of this section, we will omit sorts 𝑆
from the syntax to simplify the presentation.

Definition 1 (Global and local types).

𝑆 ::= i32 | u32 | i64 | u64 | . . .
G ::= end | p → q : {ℓ𝑖 (𝑆𝑖).G𝑖 }𝑖∈𝐼 | 𝜇t.G | t
T ::= end | ⊕𝑖∈𝐼p!ℓ𝑖 (𝑆𝑖).T𝑖 | &𝑖∈𝐼p?ℓ𝑖 (𝑆𝑖).T𝑖 | 𝜇t.T | t

⊕𝑖∈𝐼p!ℓ𝑖 (𝑆𝑖).T𝑖 and &𝑖∈𝐼p?ℓ𝑖 (𝑆𝑖).T𝑖 represent internal and ex-
ternal choices respectively where ! and ? denote send and
receive respectively, and all ℓ𝑖 are pairwise distinct.

Defining sound message reordering is non-trivial since it
may introduce deadlocks, as shown in the example below.

Example 2 (Correct/incorrect AMR). Consider the follow-
ing local types

T𝑄 = p?ℓ1 .p!ℓ2.end T𝑃 = q!ℓ1.q?ℓ2.end

which are given by projecting a global type

p → q : {ℓ1 .q → p : {ℓ2.end}}

Reordering the actions of q to become T′
𝑄
= p!ℓ2.p?ℓ1.end,

first sending before receiving, retains deadlock-freedom as
messages are stored in queues and their reception can be
delayed. However, if instead we reorder p’s interactions to
become T

′
𝑃
= q?ℓ2.q!ℓ1 .end, we arrive at a deadlock since

both processes are simultaneously expecting to receive a
message that has not yet been sent.

3.1 Precise Asynchronous Multiparty Session
Subtyping

Multiparty session subtyping formulates refinement for com-
munication protocols with more than two communicating
processes. A process implementing a session type T can be
safely used whenever a process implementing one of its su-
pertypes T′ is expected. This applies in any context, ensuring
that no deadlocks or other communication errors will be in-
troduced. Replacing the implementation of T′ with that of
the subtype T may allow for more optimised communication
patterns as we have seen. Ghilezan et al. [25] present the
precise asynchronous subtyping relation ≤ for multiparty ses-
sion processes. Precision is characterised by both soundness
(safe process replacement is guaranteed) and completeness
(any extension of the relation is unsound).

Crucially, asynchronous subtyping supports the optimi-
sation of communications. Under certain conditions, the
subtype can anticipate some input/output actions occurring
in the supertype, performing them earlier than prescribed
to achieve the most flexible and precise subtyping. Such
reorderings can take two forms:
R1. anticipating an input from participant p before a finite

number of inputs that are not from p; or

R2. anticipating an output to participant p before a finite
number of inputs (from any participant), and also be-
fore other outputs that are not to p.

To denote such reorderings, two kinds of finite sequences of
inputs/outputs are defined by [25], where p ≠ q. A (p) is a
sequence containing receives from participants apart from p;
B (p) is a sequence containing receives from any participant
(r = p is allowed) and sends to participants apart from p.

A (p) ::=q?ℓ | q?ℓ .A (p) B (p) ::= r?ℓ | q!ℓ | r?ℓ .B (p) | q!ℓ .B (p)

The tree refinement relation ≲ is defined coinductively on
infinite session type trees that contain only single-inputs
(SI) and single-outputs (SO). We leave the formal definition
of ≲ in [25] and shall explain its essence with our sound
algorithm. Based on≲, the subtyping relation ≤ for all types
(including internal and external choice) is given as

∀𝑈 ∈ J𝑇 Kso ∀𝑉 ′ ∈ J𝑇 ′Ksi ∃𝑊 ∈ J𝑈 Ksi ∃𝑊 ′ ∈ J𝑉 ′Kso 𝑊 ≲𝑊 ′

T ≤ T
′

where J𝑇 Kso (resp. J𝑇 Ksi) is the minimal set of trees con-
taining only single outputs (resp. inputs) of the session type
tree 𝑇 . Using existential quantifiers for J𝑈 Ksi and J𝑉 ′Kso al-
lows external choices to be added and internal choices to be
removed (see the Appendix B.2.1 for examples of ≤).

3.2 Our Algorithm
The precise asynchronous subtyping in [25] is undecidable—
evenwhen limited to two participants, as proven in [42]. This
subsection introduces our practical algorithm which is sound
and terminates, through the use of a bound on recursion.

Prefixes. We first define reduction rules for finite single-
input and single-output (SISO) session type prefixes.

Definition 3 (Prefix reduction). Let us define the syntax
of prefixes as 𝜋, 𝜌 ::= 𝜖 | p!ℓ (𝑆) | p?ℓ (𝑆) | 𝜋1 .𝜋2 where “.”
denotes the concatenation operator. We define the reduction
𝜋 � 𝜋 ′ as the smallest relation that ensures

[)i] ⟨p?ℓ .𝜋 ⌈⌋ p?ℓ .𝜋 ′⟩ � ⟨𝜋 ⌈⌋ 𝜋 ′⟩
[)o] ⟨p!ℓ .𝜋 ⌈⌋ p!ℓ .𝜋 ′⟩ � ⟨𝜋 ⌈⌋ 𝜋 ′⟩
[)A] ⟨p?ℓ .𝜋 ⌈⌋ A (p) .p?ℓ .𝜋 ′⟩ � ⟨𝜋 ⌈⌋ A (p) .𝜋 ′⟩
[)B] ⟨p!ℓ .𝜋 ⌈⌋ B (p) .p!ℓ .𝜋 ′⟩ � ⟨𝜋 ⌈⌋ B (p) .𝜋 ′⟩

[)i] and [)o] erase the top input and output prefixes respec-
tively; [)A] formalises R1 from § 3.1 (permuting the input
p?ℓ) while [)B] represents R2 (permuting the output p!ℓ).

Example 4 (Prefix reduction). In Example 2, We can con-
sider both T𝑄 and T𝑃 as prefixes since they already contain
no choice. The (safe) reordering T

′
𝑄
can be achieved using

[)B], where B (p) = p?ℓ1:

⟨p!ℓ2.p?ℓ1 .end ⌈⌋ p?ℓ1 .p!ℓ2.end⟩ � ⟨p?ℓ1.end ⌈⌋ p?ℓ1.end⟩
On the other hand, the (unsafe) reordering T

′
𝑃
cannot be

achieved with [)A], since A (q) = q!ℓ1 violates the definition
of A (q) .

𝜖 ;∅ ⊢𝑘 ⟨𝜖, T, 𝑛⟩ ≤ ⟨𝜖, T′, 𝑛⟩ 𝑘, 𝑛 ∈ N
[init]

T ≤ T
′

[end]
𝜌 ; Σ ⊢𝑘 ⟨𝜖, end, 𝑛⟩ ≤ ⟨𝜖, end, 𝑛′⟩

Σ [⟨𝜋 ⌈⌋ T⟩ ≤ ⟨𝜋 ′ ⌈⌋ T′⟩] = 𝜌 act(𝜌 ′) ⊇ act(𝜋 ′)
[asm]

𝜌.𝜌 ′; Σ ⊢𝑘 ⟨𝜋, T, 𝑛⟩ ≤ ⟨𝜋 ′, T′, 𝑛′⟩
⟨𝜋1 ⌈⌋ 𝜋 ′

1⟩ � ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩ 𝜌 ; Σ ⊢𝑘 ⟨𝜋2, T, 𝑛⟩ ≤ ⟨𝜋 ′

2, T
′, 𝑛′⟩

[sub]
𝜌 ; Σ ⊢𝑘 ⟨𝜋1, T, 𝑛⟩ ≤ ⟨𝜋 ′

1, T
′, 𝑛′⟩

∀𝑖 ∈ 𝐼 . ∀𝑗 ∈ 𝐽 . 𝜌 .p!ℓ𝑖 ; Σ ⊢𝑘 ⟨𝜋.p!ℓ𝑖 , T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′.q?ℓ𝑗 , T′𝑗 , 𝑛
′⟩

[oi]
𝜌 ; Σ ⊢𝑘 ⟨𝜋, ⊕𝑖∈𝐼 p!ℓ𝑖 .T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′,&𝑗 ∈𝐽 q?ℓ𝑗 .T′𝑗 , 𝑛

′⟩

∀𝑖 ∈ 𝐼 . ∃ 𝑗 ∈ 𝐽 . 𝜌 .p!ℓ𝑖 ; Σ ⊢𝑘 ⟨𝜋.p!ℓ𝑖 , T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′.q!ℓ𝑗 , T′𝑗 , 𝑛
′⟩

[oo]
𝜌 ; Σ ⊢𝑘 ⟨𝜋, ⊕𝑖∈𝐼 p!ℓ𝑖 .T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′, ⊕𝑗 ∈𝐽 q!ℓ𝑗 .T′𝑗 , 𝑛

′⟩

∀𝑗 ∈ 𝐽 . ∃𝑖 ∈ 𝐼 . 𝜌 .p?ℓ𝑖 ; Σ ⊢𝑘 ⟨𝜋.p?ℓ𝑖 , T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′.q?ℓ𝑗 , T′𝑗 , 𝑛
′⟩

[ii]
𝜌 ; Σ ⊢𝑘 ⟨𝜋,&𝑖∈𝐼 p?ℓ𝑖 .T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′,&𝑗 ∈𝐽 q?ℓ𝑗 .T′𝑗 , 𝑛

′⟩

∃𝑖 ∈ 𝐼 . ∃ 𝑗 ∈ 𝐽 . 𝜌 .p?ℓ𝑖 ; Σ ⊢𝑘 ⟨𝜋.p?ℓ𝑖 , T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′.q!ℓ𝑗 , T′𝑗 , 𝑛
′⟩

[io]
𝜌 ; Σ ⊢𝑘 ⟨𝜋,&𝑖∈𝐼 p?ℓ𝑖 .T𝑖 , 𝑛⟩ ≤ ⟨𝜋 ′, ⊕𝑗 ∈𝐽 q!ℓ𝑗 .T′𝑗 , 𝑛

′⟩

Σ′ = Σ [⟨𝜋 ⌈⌋ 𝜇t.T⟩ ≤ ⟨𝜋 ′ ⌈⌋ T′⟩ ↦→ 𝜌]
𝜌 ; Σ′ ⊢𝑘 ⟨𝜋, T[𝜇t.T/t], 𝑛 − 1⟩ ≤ ⟨𝜋 ′, T′, 𝑛′⟩ 𝑛 > 0

[𝜇l]
𝜌 ; Σ ⊢𝑘 ⟨𝜋, 𝜇t.T, 𝑛⟩ ≤ ⟨𝜋 ′, T′, 𝑛′⟩

Σ′ = Σ [⟨𝜋 ⌈⌋ T⟩ ≤ ⟨𝜋 ′ ⌈⌋ 𝜇t.T′⟩ ↦→ 𝜌]
𝜌 ; Σ′ ⊢𝑘 ⟨𝜋, T, 𝑛⟩ ≤ ⟨𝜋 ′, T′[𝜇t.T′/t], 𝑛′ − 1⟩ 𝑛′ > 0

[𝜇r]
𝜌 ; Σ ⊢𝑘 ⟨𝜋, T, 𝑛⟩ ≤ ⟨𝜋 ′, 𝜇t.T′, 𝑛′⟩

𝜌 ; Σ ⊢𝑘−1 ⟨𝜋, T, 𝑛⟩ ≤ ⟨𝜋 ′, T′, 𝑛′⟩
𝜌 ; Σ ⊢𝑘−1 ⟨𝜋 ′, T′, 𝑛′⟩ ≤ ⟨𝜋 ′′, T′′, 𝑛′′⟩ 𝑘 > 0

[tra]
𝜌 ; Σ ⊢𝑘 ⟨𝜋, T, 𝑛⟩ ≤ ⟨𝜋 ′′, T′′, 𝑛′′⟩

Figure 5. Asynchronous subtyping algorithm rules.

Algorithm. We define the rules for our asynchronous
subtyping algorithm in Fig. 5, following the style of [22].
Our rules use the function act(𝑊), the set of input and
output actions of 𝜋 such that act(𝜖) = ∅, act(p?ℓ .𝜋) =

{p?} ∪ act(𝜋) and act(p!ℓ .𝜋) = {p!} ∪ act(𝜋).
Our algorithm operates on triples of ⟨𝜋, T, 𝑛⟩, where 𝜋 is a

session prefix and 𝑛 is a bound on the number of recursions
to unroll. We keep track of 𝜌 , a prefix containing all actions in
the subtype seen so far, and Σ, a set of subtyping assumptions.
Each assumption in Σ is associated with the value of 𝜌 as it
was at the time of the assumption. An additional bound 𝑘 is
included to limit applications of the [tra] rule. We use our
algorithm to check whether T is a subtype of T′ by beginning
with the [init] rule. If a proof derivation can be found thenwe
conclude that T ≤ T

′. If not, then either T ≰ T
′ or T ≤ T

′ but
this cannot be shown by our algorithm since ≤ is undecidable
(hence our algorithm cannot be complete).

Our algorithm works as follows: (1) If both prefixes 𝜋
and 𝜋 ′ are empty and T = T

′ = end, then we have nothing

left to check and we terminate with success ([end]). (2) If
⟨𝜋 ⌈⌋ T⟩ ≤ ⟨𝜋 ′ ⌈⌋ T′⟩ is already in our set of assumptions, then
we perform a check on 𝜋 ′ to ensure that no actions have
been forgotten by the subtype (see the Appendix B.3 for more
detail). If this check passes, then we terminate with success
([asm]). (3)We attempt to reduce the pair of prefixes ⟨𝜋 ⌈⌋ 𝜋 ′⟩.
If we can, then the algorithm repeats from (1) ([sub]). (4) If
not, we try to pop one action from the start of both T and
T
′ and push them to the end of 𝜋 and 𝜋 ′ respectively. If

this is possible, we repeat from (1) ([oi,oo,ii,io]). Note that
the quantifiers permit subtyping for internal and external
choices. For example, [oo] says T is a subtype of T′ if it has a
subset of T′’s internal choices (defined with ∀𝑖 ∈ 𝐼 .∃ 𝑗 ∈ 𝐽).
(5) Otherwise, we attempt to unroll recursion in T (resp. T′),
decrement the bound 𝑛 (resp. 𝑛′) by one and repeat from (1).
If the bound is already zero, we instead terminate ([𝜇l,𝜇r]).

Double buffering example. We show the execution of
our algorithm to check the optimised type from § 2 for the
kernel in the double buffering protocol (i.e. T ≤ T

′).

T = s!ready.T′ T
′ = 𝜇x.s!ready.s?copy.t?ready.t!copy.x

(∗)

(†)
(‡)

(★)
(÷)

act(𝜋1 .𝜋2 .𝜋3 .𝜋4) ⊇ act(𝜖)
[asm]

𝜌5; Σ3 ⊢ ⟨𝜖, T′, 1⟩ ≤ ⟨𝜖, T′′, 0⟩
[sub]

𝜌5; Σ3 ⊢ ⟨𝜋4, T′, 1⟩ ≤ ⟨𝜋4, T′′, 0⟩ [sub]
𝜌5; Σ3 ⊢ ⟨𝜋3 .𝜋4, T′, 1⟩ ≤ ⟨𝜋3 .𝜋4, T′′, 0⟩ [sub]

𝜌5; Σ3 ⊢ ⟨𝜋2 .𝜋3 .𝜋4, T′, 1⟩ ≤ ⟨𝜋2 .𝜋3 .𝜋4, T′′, 0⟩ [sub]
𝜌5; Σ3 ⊢ ⟨𝜋1 .𝜋2 .𝜋3 .𝜋4, T′, 1⟩ ≤ ⟨𝜋2 .𝜋3 .𝜋4 .𝜋1, T′′, 0⟩ [oo]

𝜌4; Σ3 ⊢ ⟨𝜋1 .𝜋2 .𝜋3, t!copy.T′, 1⟩ ≤ ⟨𝜋2 .𝜋3 .𝜋4, s!ready.T′′, 0⟩ [𝜇r]
𝜌4; Σ2 ⊢ ⟨𝜋1 .𝜋2 .𝜋3, t!copy.T′, 1⟩ ≤ ⟨𝜋2 .𝜋3 .𝜋4, T′, 1⟩ [io]

𝜌3; Σ2 ⊢ ⟨𝜋1 .𝜋2, t?ready.t!copy.T′, 1⟩ ≤ ⟨𝜋2 .𝜋3, t!copy.T′, 1⟩ [ii]
𝜌2; Σ2 ⊢ ⟨𝜋1, T′′, 1⟩ ≤ ⟨𝜋2, t?ready.t!copy.T′, 1⟩ [oi]

𝜌1; Σ2 ⊢ ⟨𝜖, s!ready.T′′, 1⟩ ≤ ⟨𝜖, T′′, 1⟩
[𝜇l]

𝜌1; Σ1 ⊢ ⟨𝜖, T′, 2⟩ ≤ ⟨𝜖, T′′, 1⟩
[sub]

𝜌1; Σ1 ⊢ ⟨𝜋1, T′, 2⟩ ≤ ⟨𝜋1, T′′, 1⟩ [oo]
𝜖 ; Σ1 ⊢ ⟨𝜖, T, 2⟩ ≤ ⟨𝜖, s!ready.T′′, 1⟩

[𝜇r]
𝜖 ;∅ ⊢ ⟨𝜖, T, 2⟩ ≤ ⟨𝜖, T′, 2⟩

[init]
T ≤ T

′

T
′′ = s?copy.t?ready.t!copy.T′

𝜋1 = s!ready 𝜋2 = s?copy 𝜋3 = t?ready 𝜋4 = t!copy
𝜌1 = 𝜋1 𝜌2 = 𝜌1 .𝜋1 𝜌3 = 𝜌2 .𝜋2 𝜌4 = 𝜌3 .𝜋3 𝜌5 = 𝜌4 .𝜋4

Σ1 =
[
⟨𝜖 ⌈⌋ T⟩ ≤ ⟨𝜖 ⌈⌋ T′⟩ ↦→ 𝜖

]
Σ2 = Σ1

[
⟨𝜖 ⌈⌋ T′⟩ ≤ ⟨𝜖 ⌈⌋ T′′⟩ ↦→ s!ready

]
Σ3 = Σ2

[
⟨𝜋1 .𝜋2 .𝜋3 ⌈⌋ t!copy.T′⟩ ≤ ⟨𝜋2 .𝜋3 .𝜋4 ⌈⌋ T′⟩ ↦→ 𝜌4

]
(†) = ⟨𝜋1 .𝜋2 .𝜋3 .𝜋4 ⌈⌋ 𝜋2 .𝜋3 .𝜋4 .𝜋1⟩ � ⟨𝜋2 .𝜋3 .𝜋4 ⌈⌋ 𝜋2 .𝜋3 .𝜋4⟩ [)A]

(‡) = ⟨𝜋2 .𝜋3 .𝜋4 ⌈⌋ 𝜋2 .𝜋3 .𝜋4⟩ � ⟨𝜋3 .𝜋4 ⌈⌋ 𝜋3 .𝜋4⟩ [)i]
(★) = ⟨𝜋3 .𝜋4 ⌈⌋ 𝜋3 .𝜋4⟩ � ⟨𝜋4 ⌈⌋ 𝜋4⟩ [)i]

(∗) = ⟨𝜋1 ⌈⌋ 𝜋1⟩ � ⟨𝜖 ⌈⌋ 𝜖⟩ [)o] (÷) = ⟨𝜋4 ⌈⌋ 𝜋4⟩ � ⟨𝜖 ⌈⌋ 𝜖⟩ [)o]

See also the Appendix B.4 for the ring and alternating bit
protocols, which include internal and external choices.

Properties. We prove the correctness and complexity of
our algorithm. See the Appendix B for the proofs. We define
the size of prefixes as |𝜖 | = 0 and |p?ℓ .𝜋 | = |p!ℓ .𝜋 | = 1 + |𝜋 |.

Lemma 5. Given finite prefixes 𝜋 and 𝜋 ′, ⟨𝜋 ⌈⌋ 𝜋 ′⟩ can be
reduced only a finite number of times.

Theorem 6 (Termination). Our subtyping algorithm always
eventually terminates.

Theorem 7 (Soundness). Our subtyping algorithm is sound.

Lemma 8. Given finite prefixes 𝜋 and 𝜋 ′, the time complexity
of reducing ⟨𝜋 ⌈⌋ 𝜋 ′⟩ is O(min(|𝜋 |, |𝜋 ′ |)).

Theorem 9 (Complexity). Consider T and T′ as (possibly in-
finite) trees T (T) and T (T′) with asymptotic branching fac-
tors 𝑏 and 𝑏 ′ respectively [21, 39]. Our algorithm has time com-
plexityO(𝑛min(𝑏, 𝑏 ′)𝑛) and space complexityO(𝑛min(𝑏, 𝑏 ′))
in the worst case to determine if T ≤ T

′ with bound 𝑛.

Algorithm implementation. In practice, we make some
minor alterations to the algorithm when implementing it in
Rumpsteak. As outlined in § 2, Rumpsteak acts on FSMs
rather than local types so we modify our bounds-checking
accordingly. We also represent prefixes as lazily-removable
lists for greater memory efficiency—this additionally allows a
slightly simplified termination condition in the case of [asm].
Finally, we provide some opportunities for the algorithm to
“short circuit” in cases where we can tell early that a subtype
is not valid. See the Appendix B.5 for more details.

4 Evaluation
In this section, we evaluate how Rumpsteak performs with
respect to existing tools. First, in § 4.1, we evaluate the run-
time performance of programs written in Rumpsteak versus
the same benchmarks implemented using other Rust session
type tools. In the spirit of Rust’s emphasis on efficiency, this
runtime performance is of particular significance for devel-
opers. Secondly, in § 4.2, we evaluate how Rumpsteak’s
verification of message reordering (our subtyping algorithm)
scales compared to existing verification tools. Although not
a runtime cost, subtyping is known to be a computationally
challenging problem that often scales poorly.

4.1 Session-Based Rust Implementations
We compare Rumpsteak’s runtime against three other ses-
sion type implementations in Rust: (1) Sesh [38], a syn-
chronous implementation of binary session types; (2) Fer-
rite [12], an implementation of shared binary session types [5]
supporting asynchronous execution; and (3)MultiCrusty [41],
a synchronous MPST implementation based on Sesh.
We perform a series of benchmarks shown in Fig. 6. We

execute these using a 16-core AMD OpteronTM 6200 Series

Sesh MultiCrusty Ferrite RustFFT Rumpsteak Rumpsteak (optimised)

10 20 30 40 50
0

0.2

0.4

0.6

Number of values transferred (𝑛)

T
h
r
o
u
g
h
p
u
t
(
𝑛
/
𝜇
s
)

Streaming

2,500 5,000 7,500 10,000 12,500
0
20
40
60
80
100

Number of values in each buffer (𝑛)

Double Buffering [11, 33]

1,000 2,000 3,000 4,000 5,000
0
2
4

6
8
10

Number of columns (𝑛)

FFT [11]

Figure 6. Benchmarking Rumpsteak’s runtime performance against previous work in Rust (raw data in the Appendix C.1).

CPU@ 2.6GHzwith hyperthreading, 128GB of RAM, Ubuntu
18.04.5 LTS and Rust Nightly 2021-07-06.We use version 0.3.5
of the Criterion.rs library [27] to perform microbenchmark-
ing and amulti-threaded asynchronous runtime from version
1.11.0 of the Tokio library [60].

Streaming. This protocol has two participants, a source
s and a sink t, with a combination of recursion and choice.
As stated previously, its global type GST is given as

GST = 𝜇x.t → s : {ready.s → t : {value.x, stop.end}}

We benchmark the protocol by varying the number of values
that are sent before the exchange stops. We use AMR to
create an optimised version for Rumpsteak: if the source
knows it will send at least 𝑛 values before stopping, then
these messages can be unrolled and sent all at once—only
receiving ready from the sink after sending all 𝑛 values. For
benchmarking, we unroll the first 5 values in the optimised
version.

Our results show Rumpsteak reaches around 14.5x the
throughput of other implementations. At first, it is limited by
channel creation overheads, the cost of which becomes less
significant as more messages are sent. The throughput levels
off as message passing overheads become the bottleneck. The
optimised version eases this overhead, as the source is less
frequently blocked on receiving ready from the sink—this
effect could be increased by unrolling more messages.
Sesh and MultiCrusty have much lower throughputs

since they use more expensive synchronous communication.
These implementations also create a new channel for each
interaction. This causes their throughput to stay constant
as there are fewer one-time costs to spread than in Rump-
steak. Interestingly, Ferrite performs similarly to Sesh and
MultiCrusty, despite employing asynchronous execution
like Rumpsteak. This is because its design requires that the
source and sink are implemented using recursion rather than
iteration. Ferrite also requires particularly strong safety
requirements at compile time. Therefore, the sink’s output
buffer must be guarded with a mutex instead of being ac-
cessed directly.

Double Buffering. We benchmark our running example
by performing only two iterations. This allows for both of the
kernel’s buffers to be filled and, importantly, for the protocol
to terminate. Sesh and Ferrite do not supportMPST so their
implementations use binary session types between pairs of
participants. This approach does not provide the same safety
asMPST and so we cannot verify deadlock-freedom as we
can in MultiCrusty and Rumpsteak (see Table 1).
We parameterise the size of the buffers and measure the

throughput. Performance is similar to that of the stream
benchmark; Rumpsteak’s throughput reaches around 3.2x
that of the others. Moreover, we confirm the intuition de-
scribed in § 1. Increasing the size of the buffers does generally
improve throughput. However, it remains limited when only
a single buffer can be used at once. Fig. 6 shows that optimis-
ing the kernel as described in § 2 increases the throughput
since the source and sink operate on different buffers at once.

FFT. The fast Fourier transform (FFT) is an algorithm for
computing the discrete Fourier transform of a vector. We
take 𝑛 × 8 matrices, where the FFT is computed on each
column to produce a new, transformed matrix, and imple-
ment the Cooley-Tukey FFT algorithm which divides the
problem into—in our case—eight. Each of these problems
can be solved independently by different processes, which
communicate with one another using message passing. The
exchanges between participants are described in [11, Fig. 7].
We have chosen to use FFT as a benchmark as it is a

standard problem with numerous implementations, and we
can therefore compare implementations based onMPSTwith
actual high-optimised implementations.
We implement a concurrent version of the algorithm in

Sesh, Ferrite,MultiCrusty and Rumpsteak, which uses
eight processes. Each process works on an array of 𝑛 in-
puts, representing one column. Arithmetic operations are
performed in a pairwise fashion on two of these arrays.

We use the same approach as in the double buffering pro-
tocol to write the binary implementations for Sesh and Fer-
rite. Interestingly, to represent this as a sequence of binary

Table 1. Expressiveness of Rumpsteak compared to previous work.

Protocol 𝑛 C R IR AMR Sesh Ferrite MultiCrusty Rumpsteak 𝑘-MC SoundBinary

Two Adder [2] 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Three Adder 3 ✗ ✗ ✔ ✔ ✔ ✗

Streaming 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Optimised Streaming 2 ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔

Ring [11] 3 ✔ ✔ ✗ ✗ ✔ ✔ ✔ ✗

Optimised Ring [11] 3 ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✗

Ring With Choice [11] 3 ✔ ✔ ✔ ✗ ✗ ✔ ✔ ✔ ✗

Optimised Ring With Choice [11] 3 ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✗

Double Buffering [11] 3 ✔ ✔ ✗ ✗ ✔ ✔ ✔ ✗

Optimised Double Buffering [11, 33] 3 ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✗

Alternating Bit [1, 43] 2 ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✔

Elevator [6, 43] 3 ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔ ✔ ✗

FFT [11] 8 ✗ ✗ ✔ ✔ ✔ ✗

Optimised FFT [11] 8 ✔ ✗ ✗ ✗ ✔ ✔ ✗

Authentication [48] 3 ✔ ✗ ✗ ✔ ✔ ✔ ✗

Client-Server Log [41] 3 ✔ ✔ ✔ ✗ ✗ ✔ ✔ ✔ ✗

Hospital [7] 2 ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✔

𝑛 Number of participants C Choice R Recursion IR Infinite recursion AMR Asynchronous message reordering

✔ Expressible ✗ Expressible using endpoint types (but without deadlock-freedom guarantee) ✗ Not expressible

sessions, we require additional synchronisation of all partic-
ipants at each stage of the protocol. While we can perform
AMR to Rumpsteak’s version, in practice we found that
this does not have much effect since the protocol is already
heavily synchronised so cannot progress any faster.
We benchmark the protocol by varying the number of

columns in the matrix. We also compare these implemen-
tations with the most downloaded open-source Rust FFT
implementation, RustFFT [61]. RustFFT does not use con-
currency and computes the FFT of a matrix by iteratively
performing the Cooley-Tukey algorithm on each column.
Ferrite performs better than before since its FFT imple-

mentation does not suffer from the limitations explained
previously. Like Rumpsteak, it benefits from the use of asyn-
chronous execution, although the additional synchronisa-
tion from representing the problem as a set of binary ses-
sions causes Rumpsteak’s throughput to remain around 1.9x
greater.

Most excitingly, Rumpsteak achieves RustFFT’s through-
put for large matrices. RustFFT’s implementation is highly
tuned for low-level efficiency and does not incur any over-
heads associated with message passing. Moreover, asynchro-
nous executors are generally designed for higher-level tasks
such as networking; MPI-based communication [44] would
more likely be used to parallelise this problem in practice.
Therefore, we think it impressive that even a basic paral-
lel implementation using Rumpsteak can reach the same
performance as a state-of-the-art sequential implementation.

Expressiveness. Table 1 discusses the expressiveness of
Rumpsteak comparedwith Sesh, Ferrite andMultiCrusty.
Since Sesh and Ferrite support only binary session types,

they are unable to guarantee deadlock-freedom in proto-
cols with more than two participants. MultiCrusty has
greater expressiveness than Sesh and Ferrite since it im-
plements MPST but, unlike Rumpsteak, still cannot ensure
deadlock-freedom for protocols optimised using AMR. In
addition, many optimisations, like the ones we have bench-
marked, break duality between pairs of participants so are
not expressible at all by Sesh, Ferrite and MultiCrusty.
Meanwhile, our powerful API and new subtyping algorithm
allow Rumpsteak to express many examples using AMR.

4.2 Verifying Asynchronous Message Reordering
We perform a second set of benchmarks, shown in Fig. 7, to
evaluate Rumpsteak’s asynchronous subtyping algorithm.
We compare it against (1) SoundBinary [7], a sound sub-
typing algorithm defined for binary session types only; and
(2) 𝑘-MC [43], an algorithm for directly checking the com-
patibility of a set of FSMs without the need for a global
type. Compatibility is checked up to a bound 𝑘 on the size
of each process’ asynchronous queue. We note that neither
SoundBinary nor 𝑘-MC provide a runtime framework like
Rumpsteak does, they are used only to verify the AMR.

We benchmark with the same machine as before. Sound-
Binary and 𝑘-MC are written in Haskell so we must run
each tool’s binary rather than simply timing Rust functions.
We, therefore, provide a command-line for Rumpsteak’s sub-
typing algorithm so it is comparable with these other tools.
Rumpsteak’s binary is compiled with Rust 1.54.0 and we use
Hyperfine [51] to compare the execution time for each tool.

Streaming (from § 4.1). We vary𝑛, the number of values
we unroll. Using SoundBinary and Rumpsteak, we check

SoundBinary 𝑘-MC Rumpsteak

0 50 100
10−3

10−2

10−1

100

Number of unrolls (𝑛)

R
u
n
n
i
n
g
t
i
m
e
(
lo
g
s
)

Streaming

1 2 3 4 5
10−3
10−2
10−1
100
101
102

Number of levels (𝑛)

Nested Choice [13, Fig. 3]

0 10 20 30
10−3
10−2
10−1
100

Number of participants (𝑛)

Ring [11]

0 50 100

10−3

10−2

10−1

100

Number of unrolls (𝑛)

𝑘-Buffering [11, 33]

Figure 7. Benchmarking Rumpsteak’s subtyping performance against previous work (raw data in the Appendix C.2).

that the optimised source is a subtype of its projected ver-
sion and, using 𝑘-MC, we check that the optimised source
is compatible with the sink. Our results show that Rump-
steak scales significantly better than both SoundBinary
and 𝑘-MC. While all three implementations can verify up
to 100 unrolls in under a second, the execution time taken
by SoundBinary and 𝑘-MC increases exponentially while
Rumpsteak’s remains mostly flat. This is consistent with
our complexity analysis in Theorem 9, since unrolling more
values does not increase the branching factor of the subtype.

Nested choice. We next consider a protocol from Chen
et al. [13, Fig. 3] containing nested choice. We perform this
nesting up to a parameterised number of levels 𝑛 to increase
the complexity. Specifically, we check that T𝑛 ≤ T

′
𝑛 where

T0 = T
′
0 = end

T𝑛+1 = !m.(?r .T𝑛 & ?s.T𝑛 & ?u.T𝑛) ⊕ !p.(?r .T𝑛 & ?s.T𝑛)
T
′
𝑛+1 = ?r .(!m.T′𝑛 ⊕ !p.T′𝑛 ⊕ !q.T′𝑛) & ?s.(!m.T′𝑛 ⊕ !p.T′𝑛)
We find that Rumpsteak again performs more scalably

than SoundBinary and 𝑘-MC. Here, Rumpsteak’s improved
efficiency is significant—for five levels, 𝑘-MC takes around
40s while Rumpsteak requires only a fraction of a second.
Nonetheless, we observe that Rumpsteak also exhibits expo-
nential performance, in contrast to our stream benchmark.
This is because our algorithm bounds recursion but not
choice, causing an explosion in the paths to visit as the num-
ber of nested choices increases. This is also explained by our
complexity analysis in Theorem 9 since a greater number of
nested choices increases the depth to which we must explore.

Ring [11]. We consider a ring protocol with a parame-
terised number of participants. Each participant (aside from
the first, which initiates the protocol) receives a value from
its preceding neighbour then sends a value to its succeeding
neighbour. Providing that this receive is not dependent on
the send, we can use AMR to send before receiving.
We benchmark verifying this optimisation using both 𝑘-

MC and Rumpsteak. In this case, we cannot use SoundBi-
nary since the protocol is multiparty. While Rumpsteak can
verify each participant’s subtype individually, 𝑘-MC must
consider the entire protocol at once. Unsurprisingly, 𝑘-MC is

significantly less scalable as its running time grows exponen-
tially, whereas Rumpsteak’s performance remains mostly
constant.
𝑘-buffering. We extend the double buffering protocol to

a parameterised number of buffers. We benchmark verifying
the optimisation to the kernel discussed previously. Crucially,
with a greater number of buffers, we can unroll a greater
number of ready messages. We again compare only 𝑘-MC
and Rumpsteak since the protocol is multiparty. Similarly to
other benchmarks, Rumpsteak scales more efficiently than
𝑘-MC.

Expressiveness. Table 1 discusses the expressiveness of
Rumpsteak’s algorithm against SoundBinary and 𝑘-MC
(note again that SoundBinary and 𝑘-MC only verify AMR
and do not provide language implementations like Rump-
steak). As we discussed, SoundBinary supports only two
parties so cannot express many of the case studies. However,
it can express some unbounded binary protocols that Rump-
steak and 𝑘-MC cannot, such as the Hospital example [7,
§ 1]1. Unsurprisingly, 𝑘-MC’s expressiveness in the table co-
incides with Rumpsteak’s as 𝑘-MC with 𝑘=∞ is equivalent
to the liveness property induced by asynchronous multiparty
subtyping [25, Theorem 7.3]. On the other hand, 𝑘-MC can
verify a wider syntax of local FSMs than those corresponding
to Definition 1.

5 Conclusion and Related Work
There are a vast number of studies on session types, some of
which are implemented in programming languages [4] and
tools [24]. The top-down approach using Scribble [2, 55, 63]
we presented in this paper has been implemented for a num-
ber of other programming languages such as Java [31, 32, 40],
Go [10], TypeScript [45], Scala [54], MPI-C [49], Erlang [47],
Python [18], F# [46], F★ [64] and Actor DSL [26]. Several
implementations use an EFSM-based approach to generate

1Notice, for the case of Rumpsteak, that we can manually write the end-
points, and the framework checks the conformance to the protocol. However,
Rumpsteak cannot verify the deadlock-freedom property of the protocol,
hence the amber cross.

APIs from Scribble for target programming languages such
as [10, 31, 32, 45, 46, 54, 64] to ensure correctness by construc-
tion, but none are integrated with AMR like Rumpsteak.
Rumpsteak provides three approaches for gaining effi-

ciency and ensuring deadlock-freedom in message-passing
Rust applications: (1) the top-down approach for ensuring
correctness/safety by construction and maximising asynchrony
with local analysis; (2) the bottom-up approach using global
analysis on a set of FSMs; and (3) the hybrid approach, which
combines inference with local analysis. All three approaches
are backed by Rumpsteak’s API (described in § 2), which
uses Rust’s affine type system to ensure protocol compliance.

Note that Rumpsteak is the first framework (for any pro-
gramming language) to enable the bottom-up (by integrating
with 𝑘-MC [43]) and the hybrid approaches.

Rust session type implementations. We closely com-
pared the performance and expressiveness of Rumpsteak
with three existing works in § 4: (1) Sesh [38], a synchronous
implementation of binary session types; (2) Ferrite [12], an
implementation of shared binary session types [5] support-
ing asynchronous execution; and (3)MultiCrusty [41], a
synchronous MPST implementation based on Sesh.
Of these previous implementations, only MultiCrusty

can also support MPST with deadlock-freedom. However,
to represent a multiparty session, MultiCrusty requires
defining a tuple of binary sessions for each role as well as
their order of use. This leads to a more complex and less
intuitive API than Rumpsteak’s. Our API requires fewer
definitions and is also both more expressive and performant
(see § 4).

Rumpsteak and Ferrite support asynchronous execution,
which is more efficient than the synchronous and blocking
communication used by Sesh and MultiCrusty. However,
only Rumpsteak supports Rust’s idiomatic async/await syn-
tax. Ferrite instead requires nesting sequential communi-
cation, which is more verbose and less efficient. Iteration
cannot be easily expressed (see § 4) and it requires stricter
compile-time concurrency guarantees than Rumpsteak. We
do not compare directly against [34] (another synchronous
implementation of binary session types) as this uses an older
edition of Rust and has several limitations already discussed
in [38, 41].
Rumpsteak can perform AMR, which is not possible in

any of these existing implementations. Combined with its
straightforward design and use of asynchronous execution,
we found that it is therefore much more efficient than all
previous work. It has around 14.5x, 3.2x and 1.9x greater
throughput than the next fastest implementation in the stream,
double buffering and FFT protocols respectively. Rumpsteak
can also compete with a popular Rust implementation in the
FFT benchmark, achieving the same throughput for large
input sizes.
Recent work [20] builds a DSL to offer protocol confor-

mance for Rust, supported by typestates. They do not yet

explore combining the DSL with communication channels
like Rumpsteak and [5, 34, 38, 41]. If this is achieved, it
would be interesting to integrate session type tooling with
their DSL and compare this with Rumpsteak.
Verification of asynchronous subtyping. Interest in

AMR has grown recently, both in theory and practice. An
extension of the Iris framework, Actris [35], formalises a
variant of binary asynchronous subtyping, which is in turn
implemented in the Coq proof assistant. The asynchronous
session subtyping defined in [13, 25] is precise but was shown
to be undecidable, even for binary sessions [9, 42]. Hence, in
general, checkingM′

𝑖 ≤ M𝑖 is undecidable. Various limited
classes of session types for which M

′
𝑖 ≤ M𝑖 is decidable

[7, 8, 11, 42] are proposed but they are not applicable to our
use cases since (1) the relations in [7, 9, 42] are binary and
the same limitations do not work for multiparty sessions; and
(2) the relation in [11, Def. 6.1] does not handle subtyping
across unrolling recursions, e.g. the relation is inapplicable
to the double buffering algorithm [33] (see [11, Remark 8.1]).

Our new algorithm for asynchronous optimisation is ter-
minating (see Theorem 6), sound (see Theorem 7) and ca-
pable of verifying optimisations in a range of classical ex-
amples (see § 4). It is also more performant than a global
analysis based on 𝑘-MC, and an existing two-party sound
algorithm [7] (see § 4). This is because our algorithm is im-
plemented efficiently (see § 3.2) and can often execute in
linear rather than exponential time (see Theorem 9).

Deadlock detection. There is also recent progress [52,
53] on static deadlock detection in Rust by tracking locks
and unlocks in Rust’s intermediate representation (MIR) [59].
This targets shared memory, rather than message-passing
applications, and does not attempt safety by construction.
In future work, we could also analyse the MIR directly in
Rumpsteak, replacing the use of our API. However, it is
difficult to identify concurrency primitives in the MIR (this
would be made harder with async/await); [52] currently
supports only three concurrent data structures from Rust’s
ecosystem.

Acknowledgments
We thank (in alphabetical order) Julia Gabet, Paul Kelly,
Roland Kuhn, Nicolas Lagaillardie, Julien Lange, and Fangyi
Zhou, for their valuable proofreading, feedback and advice
on early versions of this work. We also thank the PPoPP
reviewers for the helpful comments in their reviews.

Thework is supported by EPSRCEP/T006544/1, EP/K011715/1,
EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1,
EP/T014709/1, EP/V000462/1, and NCSS/EPSRC VeTSS.

A Artifact
A.1 Content of the artifact
The artifact [16] contains the following files:
.
|-- Artifact.md
|-- Artifact.pdf
|-- Dockerfile
|-- gen_fig_6.sh
|-- gen_fig_7.sh
`-- getting_started.sh

Note that an internet connection is required to use the
artifact.

A.2 Getting started guide (Docker artifact)
In this subsection, we will run the benchmarks used to pro-
duce Figs. 6 and 7 of the paper in a Docker container. At the
end of this section, you should be have all the plots of those
figures.

Note that the benchmark results may not match
those in Figs. 6 and 7 when run in a Docker con-
tainer or a machine with different specification
than used in the paper. See the subsection on
Claims supported or not by the artifact for more
discussion of this.

To run the getting started guide, we assume you are run-
ning a Linux machine with Docker and Gnuplot installed, as
well as standard Unix tools (tail, awk, cut, etc.).

This Getting started subsection is fully automated: extract
the archive and run the getting_started.sh script. The
script takes a long time to run all the benchmarks. On the
author’s laptop, it took approximately 2 hours and 15 minutes.
When the script finishes, you should have a few *.png plots
which correspond to the plots shown in Figs. 6 and 7 of the
paper.

1 $ cd /path/to/extracted/artifact/
2 $./ getting_started.sh

Once run, to clean-up your system, in addition to removing
the archive folder, you should remove the docker image (the
following command assumes you don’t have other docker
images/containers on your system):

1 $ docker rmi rumpsteak_tool
2 $ docker system prune

A.2.1 Output. The getting_started.sh generates fig-
ures similar to the one used in the paper2.

We show in Fig. 8 the figures fft.png and ring.png that
are the equivalent of Fig. 6 (subfigure FFT) and Fig. 7 (sub-
figure Ring) in the paper.

A.2.2 Analysing the raw data.

2They are not exactly the same in the sense that they are not produced by
the same tool (Tikz vs. Gnuplot), but the data they use is produced similarly.

(a) Figure fig_6_fft.png gen-
erated by the artifact, which
corresponds to Example FFT in
Fig. 6 in the paper.

(b) Figure fig_7_ring.png gen-
erated by the artifact, which cor-
responds to Example Ring in
Fig. 7 in the paper.

Figure 8. Two examples of the figures generated. Note that
those figure are obtain from a different run of the artifact, in
a lower-end computer, which explains the differences with
figures presented in the paper.

.
|-- double_buffering
| |-- ...
|-- fft
| |-- ...
|-- report
| `-- index.html
`-- stream

|-- ...

Figure 9. The files created by the Criterion benchmark
(in results/criterion/). A detailed report is available by
viewing index.html in a browser.

Runtime benchmarks. The results used to generate Fig. 6
are generated with Criterion. Criterion produces the tree of
files shown in Fig. 9. The report can be viewed in a web
brower.

Subtyping benchmarks. Hyperfine generates a CSV file
(located at results/data/*/*.csv) for the results of each
benchmark. For each row, this file contains

1. command: the actual command that was run;
2. mean: the mean time to execute the command;
3. stddev: the standard deviation of executing the com-

mand;
4. median: the median time to execute the command;
5. user: the mean user time to run the command;
6. system: the mean system time to run the command;
7. min: the minimum time to run the command;
8. max: the maximum time to run the command; and
9. parameter_n: the value of the parameter used in the

command
where all times are given in seconds. Since we do not

care about execution time spent in the kernel (all relevant
computation is done in user space) we take only the timings

https://crates.io/crates/criterion

in the user column. We provide a script to plot the mean
user execution time against the parameter value for each
tool.

A.3 Claims supported or not by the artifact
A.3.1 Claims supported by the artifact.

• Results presented in Fig. 7 are fairly stable across dif-
ferent machines, even when run in Docker. One should
expect to obtain similar plots on their machine.

A.3.2 Claims partially supported by the artifact.
• Results presented in Fig. 6 are quite dependent on the
number of cores provided by the machine and on other
programs being run on the machine simultaneously.
The results presented in the paper are run on a 16-core
AMDOpteron 6200 Series at 2.6GHz with hyperthread-
ing and 128GB of RAM.
Attempts run on lower-end processors or from within
a Docker container may not provide similar results
(in particular, the rustfft implementation is highly
optimised for sequential execution and outperforms
approaches based on message passing on processors
with fewer cores). Nonetheless, the performance of
Rumpsteak vs. other MPST implementations would
remain mostly comparable.

A.3.3 Claims not supported by the artifact.
• NuScr is an external tool not contributed by the au-
thors, and therefore not part of the claims of the paper.

B Multiparty Asynchronous Subtyping
In the main paper, we mentioned a few definitions from [25]
that we omitted due to space constraints. We explain these
in the first section of this appendix. In the later sections, we
provide examples of the rules shown in the paper, as well
as proofs of the theorems stated. Finally, we provide more
details on its implementation.

B.1 Synchronous session subtyping
Wefirst give the rules for synchronous session subtyping given
by Chen et al. [13] in Fig. A.10. The relation ≤: on sorts
is defined as the least reflexive binary relation such that
nat ≤: int [25].

[sub-end]
end ≤ end

∀𝑖 ∈ 𝐼 𝑆𝑖 ≤: 𝑆 ′𝑖 T𝑖 ≤ T
′
𝑖 [sub-bra]

&𝑖∈𝐼∪𝐽 p?ℓ𝑖 (𝑆𝑖).T𝑖 ≤ &𝑖∈𝐼p?ℓ𝑖 (𝑆 ′𝑖).T′𝑖
∀𝑖 ∈ 𝐼 𝑆 ′𝑖 ≤: 𝑆𝑖 T𝑖 ≤ T

′
𝑖 [sub-sel]

⊕𝑖∈𝐼p!ℓ𝑖 (𝑆𝑖).T𝑖 ≤ ⊕𝑖∈𝐼∪𝐽 p!ℓ𝑖 (𝑆 ′𝑖).T′𝑖

Figure A.10. Subtyping rules for synchronous session types.

B.2 Precise Asynchronous Multiparty Subtyping
Asynchronous subtyping is more complex as it allows the
order of operations to be swapped for efficiency. The tree re-
finement relation≲ is defined coinductively on session types
that have only single-inputs (SI) and single-outputs (SO). It is
specified for type trees, which are possibly infinite trees rep-
resenting a session type. An example of a type tree is given
in Fig. A.13 and the tree refinement relation by Ghilezan et al.
[25] is given in Fig. A.11. The function act(𝑊), the set of
input and output actions in a tree𝑊 , is defined in Fig. A.12.
Single-input and single-output types are session types

which do not include branching, i.e. a type generated from
the grammar (Ghilezan et al. [25]) 𝑇 ::= end | p?ℓ .𝑇 | p!ℓ .𝑇 .

Remark. As mentioned in [25], checking the set of actions
within [ref-A] and [ref-B] is important. If this were not in-
cluded, then unsound recursive subtypes that “forget” some
interactions would be allowed. Ghilezan et al. [25] give the
following example of a potential subtype that forgets to in-
put an initial ℓ ′ message. If the [ref-A] rule were allowed to
be used then 𝑇 would incorrectly be a subtype of 𝑇 ′.

𝑇 = T (𝜇t.p?ℓ .t) 𝑇 ′ = q?ℓ ′.𝑇 = q?ℓ ′.T (𝜇t.p?ℓ .t)

𝑇 ≤ q?ℓ ′.𝑇 ′
[ref-A]

𝑇 = p?ℓ .𝑇 ≤ q?ℓ ′.p?ℓ .𝑇 = 𝑇 ′

B.2.1 Examples of asynchronous subtyping.

Ring protocol. We show an example of the subtyping
rules for a ring protocol with choice. The projected and
optimised local types are given by T

′ and T respectively.

T
′ = 𝜇t.a?add .c!

{
add .t
sub.t

}
T = 𝜇t.c!

{
add .a?add .t
sub.a?add .t

}
Considering the tree types 𝑇 = T (T) and 𝑇 ′ = T (T′), we
must show that 𝑇 ≤ 𝑇 ′ using the tree refinement definition
from the main paper in order to prove that T ≤ T

′.

∀𝑈 ∈ J𝑇 Kso : ∀𝑉 ′ ∈ J𝑇 ′Ksi : ∃𝑊 ∈ J𝑈 Ksi : ∃𝑊 ′ ∈ J𝑉 ′Kso :
𝑊 ≲𝑊 ′

However, in our case, since 𝑇 and 𝑇 ′ are already SI trees, we
can express the definition more simply using only SO tree
transformations.

∀𝑊 ∈ J𝑇 Kso : ∃𝑊 ′ ∈ J𝑇 ′Kso :𝑊 ≲𝑊 ′

We define the SO sets for each tree coinductively and use
coinduction to show that𝑊 ≲𝑊 ′ in all cases.

𝜋1 = c!add .a?add 𝜋2 = c!sub.a?add 𝜋3 = a?add
∀𝜋1 .𝑊 ∈ J𝑇 Kso :𝑊 ∈ J𝑇 Kso ∀𝜋2.𝑊 ∈ J𝑇 Kso :𝑊 ∈ J𝑇 Kso

∀𝜋3 .𝜋1.𝑊 ′ ∈ J𝑇 ′Kso : 𝜋3.𝑊 ′ ∈ J𝑇 ′Kso
∀𝜋3 .𝜋2.𝑊 ′ ∈ J𝑇 ′Kso : 𝜋3.𝑊 ′ ∈ J𝑇 ′Kso

1. Using the coinductive hypothesis 𝜋1 .𝑊 ≲ 𝜋3.𝜋1.𝑊
′,

we show that𝑊 ≲ 𝜋3 .𝑊
′.

[ref-end]
end ≲ end

𝑆 ′ ≤: 𝑆 𝑊 ≲𝑊 ′
[ref-in]

p?ℓ (𝑆).𝑊 ≲ p?ℓ (𝑆 ′) .𝑊 ′
𝑆 ≤: 𝑆 ′ 𝑊 ≲𝑊 ′

[ref-out]
p!ℓ (𝑆).𝑊 ≲ p!ℓ (𝑆 ′).𝑊 ′

𝑆 ′ ≤: 𝑆 𝑊 ≲ A (p) .𝑊 ′ act(𝑊) = act(A (p) .𝑊 ′)
[ref-A]

p?ℓ (𝑆).𝑊 ≲ A (p) .p?ℓ (𝑆 ′).𝑊 ′

𝑆 ≤: 𝑆 ′ 𝑊 ≲ B (p) .𝑊 ′ act(𝑊) = act(B (p) .𝑊 ′)
[ref-B]

p!ℓ (𝑆).𝑊 ≲ B (p) .p!ℓ (𝑆 ′) .𝑊 ′

Figure A.11. Tree refinement relation rules for asynchronous session type trees.

act(end) = ∅ act(p?ℓ (𝑆).𝑊) = {p?} ∪ act(𝑊)
act(p!ℓ (𝑆).𝑊) = {p!} ∪ act(𝑊)

Figure A.12. Definition of the function act(W) on a tree𝑊 .

T
(
𝜇t.a?add .c!

{
add .t
sub.t

})
=



a?

add c!

add a?

.

sub a?

.


Figure A.13. An example of a session type and its corre-
sponding type tree.

𝑊 ≲ a?add .𝑊 ′ = 𝜋3 .𝑊
′

[ref-in]
a?add .𝑊 ≲ a?add .a?add .𝑊 ′

[ref-B]
c!add .a?add .𝑊 ≲ a?add .c!add .a?add .𝑊 ′

2. Using the coinductive hypothesis 𝜋2.𝑊 ≲ 𝜋3 .𝜋2.𝑊
′,

we show that𝑊 ≲ 𝜋3.𝑊
′.

𝑊 ≲ a?add .𝑊 ′ = 𝜋3 .𝑊
′

[ref-in]
a?add .𝑊 ≲ a?add .a?add .𝑊 ′

[ref-B]
c!sub.a?add .𝑊 ≲ a?add .c!sub.a?add .𝑊 ′

Double buffering protocol. We also show the optimisa-
tion to the double buffering protocol discussed in § 2. The
kernel sends two readymessages at once, allowing the source
to fill up both buffers sooner.

T = s!ready.T′ = s!ready.𝜇x.s!ready.s?copy.t?ready.t!copy.x
T
′ = 𝜇x.s!ready.s?copy.t?ready.t!copy.x

As before, we consider the tree types 𝑇 = T (T) and 𝑇 ′ =
T (T′) which are already both SI and SO trees. Therefore, to
prove that T ≤ T

′ we need only to show that 𝑇 ≲ 𝑇 ′.

𝑇 ′ ≤𝑊
[ref-in]

t!copy.𝑇 ′ ≤ t!copy.𝑊
[ref-in]

t?ready.t!copy.𝑇 ′ ≤ t?ready.t!copy.𝑊
[ref-in]

s?copy.t?ready.t!copy.𝑇 ′ ≤ s?copy.t?ready.t!copy.𝑊
[ref-B]

s!ready.𝑊 ≤ s?copy.t?ready.t!copy.s!ready.𝑊
[ref-out]

𝑇 = s!ready.𝑇 ′ ≤ s!ready.𝑊 = 𝑇 ′

𝑊 = s?copy.t?ready.t!copy.𝑇 ′

B.3 Proofs for the Subtyping Algorithm
Lemma 3. Given finite prefixes 𝜋 and 𝜋 ′, ⟨𝜋 ⌈⌋ 𝜋 ′⟩ can be
reduced only a finite number of times.

Proof. We prove this in a similar style to [22, Lemma 10],
using a well-founded relation. We first consider the relation
𝑅 = {(⟨𝜋1 ⌈⌋ 𝜋 ′

1⟩, ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩) | ⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩ � ⟨𝜋1 ⌈⌋ 𝜋 ′
1⟩}. We

define the function terms(𝜋), which returns the number of
terms in 𝜋 , such that

terms(𝜖) = 0
terms(p!ℓ (𝑆)) = 1 terms(p?ℓ (𝑆)) = 1
terms(𝜋1 .𝜋2) = terms(𝜋1) + terms(𝜋2)

and we define terms(⟨𝜋 ⌈⌋ 𝜋 ′⟩) such that terms(⟨𝜋 ⌈⌋ 𝜋 ′⟩) =
⟨terms(𝜋) ⌈⌋ terms(𝜋 ′)⟩. We also define the lexicographical
ordering

⟨𝑚 ⌈⌋ 𝑛⟩ < ⟨𝑚′ ⌈⌋ 𝑛′⟩
⇐⇒ 𝑚 < 𝑚′ or (𝑚 =𝑚′ and 𝑛 < 𝑛′)

We next show that reducing a pair of prefixes decrements the
number of terms in the pair by induction over our reduction
rules.

(⟨𝜋1 ⌈⌋ 𝜋 ′
1⟩, ⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩) ∈ 𝑅

=⇒ terms(⟨𝜋1 ⌈⌋ 𝜋 ′
1⟩) < terms(⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩)
(1)

• Case [)i]. We have that 𝜋2 = p?ℓ (𝑆).𝜋1 and 𝜋 ′
2 =

p?ℓ (𝑆 ′).𝜋 ′
1.

Since ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩ � ⟨𝜋1 ⌈⌋ 𝜋 ′

1⟩, we have that, by definition
of 𝑅, (⟨𝜋1 ⌈⌋ 𝜋 ′

1⟩, ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩) ∈ 𝑅.

As we know that terms(𝜋2) = terms(𝜋1) + 1 and
terms(𝜋 ′

2) = terms(𝜋 ′
1) + 1, we also have that

terms(⟨𝜋1 ⌈⌋ 𝜋 ′
1⟩) < terms(⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩)

as required.
• Case [)o]. We have that 𝜋2 = p!ℓ (𝑆).𝜋1 and 𝜋 ′

2 =

p!ℓ (𝑆 ′).𝜋 ′
1.

Since ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩ � ⟨𝜋1 ⌈⌋ 𝜋 ′

1⟩, we have that, by definition
of 𝑅, (⟨𝜋1 ⌈⌋ 𝜋 ′

1⟩, ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩) ∈ 𝑅.

As we know that terms(𝜋2) = terms(𝜋1) + 1 and
terms(𝜋 ′

2) = terms(𝜋 ′
1) + 1, we also have that

terms(⟨𝜋1 ⌈⌋ 𝜋 ′
1⟩) < terms(⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩)

as required.
• Case [)A]. We have that 𝜋2 = p?ℓ (𝑆).𝜋1 and 𝜋 ′

2 =

A (p) .p?ℓ (𝑆 ′).𝜋 ′
1.

Since ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩ � ⟨𝜋1 ⌈⌋ A (p) .𝜋 ′

1⟩, by definition of 𝑅,
we have that (⟨𝜋1 ⌈⌋ A (p) .𝜋 ′

1⟩, ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩) ∈ 𝑅 .

Aswe know terms(𝜋2) = terms(𝜋1)+1 and terms(𝜋 ′
2) =

terms(A (p) .𝜋 ′
1)+1, we have that terms(⟨𝜋1 ⌈⌋ A (p) .𝜋 ′

1⟩) <
terms(⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩) as required.
• Case [)B]. We have that 𝜋2 = p!ℓ (𝑆).𝜋1 and 𝜋 ′

2 =

B (p) .p!ℓ (𝑆 ′).𝜋 ′
1.

Since ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩ � ⟨𝜋1 ⌈⌋ B (p) .𝜋 ′

1⟩, by definition of 𝑅,
we have that (⟨𝜋1 ⌈⌋ B (p) .𝜋 ′

1⟩, ⟨𝜋2 ⌈⌋ 𝜋 ′
2⟩) ∈ 𝑅 .

Aswe know terms(𝜋2) = terms(𝜋1)+1 and terms(𝜋 ′
2) =

terms(B (p) .𝜋 ′
1)+1, we have that terms(⟨𝜋1 ⌈⌋ B (p) .𝜋 ′

1⟩) <
terms(⟨𝜋2 ⌈⌋ 𝜋 ′

2⟩) as required.
The ordering of terms of pairs is well-founded since both
components are bounded from below by 0. Therefore, from
Eq. (1), 𝑅 is also well-founded and so pairs of prefixes cannot
be reduced ad infinitum. □

Theorem 4 (Termination). Our subtyping algorithm always
eventually terminates.

Proof. We prove termination by arguing that each of our
subtyping algorithm rules can be run only a finite number
of times.

• [end] and [asm] can each be run only once since they
are terminating rules.

• [sub] can be run only a finite number of times since a
pair of prefixes can be reduced only a finite number
of times, as proven in Lemma 3.

• [oi], [oo], [ii] and [io] can be run only a finite number
of times since (1) the number of terms in T and T

′

is finite and (2) recursion must be explicitly unrolled
with [𝜇l] or [𝜇r], which themselves can only be run a
finite number of times.

• [𝜇l] and [𝜇r] can be run only a finite number of times
since (1) the bounds 𝑛 and 𝑛′ are finite; (2) each exe-
cution of the rule decrements 𝑛 or 𝑛′ respectively; and
(3) no rule allows 𝑛 or 𝑛′ to be incremented.

• [tra] can be run only a finite number of times since
(1) the bound 𝑘 is finite; (2) each execution of the rule
decrements 𝑘 ; and (3) no rule allows 𝑘 to be incre-
mented.

□

Theorem 5 (Soundness). Our subtyping algorithm is sound.

Proof. To prove that our algorithm is sound, we must show
that each rule in the precise subtyping by [25] is matched by
a rule in our algorithm.

• The subtyping relation rule is matched by [oi], [oo],
[ii] and [io].

• [ref-end] is matched by [end]. Since both prefixes are
empty and T = T

′ = end, we trivially have that 𝜋.T ≤
𝜋 ′.T′.

• The coinductive behaviour of the refinement relation
rules is matched by [asm]. From our map of assump-
tions Σ, we have that 𝜋.T ≤ 𝜋 ′.T′.

• [ref-in] and [ref-out] are matched by [)i] and [)o]
respectively, which can be applied with [sub].

• [ref-A] and [ref-B] are matched by [)A] and [)B] re-
spectively, which can be applied with [sub]. To ensure
that actions are not forgotten when using coinduc-
tion, the refinement relation rules additionally require
that the actions of the resulting type trees are equal.
Our reduction rules emit this check since they deal
only with finite sequences. We instead prevent actions
from being forgotten in our [asm] rule by ensuring
that each reordered action in the supertype (which is
contained in 𝜋 ′) is encountered in the recursive part
of the subtype (𝜌 ′) by using the subset relation.
Ghilezan et al. [25] use the example of checking T =

𝜇t.p?ℓ .t ≤ q?ℓ ′.T = T
′ to demonstrate why comparing

the actions is necessary—we show how our algorithm
also correctly rejects this subtype in Fig. A.14 (with a
bound of 2 for brevity).
We cannot apply [asm] as the final rule since

act(p?ℓ .end) = {p?} ⊉ {q?} = act(q?ℓ ′.end).

This subset check spots that the q? action was not
present in the recursive part of the supposed subtype.
Otherwise, our algorithm would incorrectly conclude
that T ≤ T

′.
It is straightforward to also argue that our algorithm pre-
serves reflexivity. We have that ⟨𝜖, T, 𝑛⟩ ≤ ⟨𝜖, T, 𝑛⟩, providing
𝑛 is sufficiently large to ensure that each recursion can be
visited at least once. The prefixes of both sides will always
be identical so will reduce to ⟨𝜖 ⌈⌋ 𝜖⟩ using [)i] or [)o]. These

Σ1 [⟨p?ℓ ⌈⌋ T⟩ ≤ ⟨q?ℓ ′ ⌈⌋ T⟩] = p?ℓ act(p?ℓ .end) ⊉ act(q?ℓ ′.end)
[asm]

p?ℓ .p?ℓ ; Σ3 ⊢ ⟨p?ℓ, T, 0⟩ ≤ ⟨q?ℓ ′, T, 1⟩
[sub]

p?ℓ .p?ℓ ; Σ3 ⊢ ⟨p?ℓ .p?ℓ, T, 0⟩ ≤ ⟨q?ℓ ′.p?ℓ, T, 1⟩
[ii]

p?ℓ ; Σ3 ⊢ ⟨p?ℓ, p?ℓ .T, 0⟩ ≤ ⟨q?ℓ ′, p?ℓ .T, 1⟩
[𝜇r]

p?ℓ ; Σ2 ⊢ ⟨p?ℓ, p?ℓ .T, 1⟩ ≤ ⟨q?ℓ ′, T, 2⟩
[𝜇l]

p?ℓ ; Σ1 ⊢ ⟨p?ℓ, T, 1⟩ ≤ ⟨q?ℓ ′, T, 2⟩
[ii]

𝜖 ; Σ1 ⊢ ⟨𝜖, p?ℓ .T, 1⟩ ≤ ⟨𝜖, q?ℓ ′.T, 2⟩
[𝜇l]

𝜖 ;∅ ⊢ ⟨𝜖, T, 2⟩ ≤ ⟨𝜖, q?ℓ ′.T, 2⟩

Σ1 = [⟨𝜖 ⌈⌋ T⟩ ≤ ⟨𝜖 ⌈⌋ T′⟩ ↦→ 𝜖] Σ2 = Σ1 [⟨p?ℓ ⌈⌋ T⟩ ≤ ⟨q?ℓ ′ ⌈⌋ T⟩ ↦→ p?ℓ]
Σ3 = Σ2 [⟨p?ℓ ⌈⌋ p?ℓ .T⟩ ≤ ⟨q?ℓ ′ ⌈⌋ T⟩ ↦→ p?ℓ]

Figure A.14. Demonstration of how our algorithm correctly prevents actions from being forgotten.

reductions will be applied using [sub] until either end is en-
countered and [end] can be applied or the algorithm loops,
which allows the application of [asm]. □

Lemma 6. Given finite prefixes 𝜋 and 𝜋 ′, the time complexity
of reducing ⟨𝜋 ⌈⌋ 𝜋 ′⟩ is O(min(|𝜋 |, |𝜋 ′ |)).
Proof. We prove this quite simply by induction over our
reduction rules.

• Inductive case ⟨p?ℓ .𝜋 ⌈⌋ p?ℓ .𝜋 ′⟩. Then, we can per-
form a [)i] reduction to get ⟨𝜋 ⌈⌋ 𝜋 ′⟩. By the induc-
tive hypothesis, the complexity of reducing ⟨𝜋 ⌈⌋ 𝜋 ′⟩
is O(min(|𝜋 |, |𝜋 ′ |)). Therefore, since we require one
additional reduction step, the complexity of reducing
⟨p?ℓ .𝜋 ⌈⌋ p?ℓ .𝜋 ′⟩ isO(min(|𝜋 |, |𝜋 ′ |)+1) = O(min(|𝜋 |+
1, |𝜋 ′ | + 1)) = O(min(|p?ℓ .𝜋 |, |p?ℓ .𝜋 ′ |)) as required.

• Inductive case ⟨p!ℓ .𝜋 ⌈⌋ p!ℓ .𝜋 ′⟩. The proof is the same
as for the ⟨p?ℓ .𝜋 ⌈⌋ p?ℓ .𝜋 ′⟩ case, except a [)o] reduction
is applied.

• Inductive case ⟨p?ℓ .𝜋 ⌈⌋ A (p) .p?ℓ .𝜋 ′⟩. Then, we can
perform a [)A] reduction to get ⟨𝜋 ⌈⌋ A (p) .𝜋 ′⟩. By
the inductive hypothesis, the complexity of reduc-
ing ⟨𝜋 ⌈⌋ A (p) .𝜋 ′⟩ is O(min(|𝜋 |, |A (p) .𝜋 ′ |)). There-
fore, since we require one additional reduction step,
the complexity of reducing ⟨p?ℓ .𝜋 ⌈⌋ A (p) .p?ℓ .𝜋 ′⟩ is
O(min(|𝜋 |, |A (p) .𝜋 ′ |)+1) = O(min(|𝜋 |+1, |A (p) .𝜋 ′ |+
1)) = O(min(|p?ℓ .𝜋 |, |A (p) .p?ℓ .𝜋 ′ |)) as required.

• Inductive case ⟨p!ℓ .𝜋 ⌈⌋ B (p) .p!ℓ .𝜋 ′⟩. The proof is the
same as for the ⟨p?ℓ .𝜋 ⌈⌋ A (p) .p?ℓ .𝜋 ′⟩ case, except a
[)B] reduction is applied.

• Base case ⟨𝜋 ⌈⌋ 𝜋 ′⟩ where ⟨𝜋 ⌈⌋ 𝜋 ′⟩ cannot be reduced.
Since ∀𝜋.|𝜋 | > 0, the complexity of reducing ⟨𝜋 ⌈⌋ 𝜋 ′⟩
is O(0) = O(min(|𝜋 |, |𝜋 ′ |)) as required.

□

Theorem 7 (Complexity). Consider T and T′ as (possibly in-
finite) trees T (T) and T (T′) with asymptotic branching fac-
tors 𝑏 and 𝑏 ′ respectively [21, 39]. Our algorithm has time com-
plexityO(𝑛min(𝑏, 𝑏 ′)𝑛) and space complexityO(𝑛min(𝑏, 𝑏 ′))
in the worst case to determine if T ≤ T

′ with bound 𝑛.

Proof. Let us consider for now only the left tree T (T) which
has asymptotic branching factor 𝑏. In the worst case, the
number of nodes we have to explore in the tree is

1 + 𝑏 + 𝑏2 + . . . + 𝑏𝑛−1 =
𝑛−1∑︁
𝑖=0

𝑏𝑖 =
𝑏𝑛 − 1
𝑏 − 1

Therefore, exploring the left tree up to a depth of 𝑛 has
time complexity O(𝑏𝑛). Similarly, exploring the right tree
T (T′) to depth 𝑛 has complexity O(𝑏 ′𝑛). Note that in the
worst case we cannot reduce any prefixes as we go along
and must therefore do the entire reduction at the end of each
exploration path.

Suppose at the end of some exploration path we have the
pair of prefixes ⟨𝜋 ⌈⌋ 𝜋 ′⟩. Since |𝜋 | = |𝜋 ′ | (our algorithm
does not add an uneven number of terms to either side of
the prefix pair), the time complexity of reducing this pair is
O(min(|𝜋 |, |𝜋 ′ |)) = O(|𝜋 |) from Lemma 8.
At the end of our exploration, we will have 𝑏𝑛−1 prefixes,

each with size 𝑛. Therefore, the complexity of reducing all
the pairs of prefixes is O(𝑛𝑏𝑛−1) so the total complexity for
the exploration and reduction is O(𝑏𝑛 + 𝑛𝑏𝑛−1) = O(𝑛𝑏𝑛).

Our algorithm stops when the bound 𝑛 is reached in either
of the two trees so the overall time complexity of exploration
is O(min(𝑛𝑏𝑛, 𝑛𝑏 ′𝑛)) = O(𝑛min(𝑏,𝑏 ′)𝑛).

Considering space complexity, it is clear that the greatest
amount of memory will be required at the end of an explo-
ration path (when the prefixes are greatest in length). For
the left tree, at this point, we will need to store (1) a prefix
of length 𝑛 (since we are considering the worst case); and
(2) the other 𝑏 siblings to visit at 𝑛 − 1 levels.

Therefore, the total space complexity for the left tree is
O(𝑛+𝑏 (𝑛−1)) = O(𝑛𝑏) and the space complexity for explor-
ing both trees is O(min(𝑛𝑏, 𝑛𝑏 ′)) = O(𝑛min(𝑏,𝑏 ′)). □

B.4 Algorithm Examples
Ring protocol. We again use the ring protocol with choice

and show that our algorithm can successfully check the

optimisation to b. The derivation trees are shown in Fig. A.15.

T = 𝜇t.c!
{

add .a?add .t
sub.a?add .t

}
T
′ = 𝜇t.a?add .c!

{
add .t
sub.t

}

Alternating bit protocol. We consider the alternating bit
protocol [1]. We construct a global type G for the protocol
such that when projected onto the receiver, its local type
matches the protocol specification.

G = 𝜇t.s → r :
d0.r → s :

 a0.𝜇u.s → r :
{
d1.r → s :

{
a0.u
a1.t

}}
a1.t




G ↾ s = 𝜇t.r!d0.r?
 a0.𝜇x.r!d1.r?

{
a0.x
a1.t

}
a1.t


G ↾ r = 𝜇t.s?d0.s!

 a0.𝜇x.s?d1.s!
{

a0.x
a1.t

}
a1.t


T = 𝜇t.s?

{
d0.s!a0.t
d1.s!a1.t

}
T
′ = G ↾ r

We then use our subtyping algorithm to confirm that the
type given by the protocol specification for the receiver [1]
is a subtype of its projected version. In this derivation, we
omit some exploration paths for brevity. The derivation tree
is in Fig. A.16.

B.5 Implementation of the Algorithm
In practice, we implement our asynchronous subtyping al-
gorithm on FSMs M and M

′ rather than local types T and
T
′. We discuss the practical considerations behind some of

our implementation decisions and explain why these are
equivalent to the theory presented in § 3.1.

Prefixes. We define prefixes somewhat differently in Rust
to avoid copying memory where possible. A prefix is a struct
containing three elements:

1. A list of lazy-removable transitions which make
up the prefix. A boolean for each element indicates
whether the corresponding transition has been lazily
removed. A transition is either p!ℓ (𝑆) or p?ℓ (𝑆), which
is identical to a prefix term in the theory.

2. A start index, which indicates that the first start
elements in transitions should be ignored as they
have been lazily removed.

3. A list of indexes of elements that have been lazily
removed by setting their boolean to true.

1 struct Prefix {
2 transitions: Vec <(bool , Transition)>,
3 start: usize ,
4 removed: Vec <usize >,
5 }

Elements can be lazily removed either by incrementing start
or by setting the element’s boolean to true and adding its in-
dex to removed. We favour the first option so as to maintain
the invariant

transitions.len() > 0 =⇒ !transitions[0].0

where the tuple indexing syntax (x, y).0 will evaluate to
x, the first element of the tuple. To ensure that this invari-
ant holds, we must advance start as far as possible when
removing a transition at the head of the prefix.
We also give the option of storing snapshots to previous

versions of a prefix. A snapshot stores (1) the size of the
transitions list; (2) the value of the start field; and (3) the
size of the removed list, all taken at the time of the snapshot.

1 struct Snapshot {
2 size: usize ,
3 start: usize ,
4 removed: usize ,
5 }

We can easily revert a prefix to a previous snapshot by
(1) finding the elements of removed that have been added
since the snapshot; (2) setting the boolean to false for each
of these elements to restore them; (3) truncating transitions
to its previous size; (4) restoring start to its previous value;
and (5) truncating removed to its previous size.

Visitor. We use the visitor pattern [50] to traverse a pair
of FSMsM andM

′. In our visitor, we store (1) the fsms we
are traversing; (2) a matrix of history (as we will see, this
is equivalent to the assumptions map Σ in the theory); and
(3) a pair of prefixes, as in the theory.

1 struct SubtypeVisitor {
2 fsms: Pair <Fsm >,
3 history: Matrix <Previous >,
4 prefixes: Pair <Prefix >,
5 }

The history matrix stores a value for each combination of
states in M and M

′ (it effectively has the type |M| × |M′ | �
Previous). Each of these values stores a Previous struct
containing the number of visits this combination of states
has remaining and optionally (if it has been visited before) a
pair of snapshots taken during the last visit to this combi-
nation.

(★) 𝜌3; Σ2 ⊢ ⟨c!add .a?add, T, 0⟩ ≤ ⟨a?add .c!sub, T′, 0⟩
[io]

𝜌1; Σ2 ⊢ ⟨c!add, a?add .T, 0⟩ ≤ ⟨a?add, c!
{
add .T′

sub.T′

}
, 0⟩

(†) 𝜌4; Σ2 ⊢ ⟨c!sub.a?add, T, 0⟩ ≤ ⟨a?add .c!add, T′, 0⟩
[io]

𝜌2; Σ2 ⊢ ⟨c!sub, a?add .T, 0⟩ ≤ ⟨a?add, c!
{
add .T′

sub.T′

}
, 0⟩

[oi]
𝜖 ; Σ2 ⊢ ⟨𝜖, c!

{
add .a?add .T
sub.a?add .T

}
, 0⟩ ≤ ⟨𝜖, a?add .c!

{
add .T′

sub.T′

}
, 0⟩

[𝜇r]

𝜖 ; Σ1 ⊢ ⟨𝜖, c!
{
add .a?add .T
sub.a?add .T

}
, 0⟩ ≤ ⟨𝜖, T′, 1⟩

[𝜇l]
𝜖 ;∅ ⊢ ⟨𝜖, T, 1⟩ ≤ ⟨𝜖, T′, 1⟩

(★) = [)B]⟨c!add .a?add ⌈⌋ a?add .c!add⟩ � ⟨a?add ⌈⌋ a?add⟩

[)i]⟨a?add ⌈⌋ a?add⟩ � ⟨𝜖 ⌈⌋ 𝜖⟩
act(𝜌3 .end) ⊇ act(end)

[asm]
𝜌3; Σ2 ⊢ ⟨𝜖, T, 0⟩ ≤ ⟨𝜖, T′, 0⟩

[sub]
𝜌3; Σ2 ⊢ ⟨a?add, T, 0⟩ ≤ ⟨a?add, T′, 0⟩

[sub]
𝜌3; Σ2 ⊢ ⟨c!add .a?add, T, 0⟩ ≤ ⟨a?add .c!add, T′, 0⟩

(†) = [)B]⟨c!sub.a?add ⌈⌋ a?add .c!sub⟩ � ⟨a?add ⌈⌋ a?add⟩

[)i]⟨a?add ⌈⌋ a?add⟩ � ⟨𝜖 ⌈⌋ 𝜖⟩
act(𝜌4 .end) ⊇ act(end)

[asm]
𝜌4; Σ2 ⊢ ⟨𝜖, T, 0⟩ ≤ ⟨𝜖, T′, 0⟩

[sub]
𝜌4; Σ2 ⊢ ⟨a?add, T, 0⟩ ≤ ⟨a?add, T′, 0⟩

[sub]
𝜌4; Σ2 ⊢ ⟨c!sub.a?add, T, 0⟩ ≤ ⟨a?add .c!sub, T′, 0⟩

𝜌1 = c!add 𝜌2 = c!sub 𝜌3 = 𝜌1 .a?add 𝜌4 = 𝜌2.a?add

Σ1 = [⟨𝜖 ⌈⌋ T⟩ ≤ ⟨𝜖 ⌈⌋ T′⟩ ↦→ 𝜖] Σ2 = Σ1

[
⟨𝜖 ⌈⌋ c!

{
add .a?add .T
sub.a?add .T

}
⟩ ≤ ⟨𝜖 ⌈⌋ T′⟩ ↦→ 𝜖

]
Figure A.15. Derivation trees to verify the subtyping of the Ring protocol

1 struct Previous {
2 visits: usize ,
3 snapshots: Option <Pair <Snapshot >>,
4 }

In the theory, termination is guaranteed by allowing recur-
sions to be unrolled only 𝑛 times. Here, our ‘𝑛’ is the value of
visits, which limits how many times the same combination
of states can be visited. SinceM andM′ each contain a finite
number of states and their cross product is also finite, this
will achieve termination just as in the theory (provided that
𝑛 is also finite). Otherwise, this is identical to the theory—our
history matrix corresponds to the map of assumptions Σ
and the Previous struct represents a single mapping (we
use snapshots in place of prefixes).
Each state in an Fsm is given a unique StateIndex that

identifies it. Our Visitor is executed using its recursive
visitmethod, which takes amutable reference to the Visitor
and a StateIndex for each Fsm.

1 impl Visitor {
2 fn visit (&mut self , states: Pair <StateIndex >) ->

bool {
3 [...]
4 }
5 }

This visit method performs our asynchronous subtyping
algorithm as follows.

1. We look up the current combination states in our
history to ensure visits is positive, as in [𝜇l] and
[𝜇r]. If it is not then our bound has been exhausted
and we return with false.

2. We attempt to reduce the pair of prefixes, as in [sub].
This reduction process follows precisely the same rules
as in the theory, lazily removing transitions where
appropriate.

3. If the current combination of states has been visited
before, we attempt to use our assumptions map to
return true, as in [asm]. The method we use to check
the actions sets, explained below, differs slightly from
the theory.

4. If both FSMs are in a terminal state and the prefixes
are empty then we return true, as in [end].

5. If both FSMs are in a non-terminal state then we
• take a snapshot of the current prefixes;
• update the history matrix for the current combi-
nation of states, setting visits to visits - 1 and
snapshots to the snapshots we just took;

• for each pair of transitions we can take from the
current combination of states we
– add each transition in the pair to its corresponding
prefix;

– recurse using the visitmethod, setting the states
argument to the pair of end states corresponding

act(s?d0.s!a0.end) ⊇ act(end)
[asm]

s?d0.s!a0; Σ4 ⊢ ⟨𝜖, T, 0⟩ ≤ ⟨𝜖, T′, 0⟩
[sub]

s?d0.s!a0; Σ4 ⊢ ⟨s!a1, T, 0⟩ ≤ ⟨s!a1, T′, 0⟩ . . .
[out-out]

s?d0.s!a0; Σ4 ⊢ ⟨𝜖, s!a1.T, 0⟩ ≤ ⟨𝜖, s!
{

a0.T1
a1.T′

}
, 0⟩

[sub]
s?d0.s!a0; Σ4 ⊢ ⟨s?d1, s!a1.T, 0⟩ ≤ ⟨s?d1, s!

{
a0.T1
a1.T′

}
, 0⟩ . . .

[in-in]
s?d0.s!a0; Σ4 ⊢ ⟨𝜖, s?

{
d0.s!a0.T
d1.s!a1.T

}
, 0⟩ ≤ ⟨𝜖, s?d1.s!

{
a0.T1
a1.T′

}
, 0⟩

[𝜇r]
s?d0.s!a0; Σ3 ⊢ ⟨𝜖, s?

{
d0.s!a0.T
d1.s!a1.T

}
, 0⟩ ≤ ⟨𝜖, T1, 1⟩

[𝜇l]
s?d0.s!a0; Σ2 ⊢ ⟨𝜖, T, 1⟩ ≤ ⟨𝜖, T1, 1⟩ [sub]

s?d0.s!a0; Σ2 ⊢ ⟨s!a0, T, 1⟩ ≤ ⟨s!a0, T1, 1⟩ . . .
[out-out]

s?d0; Σ2 ⊢ ⟨𝜖, s!a0.T, 1⟩ ≤ ⟨𝜖, s!
{

a0.T1
a1.T′

}
, 1⟩

[sub]
s?d0; Σ2 ⊢ ⟨s?d0, s!a0.T, 1⟩ ≤ ⟨s?d0, s!

{
a0.T1
a1.T′

}
, 1⟩ . . .

[in-in]
𝜖 ; Σ2 ⊢ ⟨𝜖, s?

{
d0.s!a0.T
d1.s!a1.T

}
, 1⟩ ≤ ⟨𝜖, s?d0.s!

{
a0.T1
a1.T′

}
, 1⟩

[𝜇r]
𝜖 ; Σ1 ⊢ ⟨𝜖, s?

{
d0.s!a0.T
d1.s!a1.T

}
, 1⟩ ≤ ⟨𝜖, T′, 2⟩

[𝜇l]
𝜖 ;∅ ⊢ ⟨𝜖, T, 2⟩ ≤ ⟨𝜖, T′, 2⟩

T1 = 𝜇x.s?d1.s!
{

a0.x
a1.T′

}
Σ1 =

[
⟨𝜖 ⌈⌋ T⟩ ≤ ⟨𝜖 ⌈⌋ T′⟩ ↦→ 𝜖

]
Σ2 = Σ1

[
⟨𝜖 ⌈⌋ s?

{
d0.s!a0.T
d1.s!a1.T

}
⟩ ≤ ⟨𝜖 ⌈⌋ T′⟩ ↦→ 𝜖

]
Σ3 = Σ2 [⟨𝜖 ⌈⌋ T⟩ ≤ ⟨𝜖 ⌈⌋ T1⟩ ↦→ s?d0.s!a0] Σ4 = Σ3

[
⟨𝜖 ⌈⌋ s?

{
d0.s!a0.T
d1.s!a1.T

}
⟩ ≤ ⟨𝜖 ⌈⌋ T1⟩ ↦→ s?d0.s!a0

]
Figure A.16. Derivation trees to verify the subtyping of the Alternating-Bit protocol

to our transitions; and after the recursive call re-
turns

– revert the changes made to the prefixes by using
the snapshot we took previously;

• restore the current history matrix entry to its orig-
inal value; and

• return a value depending on the results of the recur-
sive calls and whether the current combination of
states performs input or output actions, as described
by the quantifiers in [{in,out}-{in,out}].

6. Otherwise, one of the FSMs has reached a terminal
state but the other has not. In this case, there is no way
to progress and we return false.

By performing a depth-first search we can make changes to
the history and prefixes fields of our visitor and revert
them later, using a snapshot for each prefix. This method
improves the efficiency of our algorithm by avoiding copy-
ing memory. If we instead used a breadth-first search, for
instance, we would need to store a separate visitor for each

frontier of our search. This would require an expensive copy
of the history and prefixes.

Checking actions. In the theory, our [asm] rule compares
two sets of actions to ensure that it is safe to apply an assump-
tion. Specifically, it checks that the actions of the supposed
supertype’s prefix (𝜋 ′) are a subset of the actions performed
by the subtype since the assumption was made (𝜌 ′). In our
algorithm, we can actually perform a far cheaper but equiv-
alent check thanks to our use of lazy removal. We need only
to confirm that

transitions[start..] ==

transitions[..snapshot.size][snapshot.start..]
(2)

for each prefix/snapshot combination. The syntax x[i..]
evaluates to x with the first i elements removed and y[..j]
evaluates to the first j elements of y. Surprisingly, this check
is identical in effect to the one performed in the theory due
to two observations.

1. Comparing the full list of transitions (which include
labels and sorts) rather than only their actions is sound
since the reduction rules do not allow sends or receives
to or from the same participant to be reordered.
We can easily prove this by contradiction. Suppose
p?ℓ (𝑆) ∈ 𝜋 ′ and p?ℓ ′(𝑆 ′) ∈ 𝜌 ′ and we can apply [asm].
Clearly, p?ℓ (𝑆) has not been reduced by [ref-in], oth-
erwise, it would not still be in 𝜋 ′. Therefore, at some
point since the assumption was added to Σ, [ref-A]
must have been used to move p?ℓ (𝑆) before p?ℓ ′(𝑆 ′).
This is a contradiction because A (p) cannot contain
p?ℓ ′(𝑆 ′) by definition so [ref-A] cannot have been ap-
plied. A similar argument can be made for the output
case.

2. The version in the theory is intuitively checkingwhether
there is an action that ‘hangs on’ to the far left of 𝜋 ′

for multiple iterations of a recursive type without ever
being reduced. If this is the case, then the action will
not be matched by any of the actions in 𝜌 ′ (otherwise
it would have been reduced) so 𝜌 ′ ⊉ 𝜋 ′.
In our implementation, if an action hangs on to the
supertype’s prefix then it will never be lazily removed.
This means that the size of the prefix will grow on each
iteration of the FSM since start is never advanced.
Since

transitions[start..].len() !=

transitions[..snapshot.size][snapshot.start..].len()

Eq. (2) is trivially false. Note that the full check in
Eq. (2) must be performed, rather than only comparing
the lengths, to ensure that the prefixes do actually
match those of the assumption, as in [asm].

Fail-early reductions. Our practical implementation per-
forms the same reduction rules on prefixes as described in
the theory. However, we add a practical optimisation to, in
some cases, determine that a particular path cannot succeed
before even reaching the bound.

For example, consider the pair ⟨p?ℓ (𝑆).𝜋 ⌈⌋ q!ℓ ′(𝑆 ′).p?ℓ (𝑆).𝜋 ′⟩.
Regardless of what 𝜋 and 𝜋 ′ are set to, this pair cannot be re-
duced as it will require using the [ref-A] but q!ℓ ′(𝑆 ′) cannot
be contained in A (p) . Therefore, if at some point we reach a
pair of prefixeswhich looks like ⟨p?ℓ (𝑆).p?ℓ (𝑆) ⌈⌋ q!ℓ ′(𝑆 ′).p?ℓ (𝑆)⟩,
we can immediately return false as there is no way that it
can ever be reduced by adding more terms.

C Benchmarking results
C.1 Session-Based Rust Implementations

Results for the stream benchmark.

Throughput (𝑛/𝜇s)

𝑛 Sesh MultiCrusty Ferrite Rumpsteak Rumpsteak (opt.)

10 0.019389 0.011678 0.011386 0.202587 0.215583

20 0.028142 0.014325 0.012994 0.336988 0.356978

30 0.034193 0.015160 0.013463 0.427489 0.437795

40 0.036566 0.016072 0.013671 0.488886 0.517468

50 0.040315 0.016577 0.014126 0.545378 0.583366

Results for the double buffering benchmark.

Throughput (𝑛/𝜇s)

𝑛 Sesh MultiCrusty Ferrite Rumpsteak Rumpsteak (opt.)

5000 6.929567 5.675414 7.617643 27.704354 32.340989

10000 13.138401 11.254181 14.649028 44.154722 50.126532

15000 18.739983 16.187341 20.429845 56.813002 67.884430

20000 24.103215 20.481378 25.506427 67.595301 82.039366

25000 28.609966 25.050058 29.629025 75.848611 96.010424

Results for the FFT benchmark.

Throughput (𝑛/𝜇s)

𝑛 Sesh MultiCrusty Ferrite RustFFT Rumpsteak

1000 0.551154 0.810134 1.458279 9.320778 5.038554

2000 1.050958 1.515538 2.513855 9.313359 7.206404

3000 1.510567 2.163629 3.496405 9.333569 8.421026

4000 1.935263 2.783617 4.198723 9.336939 9.262763

5000 2.303627 3.261020 4.811375 9.323199 9.316716

C.2 Verifying Asynchronous Message Reordering
Results for the stream benchmark.

Running time (s)

𝑛 SoundBinary 𝑘-MC Rumpsteak

0 0.003476 0.005504 0.001872

10 0.008556 0.019316 0.001899

20 0.020673 0.057417 0.001848

30 0.041673 0.142145 0.001906

40 0.076425 0.276446 0.001874

50 0.127865 0.496929 0.002080

60 0.198541 0.805577 0.002083

70 0.292471 1.233327 0.002064

80 0.422571 1.780778 0.002178

90 0.583863 2.475443 0.002190

100 0.767426 3.349204 0.002249

Results for the nested choice benchmark.

Running time (s)

𝑛 SoundBinary 𝑘-MC Rumpsteak

1 0.002295 0.006554 0.000702

2 0.004504 0.014901 0.000755

3 0.016347 0.072423 0.001745

4 0.224858 1.515528 0.007656

5 4.692525 41.688068 0.157548

Results for the ring benchmark.

Running time (s)

𝑛 𝑘-MC Rumpsteak

2 0.004007 0.000675

4 0.007239 0.000731

6 0.011806 0.000701

8 0.018822 0.000835

10 0.024842 0.000757

12 0.049232 0.000777

14 0.102257 0.000744

16 0.191078 0.000813

18 0.340262 0.000817

20 0.570656 0.000766

22 0.913412 0.000911

24 1.391075 0.000737

26 2.042452 0.000752

28 2.918943 0.000732

30 4.099072 0.000769

Results for 𝑘-buffering benchmark.

Running time (s)

𝑛 𝑘-MC Rumpsteak

0 0.004825 0.000630

5 0.007668 0.000747

10 0.013613 0.000705

15 0.018770 0.000667

20 0.031376 0.000825

25 0.054910 0.000718

30 0.080879 0.000760

35 0.122315 0.000853

40 0.170533 0.000802

45 0.236354 0.000792

50 0.305749 0.000916

55 0.406071 0.000882

60 0.506069 0.000959

65 0.639521 0.001028

70 0.773931 0.001057

75 0.954399 0.001045

80 1.127240 0.001125

85 1.359600 0.001120

90 1.571745 0.001164

95 1.869339 0.001156

100 2.111687 0.001234

References
[1] [n.d.]. Introduction to Protocol Engineering. http://cs.uccs.edu/

~cs522/pe/pe.htm

[2] [n.d.]. 𝜈Scr. https://github.com/nuscr/nuscr

[3] [n.d.]. Rumpsteak. https://github.com/zakcutner/rumpsteak

[4] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos,
Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Ges-
bert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco
Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova,
Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko
Yoshida. 2016. Behavioral Types in Programming Languages. Foun-
dations and Trends in Programming Languages 3, 2-3 (2016), 95–230.
https://doi.org/10.1561/2500000031

[5] Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with
Session Types. Proceedings of the ACM on Programming Languages 1,
ICFP (2017), 1–29. https://doi.org/10.1145/3110281

[6] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer.
2018. On the Completeness of Verifying Message Passing Programs
Under Bounded Asynchrony. In Computer Aided Verification (LNCS,
Vol. 10982). Springer, 372–391. https://doi.org/10.1007/978-3-319-

96142-2_23

[7] Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and
Gianluigi Zavattaro. 2021. A Sound Algorithm for Asynchronous Ses-
sion Subtyping and its Implementation. Logical Methods in Computer
Science 17 (2021). Issue 1. https://doi.org/10.23638/LMCS-17(1:20)2021

(repository is found at https://github.com/julien-lange/asynchronous-

subtyping).
[8] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Unde-

cidability of Asynchronous Session Subtyping. Information and Com-
putation 256, C (2017), 300–320. https://doi.org/10.1016/j.ic.2017.07.010

[9] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2018. On the
Boundary Between Decidability and Undecidability of Asynchronous
Session Subtyping. Theoretical Computer Science 722 (2018), 19–51.
https://doi.org/10.1016/j.tcs.2018.02.010

[10] David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng,
and Nobuko Yoshida. 2019. Distributed Programming Using Role-
Parametric Session Types in Go: Statically-Typed Endpoint APIs

http://cs.uccs.edu/~cs522/pe/pe.htm
http://cs.uccs.edu/~cs522/pe/pe.htm
https://github.com/nuscr/nuscr
https://github.com/zakcutner/rumpsteak
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.23638/LMCS-17(1:20)2021
https://github.com/julien-lange/asynchronous-subtyping
https://github.com/julien-lange/asynchronous-subtyping
https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1016/j.tcs.2018.02.010

for Dynamically-Instantiated Communication Structures. Proceed-
ings of the ACM on Programming Languages 3, POPL (2019), 1–30.
https://doi.org/10.1145/3290342

[11] David Castro-Perez and Nobuko Yoshida. 2020. CAMP: Cost-Aware
Multiparty Session Protocols. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–30. https://doi.org/10.1145/3428223

[12] Ruofei Chen and Stephanie Balzer. 2021. Ferrite: A Judgmental Embed-
ding of Session Types in Rust. arXiv:2009.13619 (repository is found
at https://github.com/ferrite-rs/ferrite).

[13] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and
Nobuko Yoshida. 2017. On the Preciseness of Subtyping in Session
Types. Logical Methods in Computer Science 13 (2017). Issue 2. https:
//doi.org/10.23638/LMCS-13(2:12)2017

[14] Jaemin Choi, David F. Richards, and Laxmikant V. Kale. 2020. Achiev-
ing Computation-Communication Overlap with Overdecomposition
on GPU Systems. In 2020 IEEE/ACM Fifth International Workshop on
Extreme Scale Programming Models and Middleware (ESPM2). IEEE,
1–10. https://doi.org/10.1109/ESPM251964.2020.00006

[15] Alex Crichton. [n.d.]. Futures. https://github.com/rust-lang/futures-rs

[16] Zak Cutner, Nobuko Yoshida, and Martin Vassor. 2021. Artifact:
Deadlock-Free Asynchronous Message Reoerdering in Rust with Mul-
tiparty Session Types. https://doi.org/10.5281/zenodo.5786034

[17] Zak Cutner, Nobuko Yoshida, and Martin Vassor. 2021. Deadlock-Free
Asynchronous Message Reordering in Rust with Multiparty Session
Types. (repository is found at https://arxiv.org/abs/2112.12693).

[18] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. 2015. Practical interruptible conversations:
Distributed dynamic verification with multiparty session types and
Python. FMSD (2015), 1–29.

[19] Ryan Donovan. 2020. Why the Developers Who Use Rust Love It so
Much. https://stackoverflow.blog/2020/06/05/why-the-developers-

who-use-rust-love-it-so-much/

[20] José Duarte and António Ravara. 2021. Retrofitting Typestates into
Rust. In Proceedings of the 24th Brazilian Symposium on Context-
Oriented Programming and Advanced Modularity (SBLP). ACM. https:

//github.com/rustype/typestate-rs/blob/main/paper/sblp21.pdf (to
appear).

[21] Stefan Edelkamp and Richard E. Korf. 1998. The Branching Fac-
tor of Regular Search Spaces. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI). AAAI, 299–304.
https://www.aaai.org/Papers/AAAI/1998/AAAI98-042.pdf

[22] Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types
in the Pi Calculus. Acta Informatica 42, 2–3 (2005), 191–225. https:

//doi.org/10.1007/s00236-005-0177-z

[23] Simon Gay and António Ravara. 2017. Behavioural Types: from Theory
to Tools. 1–412. https://doi.org/10.13052/rp-9788793519817

[24] Simon Gay and António Ravara. 2017. Behavioural Types: from Theory
to Tools. River Publisher. 1–412 pages. https://doi.org/10.13052/rp-

9788793519817

[25] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and
Nobuko Yoshida. 2021. Precise Subtyping for AsynchronousMultiparty
Sessions. Proceedings of the ACM on Programming Languages 5, POPL
(2021), 1–28. https://doi.org/10.1145/3434297

[26] Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021.
Multiparty Session Types for Safe Runtime Adaptation in an Ac-
tor Language. In 35th European Conference on Object-Oriented Pro-
gramming (LIPIcs, Vol. 194). Schloss Dagstuhl, 10:1–10:30. https:

//doi.org/10.4230/LIPIcs.ECOOP.2021.10

[27] Brook Heisler. [n.d.]. Criterion.rs. https://github.com/bheisler/

criterion.rs

[28] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Lan-
guage Primitives and Type Disciplines for Structured Communication-
based Programming. In Programming Languages and Systems (LNCS,
Vol. 1381). Springer, 122–138. https://doi.org/10.1007/bfb0053567

[29] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty
Asynchronous Session Types. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). ACM, 273–284. https://doi.org/10.1145/1328438.1328472

[30] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty
Asynchronous Session Types. Journal of the ACM 63, 1 (2016), 1–67.
https://doi.org/10.1145/2827695

[31] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verifica-
tion through Endpoint API Generation. In Fundamental Approaches
to Software Engineering (LNCS, Vol. 9633). Springer, 401–418. https:

//doi.org/10.1007/978-3-662-49665-7_24

[32] Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions
in Multiparty Session Types. In Fundamental Approaches to Software
Engineering (LNCS, Vol. 10202). Springer, 116–133. https://doi.org/10.

1007/978-3-662-54494-5_7

[33] Hai Huang, Padmanabhan Pillai, and Kang G. Shin. 2002. Improv-
ing Wait-Free Algorithms for Interprocess Communication in Embed-
ded Real-Time Systems. In 2002 USENIX Annual Technical Conference.
USENIX Association. https://www.usenix.org/legacy/events/usenix02/
huang.html

[34] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis
Larsen. 2015. Session Types for Rust. In Proceedings of the 11th ACM
SIGPLAN Workshop on Generic Programming (WGP). ACM, 13–22.
https://doi.org/10.1145/2808098.2808100

[35] Jonas Kastberg Hinrichsen. 2021. Sessions and Separation. Ph.D.
Dissertation. IT University of Copenhagen, Copenhagen. http:

//itu.dk/people/jkas/papers/thesis.pdf

[36] Ralf Jung. 2020. Understanding and evolving the Rust programming
language. https://doi.org/10.22028/D291-31946

[37] Ki-Hwan Kim and Q-Han Park. 2012. Overlapping Computation
and Communication of Three-Dimensional FDTD on a GPU Clus-
ter. Computer Physics Communications 183, 11 (2012), 2364–2369.
https://doi.org/10.1016/j.cpc.2012.06.003

[38] Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure
in Rust. Electronic Proceedings in Theoretical Computer Science 304
(2019), 48–60. https://doi.org/10.4204/eptcs.304.4 (repository is found
at https://github.com/wenkokke/sesh).

[39] Richard E. Korf. 1985. Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence 27, 1 (1985), 97–109.
https://doi.org/10.1016/0004-3702(85)90084-0

[40] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay.
2018. Typechecking Protocols with Mungo and StMungo: A Session
Type Toolchain for Java. Science of Computer Programming 155 (2018),
52–75. https://doi.org/10.1016/j.scico.2017.10.006

[41] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2020.
Implementing Multiparty Session Types in Rust. In Coordination Mod-
els and Languages (LNCS, Vol. 12134). Springer, 127–136. https:

//doi.org/10.1007/978-3-030-50029-0_8 (repository is found at https:
//github.com/NicolasLagaillardie/mpst_rust_github).

[42] Julien Lange and Nobuko Yoshida. 2017. On the Undecidability of
Asynchronous Session Subtyping. In Foundations of Software Science
and Computation Structures (LNCS, Vol. 10203). Springer, 441–457.
https://doi.org/10.1007/978-3-662-54458-7_26

[43] Julien Lange and Nobuko Yoshida. 2019. Verifying Asynchronous
Interactions via Communicating Session Automata. In Computer Aided
Verification (LNCS, Vol. 11561). Springer, 97–117. https://doi.org/10.

1007/978-3-030-25540-4_6 (repository is found at https://bitbucket.
org/julien-lange/kmc-cav19).

[44] Message Passing Interface Forum. 2021. MPI: A Message-Passing In-
terface Standard. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-

report.pdf (version 4.0).
[45] Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou.

2021. Communication-Safe Web Programming in TypeScript with
Routed Multiparty Session Types. In Proceedings of the 30th ACM

https://doi.org/10.1145/3290342
https://doi.org/10.1145/3428223
https://arxiv.org/abs/2009.13619
https://github.com/ferrite-rs/ferrite
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1109/ESPM251964.2020.00006
https://github.com/rust-lang/futures-rs
https://doi.org/10.5281/zenodo.5786034
https://arxiv.org/abs/2112.12693
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://github.com/rustype/typestate-rs/blob/main/paper/sblp21.pdf
https://github.com/rustype/typestate-rs/blob/main/paper/sblp21.pdf
https://www.aaai.org/Papers/AAAI/1998/AAAI98-042.pdf
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/3434297
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://github.com/bheisler/criterion.rs
https://github.com/bheisler/criterion.rs
https://doi.org/10.1007/bfb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://www.usenix.org/legacy/events/usenix02/huang.html
https://www.usenix.org/legacy/events/usenix02/huang.html
https://doi.org/10.1145/2808098.2808100
http://itu.dk/people/jkas/papers/thesis.pdf
http://itu.dk/people/jkas/papers/thesis.pdf
https://doi.org/10.22028/D291-31946
https://doi.org/10.1016/j.cpc.2012.06.003
https://doi.org/10.4204/eptcs.304.4
https://github.com/wenkokke/sesh
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-030-50029-0_8
https://github.com/NicolasLagaillardie/mpst_rust_github
https://github.com/NicolasLagaillardie/mpst_rust_github
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://bitbucket.org/julien-lange/kmc-cav19
https://bitbucket.org/julien-lange/kmc-cav19
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

SIGPLAN International Conference on Compiler Construction (CC). ACM,
94–106. https://doi.org/10.1145/3446804.3446854

[46] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdel-
jallal. 2018. A Session Type Provider: Compile-time API Generation
of Distributed Protocols with Refinements in F#. In Proceedings of the
27th International Conference on Compiler Construction (CC). ACM,
128–138. https://doi.org/10.1145/3178372.3179495

[47] Rumyana Neykova and Nobuko Yoshida. 2017. Let It Recover: Multi-
party Protocol-Induced Recovery. In 26th International Conference on
Compiler Construction. ACM, 98–108.

[48] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. 2013. SPY:
Local Verification of Global Protocols. In Runtime Verification (LNCS,
Vol. 8174). Springer, 358–363. https://doi.org/10.1007/978-3-642-40787-
1_25

[49] Nicholas Ng, Jose Gabriel de Figueiredo Coutinho, andNobuko Yoshida.
2015. Protocols by Default. In Compiler Construction (LNCS, Vol. 9031).
Springer, 212–232. https://doi.org/10.1007/978-3-662-46663-6_11

[50] J. Palsberg and C.B. Jay. 1998. The Essence of the Visitor Pattern. In
Proceedings of the 37th Annual Computer Software and Applications
Conference. IEEE Computer Society, 9–15. https://doi.org/10.1109/

CMPSAC.1998.716629

[51] David Peter. [n.d.]. Hyperfine. https://github.com/sharkdp/hyperfine

[52] Boqin Qin. 2020. rust-lock-bug-detector: Statically Detect Double-
Lock & Conflicting-Lock Bugs on MIR. https://github.com/BurtonQin/

rust-lock-bug-detector

[53] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang.
2020. Understanding Memory and Thread Safety Practices and Is-
sues in Real-World Rust Programs. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, 763–779. https://doi.org/10.1145/3385412.3386036

[54] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.
2017. A Linear Decomposition of Multiparty Sessions for Safe Dis-
tributed Programming. In 31st European Conference on Object-Oriented
Programming (LIPIcs, Vol. 74). Schloss Dagstuhl, 24:1–24:31. https:

//doi.org/10.4230/LIPIcs.ECOOP.2017.24

[55] Scribble Authors. [n.d.]. Scribble: Describing Multi Party Protocols.
http://www.scribble.org/

[56] Marc Sergent, Mario Dagrada, Patrick Carribault, Julien Jaeger, Marc
Pérache, and Guillaume Papauré. 2018. Efficient Communication/-
Computation Overlap with MPI+OpenMP Runtimes Collaboration.
In Parallel Processing (LNCS, Vol. 11014). Springer, 560–572. https:

//doi.org/10.1007/978-3-319-96983-1_40

[57] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-
based Language and its Typing System. In Parallel Architectures and
Languages Europe (LNCS, Vol. 817). Springer, 398–413. https://doi.org/

10.1007/3-540-58184-7_118

[58] The Rust Project Developers. [n.d.]. Procedural Macros. https://doc.

rust-lang.org/reference/procedural-macros.html

[59] The Rust Project Developers. [n.d.]. The MIR (Mid-level IR). https:

//rustc-dev-guide.rust-lang.org/mir/index.html

[60] Tokio Contributors. [n.d.]. Tokio. https://github.com/tokio-rs/tokio

[61] Allen Welkie and Elliott Mahler. [n.d.]. RustFFT. https://github.com/

ejmahler/RustFFT

[62] Nobuko Yoshida and Lorenzo Gheri. 2020. A Very Gentle Introduction
to Multiparty Session Types. In Distributed Computing and Internet
Technology (LNCS, Vol. 11969). Springer, 73–93. https://doi.org/10.

1007/978-3-030-36987-3_5

[63] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng.
2013. The Scribble Protocol Language. In Trustworthy Global Comput-
ing (LNCS, Vol. 8358). Springer, 22–41. https://doi.org/10.1007/978-3-

319-05119-2_3

[64] Fangyi Zhou, Francisco Ferreira, RaymondHu, Rumyana Neykova, and
Nobuko Yoshida. 2020. Statically Verified Refinements for Multiparty
Protocols. Proceedings of the ACM on Programming Languages 4 (2020),

1–30. Issue OOPSLA. https://doi.org/10.1145/3428216

https://doi.org/10.1145/3446804.3446854
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1109/CMPSAC.1998.716629
https://doi.org/10.1109/CMPSAC.1998.716629
https://github.com/sharkdp/hyperfine
https://github.com/BurtonQin/rust-lock-bug-detector
https://github.com/BurtonQin/rust-lock-bug-detector
https://doi.org/10.1145/3385412.3386036
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://www.scribble.org/
https://doi.org/10.1007/978-3-319-96983-1_40
https://doi.org/10.1007/978-3-319-96983-1_40
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://github.com/tokio-rs/tokio
https://github.com/ejmahler/RustFFT
https://github.com/ejmahler/RustFFT
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Top-Down Approach
	2.2 Bottom-Up Approach
	2.3 Hybrid Approach

	3 A Sound Asynchronous Multiparty Session Subtyping Algorithm
	3.1 Precise Asynchronous Multiparty Session Subtyping
	3.2 Our Algorithm

	4 Evaluation
	4.1 Session-Based Rust Implementations
	4.2 Verifying Asynchronous Message Reordering

	5 Conclusion and Related Work
	A Artifact
	A.1 Content of the artifact
	A.2 Getting started guide (Docker artifact)
	A.3 Claims supported or not by the artifact

	B Multiparty Asynchronous Subtyping
	B.1 Synchronous session subtyping
	B.2 Precise Asynchronous Multiparty Subtyping
	B.3 Proofs for the Subtyping Algorithm
	B.4 Algorithm Examples
	B.5 Implementation of the Algorithm

	C Benchmarking results
	C.1 Session-Based Rust Implementations
	C.2 Verifying Asynchronous Message Reordering

	References

