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Abstract. We establish a strong completeness property called observational complete-
ness of the program logic for imperative, higher-order functions introduced in [40]. Ob-
servational completeness states that valid assertions characterise program behaviour up
to observational congruence, giving a precise correspondence between operational and
axiomatic semantics. The proof layout for the observational completeness which uses a
restricted syntactic structure called finite canonical forms originally introduced in game-
based semantics, and characteristic formulae originally introduced in the process calculi,
is generally applicable for a precise axiomatic characterisation of more complex program
behaviour, such as aliasing and local state.

1 Introduction

Imperative higher-order functions, syntactically embodied by imperative extensions of
the λ-calculus, have been one of the major topics in the study of semantics and types
of programming languages. They are a cornerstone of richly typed languages such as
ML [57] and Haskell [3], and are central to the semantic analysis of procedural, object-
oriented and low-level languages [1, 49, 58, 65, 73]. The significance of combining im-
perative features and higher-order functions lies in their distilled presentation of key
elements of sequential program behaviour, making them amenable to theoretical anal-
ysis. This analytical nature contributes to semantic studies [48, 57, 67], type-theoretic
studies [57, 65] and the study of operational reasoning techniques [53, 66]. Imperative
higher-order functions also enjoy rich computational behaviour, e.g. stored higher-order
functions which can encode general recursion, cf. [48].

In Hoare logic [21, 31, 60], assertions on programs describe program properties in-
dependent of the latter’s textual details, with proof rules, based on the the syntactic
structure of programs, enabling verification of valid assertions. Hoare logic enjoys
a clear observational basis, which we may call observational completeness: the set
of pre/post conditions precisely characterise observable properties of programs. Thus
specifications in Hoare logic capture no more and no less than the observational be-
haviour of programs, and we can compare two programs which satisfy the same spec-
ification but differ in efficiency, modularity, and other intensional features. This paper
formalises and proves the observational completeness in a program logic for imperative
higher-order functions introduced in [40]. This solves the long-standing open problem
of matching axiomatic with operational semantics for this important class of imperative
higher-order functional behaviour.



As a target programming language, we consider call-by-value PCF with global ref-
erences, where references can store higher-order procedures. This language already ex-
hibits all key problems arising in matching axiomatic with operational semantics for
languages with higher-order state. The language and the logic presented in this paper
can be extended to those with aliasing and local references [10, 79].

To our knowledge, this is the first time observational completeness is obtained for
imperative higher-order functions in full type hierarchy, accommodating stored higher-
order procedures. It is also the first time that proof techniques used to establish obser-
vational completeness appear in the literature.

Two examples of programs expressible with imperative higher-order functions

To introduce the logic used in this paper, we present two simple programs that exhibit
the expressive power of our chosen programming language (we use notations from stan-
dard textbooks [25, 65]).

closureFact
def
= µ fNat⇒Unit.λxNat. if x = 0 then y := λ().1

else y := λ().( f (x−1) ; x× (!y)() )

Above () is the unique constant of type Unit; while λ().N denotes λzUnit.N with z fresh.
When invoked as e.g. closureFact 3, the program stores a procedure in the imperative
variable y. If we then invoke this stored procedure as (!y)(), then closureFact is called
again with the argument 3− 1 = 2, after which a program stored in y at that time is
invoked, so that the multiple of x and the value returned by that program is calculated
and is given as the final return value. The intention of the program is that this final
value should be the factorial of 3. The observable behaviour of closureFact can be
informally described as follows.

When the program is fed with a number n, it stores in y a closure which, when
invoked with (), will return the factorial of n.

Note that inside the body of closureFact, a free variable f and the content of an
imperative variable y are used non-trivially. In particular, the correctness of this program
crucially depends on how y is updated sequentially in an orderly manner.

Next we consider another nonstandard, more terse factorial program, using Landin’s
idea [48] to realise a recursion by circular references (“recursion through the store”).

circFact
def
= x := λz.if z = 0 then 1 else z× (!x)(z−1)

After executing circFact, (!x)n returns the factorial of n. But specifying the content
of x this way does not give a full description of its behaviour, since x is still free so
that the functionality of a procedure in question, the factorial, depends on the state of x
(for example, if a program reads from x and store it in another variable, say y, assigns
a diverging function to x, and feeds the content of y with 3, then the program diverges
rather than returning 6). Taking care of this aspect, the state after executing circFact

may be informally described thus:
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x stores a procedure which computes the factorial of its argument using a pro-
cedure stored in x: that procedure should calculate the factorial, and x does
store that procedure.

Note the inherent circularity of this description — how can we logically describe such
a behaviour, and how can we derive it compositionally?

Technical Contributions and Outline

The following summarises the main technical contributions of this paper.

– Establishment of sound and complete characterisation of observational equivalence
by the logic, using a restricted syntactic structure called finite canonical forms orig-
inally introduced in the study of game-based semantics [6, 38, 42].

– Derivation of characteristic formulae of finite canonical forms with respect to total
correctness using our proof rules. By reducing differentiating contexts of two ob-
servationally distinct programs to finite canonical forms, and further to their charac-
teristic formulae, we show any semantically distinct programs can be differentiated
by an assertion, leading to the characterisation of the observational congruence by
logical validity.

In the remainder, Section 2 introduces the target language and logic used in the pa-
per. Section 3 illustrates compositional proof rules for the logic. Section 4 establishes
soundness of proof rules and proves the observational completeness. Section 5 presents
a few abridged reasoning examples. Section 6 discusses related work.

2 Logic for Imperative Call-by-Value PCF

2.1 Imperative PCF

This subsection briefly reviews call-by-value PCF, the programming language we use
in the present study. We augment the language with unit, sums and products, and with
imperative variables, henceforth called references. The grammar of programs is stan-
dard [65], given below, assuming given an infinite set of variables (x,y,z, . . ., also called
names).

(value) V,W ::= c | x | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | ini(V )

(program) M,N ::= V |MN | x := N | !x | op(~M) | πi(M) | 〈M,N〉 | ini(M)

| if M then M1 else M2 | case M of {ini(x
αi
i ).Mi}i∈{1,2}

The grammar uses types (α,β, ...), given later. Binding is standard and fv(M) denotes
the set of free variables. Types annotating bound variables are often omitted. Constants
(c,c′, . . .) include the unit (), natural numbers n and booleans b (either truth t or false
f). As usual op(~M) (where ~M is a vector of programs) is a standard n-ary arithmetic or
boolean operation, e.g. +, −, ×, = (equality of two numbers), ¬ (negation), ∧ and ∨.
Dereferencing a variable x is written !x, and assignments of the form x := N.
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The operational semantics of the language is given by the standard call-by-value
reduction rules with stores [25, 65]. A store (σ,σ′, ...) is a finite map from references to
values. A configuration is a pair of a program and a store. The reduction is the binary
relation over configurations, written (M,σ) −→ (M′,σ′), generated by the following
rules [25, 65].

((λx.M)V, σ) → (M[V/x], σ) (2.1)
(π1(〈V1,V2〉), σ) → (V1, σ) (2.2)

(case in1(W ) of {ini(xi).Mi}i∈{1,2}, σ) → (M1[W/x1], σ) (2.3)
(if t then M1 else M2, σ) → (M1, σ) (2.4)

((µ f .λg.N)W, σ) → (N[W/g][µ f .λg.N/ f ], σ) (2.5)
(!x, σ) → (σ(x), σ) (2.6)

(x :=V, σ) → ((), σ[x 7→V ]) (2.7)

(2.1–2.5) are from call-by-value PCF and do not involve the store (we omit obvious
symmetric rules and the rules for first-order operators). (2.6) and (2.7) are for imperative
constructs, assuming x ∈ dom(σ) in both. In (2.7), σ[x 7→ V ] denotes the store which
maps x to V and otherwise agrees with σ. Finally we have the contextual rule:

(E[M],σ)→ (E[M′],σ′) if (M,σ)→ (M′,σ′) (2.8)

where E[ · ] ranges over left-to-right eager evaluation contexts, given by:

E[ · ] ::= (E[ · ]M) | (V E[ · ]) | op(~V ,E[ · ], ~M) | πi(E[ · ]) | ini(E[ · ]) | !E[ · ]
| x := E[ · ] | if E[ · ] then M else N | case E[ · ] of {ini(xi).Mi}i∈{1,2}

We write (M,σ) ⇓ (V,σ′) iff (M,σ)−→∗ (V,σ′), (M,σ) ⇓ iff (M,σ) ⇓ (V,σ′) for some
V and σ′, and (M,σ) ⇑ iff (M,σ)−→n for numeral n.

Types and typing rules. Types [25, 65] are given by the following grammar.

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β

ρ ::= α | Ref (α)

We call α,β, . . . value types, and Ref (α), . . . reference types. A basis is a finite map from
names to types. Γ,Γ′. . . . range over bases whose codomains are value types (which we
sometimes call environment basis), while ∆,∆′, . . . range over bases whose codomains
are reference types (which we sometimes call reference basis). dom(Γ) (resp. dom(∆))
denotes the domain of Γ (resp. of ∆).

The typing rules use the sequent Γ;∆ ` M : α (“M has type α under Γ and ∆”),
and are standard [65], listed in Figure 1. In Γ;∆ `M : α, we always assume dom(Γ)∩
dom(∆) = /0. We extend typing to stores, writing Γ;∆ ` σ if: dom(∆) = dom(σ) and
Γ;∆ ` σ(x) : α iff ∆(x) = Ref(α), for each x ∈ dom(σ). A configuration (M,σ) is well-
typed if we have Γ;∆ ` M : α and Γ;∆ ` σ for some Γ and ∆ (if so and if (M,σ) −→
(M′,σ′), we also have Γ;∆ `M′ : α and Γ;∆ ` σ′ by subject reduction).
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Fig. 1 Typing rules for the core language

[Var] Γ(x) = α

Γ;∆ ` x : α
[Unit] −

Γ;∆ ` () : Unit [Bool] −
Γ;∆ ` b : Bool [Num] −

Γ;∆ ` n : Nat

[Eq]
Γ;∆ `M1,2 : Nat

Γ;∆ `M1=M2 : Bool [Abs] Γ,x :α ; ∆ `M : β

Γ;∆ ` λxα.M : α⇒β
[Rec] Γ,x :α⇒β ; ∆ ` λyα.M : α⇒β

Γ;∆ ` µxα⇒β.λyα.M : α⇒β

[App] Γ;∆ `M : α⇒β Γ;∆ ` N : α

Γ;∆ `MN : β
[If ] Γ;∆ `M : Bool Γ;∆ ` Ni : αi (i = 1,2)

Γ;∆ ` if M then N1 else N2 : α

[Inj] Γ;∆ `M : αi
Γ;∆ ` ini(M) : α1+α2

[Case] Γ;∆ `M : α1+α2 Γ,xi :αi ; ∆ ` Ni : β

Γ;∆ ` case M of {ini(x
αi
i ).Ni}i∈{1,2} : β

[Pair] Γ;∆ `Mi : αi (i = 1,2)
Γ;∆ ` 〈M1,M2〉 : α1×α2

[Proj] Γ;∆ `M : α1×α2
Γ;∆ ` πi(M) : αi (i = 1,2)

[Deref ] ∆(x) = Ref(α)
Γ;∆ `!x : α

[Assign] Γ;∆ `M : α ∆(x) = Ref(α)
Γ;∆ ` x := M : Unit

Remark 2.1 In spite of the restriction on types (i.e. reference types are not carried in
other types), the language allows arbitrary imperative higher-order procedures to be
carried as parameters of procedures and stored in references. Lifting this restriction
means references can be used as parameters and return values of procedures, as well
as content of other references, leading to a distinct class of behaviours which deserve
treatment on their own right: see [10].

The following notion becomes important when we consider the semantics of programs.

Definition 2.2 (closed programs [56]) Γ;∆ `M : α is closed when dom(Γ) = /0, often
written ∆ `M : α. The notation ∆ ` σ is understood similarly.

For brevity, henceforth we work under the following convention.

Convention 2.3

1. We only consider well-typed programs and configurations. Further we assume con-
figurations only use stores whose values are closed.

2. We write M
def
= N to indicate M and N are definitionally equal up to the α-equality.

3. We write λ().M for λzUnit.M with z 6∈ fv(M), let x = M in N for (λx.N)M, and
M;N for (λ().N)M.

2.2 Terms and Formulae

Terms and Formulae. The logical language is that of first-order logic with equality
[54, § 2.8] together with an assertion for the evaluation of stateful expressions. The
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grammar of terms and formulae is given below.

e ::= xρ | () | c | op(~e) | 〈e,e′〉 | πi(e) | injα+β

i (e) | !e

C ::= e = e′ | ¬C | C∧C′ | C∨C′ | C ⊃C′ | ∀xα.C | ∃xα.C | [C] e• e′ = x [C′]

The first set of expressions (ranged over by e,e′, . . .) are terms while the second set are
formulae (ranged over by A,B,C,C′ . . .). Terms, which are from the logics for pure func-
tions studied in [34, 39] except for !x, include all the constants (ranged over by c,c′, ...)
including the natural numbers n and the boolean b (either the truth t or false f) and first-
order operations (including multiplication) of the target programming language. In the
grammar of terms, we have pairing, projection and injection operation. The final term,
!e, denotes the dereference of e. fv(e) denotes the free variables occurring in e. Note
that expressions in general, and variables in particular, will always denote values in our
models, see Section 4.2. That means that non-termination of terms in formulae cannot
occur. As in the first-order logic, the denotation of an expression depends only on the
denotations of the free variables of expression, and likewise for formulae.

Fig. 2 Typing Rules for Terms and Formulae

(Γ∪∆)(x) = ρ

Γ;∆ ` x : ρ
−

Γ;∆ ` () : Unit
−

Γ;∆ ` n : Nat
−

Γ;∆ ` b : Bool
Γ;∆ ` e : Bool

Γ;∆ ` ¬e : Bool

Γ;∆ ` ei : αi (i = 1,2)
Γ;∆ ` (e1,e2) : α1×α2

Γ;∆ ` e : α1×α2
Γ;∆ ` πi(e) : αi

Γ;∆ ` e : αi (i ∈ {1,2})
Γ;∆ ` injα1+α2

i (e) : α1 +α2

Γ;∆ ` e : Ref(α)
Γ;∆ `!e : α

Γ;∆ ` e1,2 : ρ

Γ;∆ ` e1 = e2

Γ;∆ ` A1,2
Γ;∆ ` A1 ?A2

(? ∈ {∧,∨,⊃}) Γ, x :α ; ∆ ` A
Γ;∆ ` ∀xα.A

Γ, x :α ; ∆ ` A
Γ;∆ ` ∃xα.A

Γ;∆ ` e1 : α⇒β Γ;∆ ` e2 : α Γ;∆ `C Γ,z :β ; ∆ `C′

Γ;∆ ` [C] e1 • e2 = z [C′]

The predicate [C] e•e′ = x [C′] is called evaluation formula, where the name x binds
its free occurrences in C′. Intuitively, [C] e • e′ = x [C′] asserts that an invocation of e
with an argument e′ under the initial state C terminates with a final state and a resulting
value, named as x, both described by C′. Note that • is non-commutative. Note that we
can assert divergence by negating evaluation formulae: e.g. ∀x.¬[T] f •x = y [F] cannot
hold of a function that terminates anywhere.

Terms and formulae are typed starting from type-annotated variables. The typing
rules are given in Figure 2 (we list only a couple of cases for constants and first-order
operators). We write Γ;∆ ` e : ρ when e has type ρ under Γ;∆, and Γ;∆ `C when C is
well-typed under Γ;∆.

Convention 2.4 (formulae and terms)
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1. We often write Θ `C instead of Γ;∆ `C with Θ = Γ∪∆. Θ,Θ′, . . . range over finite
maps combining two kinds of bases.

2. Logical connectives are used with their standard precedence/association. For ex-
ample, ¬A∧B⊃ ∀x.C∨D⊃ E is parsed as ((¬A)∧B)⊃ (((∀x.C)∨D)⊃ E).

3. C1 ≡C2 stands for (C1 ⊃C2)∧ (C2 ⊃C1), the logical equivalence of C1 and C2. We
use truth T (definable as 1 = 1) and falsity F (which is ¬T).

4. The standard binding convention is always assumed, and fv(C) denotes the set of
free variables in C.

5. C-~x is C in which no name from~x freely occurs.
6. [C] e1 •e2 = e′ [C′] with e′ not a variable, stands for [C] e1 •e2 = x [x = e′∧C′] with

x fresh; and [C] e1 • e2 [C′] for [C] e1 • e2 = () [C′].
7. Hereafter we only consider well-typed terms and formulae and often omit type

annotations. Formulae are often called assertions.

Example 2.5 (assertions and their types)

1. Let Double(u) def
= ∀nNat. [T] u•n = 2×n [T]. Then the assertion

[Double(!x)] u•3 = 6 [Double(!x)]

says that, if 3 is fed to the function denoted by u with the precondition Double(!x)
(i.e. x stores a doubling function), then the result is 6, without changing the content
of x. This assertion is typed under u :Nat⇒ Nat ; x :Ref(Nat⇒Nat) where the
type of u indicates not only its argument and target are natural numbers but also an
invocation may access x. The assertion is satisfied by, for example, λy.(!x)y.

2. The assertion
C def

= ∀i,n. [!w = n] !x• i = 2×i [!w = n+1]

typed under /0 ; x :Ref (Nat⇒ Nat),w :Ref (Nat), says that an imperative variable
x stores a function (procedure) which, when invoked, would increment w as well as
returning the double of the argument. This assertion is satisfied when a procedure
f (w) def

= λz.(w := !w+1;z×2) is stored in x.
3. Using C above, let:

C′ def
= [C∧ !w=0] u•3 = 6 [C∧ !w=1]

This predicate says that, if u is invoked with 3 in a state satisfying !w=0 as well as
C, then the returned value is 6 and the final state is !w=1. The formula is typed un-
der u :Nat⇒ Nat ; x :Ref (Nat⇒ Nat), w :Ref (Nat), and is satisfiable by λy.(!x)y
named as u, with x storing f (w) above.

We introduce an important subclass of the well-typed formulae, stateless formulae. A
formula is stateless if its validity does not depend on the current state of the store.

Definition 2.6 (stateless formulae) A formula say C is stateless if a name of a refer-
ence type in C only occurs inside the pre/post conditions of evaluation formulae. A,B, . . .
range over stateless formulae. We sometimes also call well-typed formulae stateful for-
mulae to emphasise that they may make assertions about the content of references.
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An evaluation formula is stateless even if it contains dereferences in its pre/post condi-
tions because they describe hypothetical state, not the current state. For example, if f
denotes a procedure which always increments the content of a reference x, whether or
not this fact holds does not depend on the current content of x, or on any other state.
Thus x = 3 and [Even(!y)] x• () [Odd(!y)] are both stateless, but neither [Even(!y)] x•
() [Odd(!y)]∧ !y = 3 nor !y = 3 are stateless.

2.3 Name Capture Avoiding Substitutions

In logics with equality and/or quantifications, capture-avoiding syntactic substitutions
play a key role in deduction [54, §2]. Due to the existence of evaluation formulae, there
is a subtlety in the interplay between substitution and evaluation formulae. Consider:

C def
= m = 0 ∧ ∀i.[m = 0 ∧ !y = i] f • () [!y = i+1] (2.9)

C says that the value of m is 0 and that f would, when invoked, increment the content
of y at the time of invocation, whatever y might store. Note the first m = 0 is a stateless
assertion, hence it should continue to be true in the precondition in the second conjunct.
Hence this is equivalent to, under any reasonable interpretation,

C ≡ m = 0 ∧ ∀i.[!y = i] f • () [!y = i+1] (2.10)

Now suppose we wish to substitute !y for m. Since (2.9) and (2.10) are logically equiv-
alent, it should be the case that the results of applying the same substitution to both
should again be logically equivalent. However if we substitute m for y in (2.9) we get:

C[!y/m]
def
= !y = 0 ∧ ∀i.[!y = 0 ∧ !y = i] f • () [!y = i+1]

which says the value currently stored in y is 0, and that f would, when invoked, incre-
ment the content of y at the time of invocation, if y stores 0. But if we apply the same
substitution to (2.10), the result is a quite different:

!y = 0 ∧ ∀i.[!y = i] f • () [!y = i+1]

which omits the condition y should store 0 in the precondition for f to increment the
content of y. This is because assertions in pre/post conditions in evaluation formulae de-
scribe hypothetical state of stores, necessary to describing behaviour of λ-abstractions.
We extend the standard notion “e is free for x in C” [54, §2.1], see [41] for details.

In the proof rule for assignment given later, we also use a substitution of the form
C[e/!x], in which e is substituted for each “free” dereference !x occurring in C. This
substitution should not affect the occurrences of !x in pre/post conditions of evaluation
formulae in C since they are about hypothetical states. For example, let C be !x = 3 ∧
∀i.[!x = i] f • () [!x = i+1]. Then the second conjunct of C is stateless (its validity does
not depend on the current state of the store) hence the substitution say [3/!x] should only
change the first conjunct, not the second. Hence the substitution rule for this substitution
is:

([C] e1 • e2 = z [C′])[e/!x] def
= [C] (e1[e/!x])• (e2[e/!x]) = z [C′]
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and homomorphically for other constructs (note that, by our grammar, quantifiers do not
bind reference variables). Under this substitution, the notion that a term eα is free for
(!x)α in C is defined exactly as in the standard notion [54, §2.1], avoiding the capture
under quantification, e.g. in (∃y.C)[e/!x], if y occurs in e, then we first alpha-convert y
into a fresh variable.

Convention 2.7 Whenever we write C[e/!x], we assume e is free for !x in C. Likewise,
whenever we write C[e/x] we assume e is free for x in C.

2.4 Judgement

Following Hoare [31], a judgement for total correctness in the present program logic
consists of a program sandwiched by a pair of formulae, augmented with a fresh name
called anchor, written as follows.

[C] MΓ;∆;α :u [C′]

This sequent is used for both validity and provability. If we wish to be specific, we
prefix it with either ` (for provability) or |= (for validity). In the judgement above, M is
the subject of the judgement, u its anchor, C its pre-condition, and C′ its post-condition.
Intuitively, the judgement says:

if the free non-reference variables of M are instantiated into values satisfying
C and gets evaluated starting from a store satisfying C, then it terminates with
the final state and the resulting value, named u, together satisfying C′.

Definition 2.8 (primary/auxiliary names in a judgement) Let [C] MΓ;∆;α :u [C′] be well-
typed. Then the primary names in this judgement are the members of dom(Γ,∆)∪{u}.
The auxiliary names in the judgement are those free names in C and C′ that are not
primary. Henceforth we assume auxiliary names do not include reference names.

Judgements are typed as expected:

Definition 2.9 We say [C]MΓ;∆;α :u [C′] is well-typed iff (1) Γ;∆`M : α and (2) Γ,∆,Θ`
C and u :α,Γ,∆,Θ `C′ for some Θ such that dom(Θ)∩ (dom(Γ,∆)∪{u}) = /0.

Convention 2.10 Henceforth we assume a given judgement is well-typed. For brevity,
we often omit the typing from a judgement when it is understood from the context,
writing [C] M :u [C′].

3 Proof RulesThe proof rules for the present logic are divided into those which precisely follow the
structure of programs (compositional rules) and those which do not (structural rules).
We first list the former in Figure 3. Two key structural rules are given in Figure 4. The
remaining structural rules as well as the axioms are standard [10, 79], and can be found
in [41]. We use the following conventions.

Convention 3.1 (convention on the use of names)
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Fig. 3 Compostional Proof Rules

[Var] −
[C[x/u]] x :u [C]

[Const] −
[C[c/u]] c :u [C]

[Op] C0
def
= C [Ci]Mi :mi [Ci+1] (0≤ i≤ n−1) Cn

def
= C′[op(m0..mn−1)/u]

[C]op(M0..Mn−1) :u [C′]

[Abs]
[C∧A-x] M :m [C′]

[A] λx.M :u [∀x.[C]u• x= m [C′]]
[App]

[C] M :m [C0]
[C0] N :n [ C1 ∧ [C1] m•n = u [C′] ]

[C] MN :u [C′]

[If ] [C] M :b [C0] [C0[t/b]] M1 :u [C′] [C0[f/b]] M2 :u [C′]
[C] if M then M1 else M2 :u [C′]

[In1]
[C] M :v [C′[in1(v)/u]]
[C] in1(M) :u [C′]

[Case]
[C-~x] M :m [C-~x

0 ] [C0[ini(xi)/m]] Mi :u [C′
-~x
]

[C] case M of {ini(xi).Mi}i∈{1,2} :u [C′]

[Pair]
[C] M1 :m1 [C0] [C0] M2 :m2 [C

′[〈m1,m2〉/u]]
[C] 〈M1,M2〉 :u [C′]

[Proj1]
[C] M :m [C′[π1(m)/u]]

[C] π1(M) :u [C′]

[Deref ] −
[C[!x/u]] !x :u [C]

[Assign] [C] M :m [C′[m/ !x][()/u]]
[C] x := M :u [C′]

[Rec] [A
-xi∧∀ j � i.B( j)[x/u]] λy.M :u [B(i)-x]

[A] µx.λy.M :u [∀i.B(i)]

• Free i, j, . . . exclusively range over auxiliary names.
• In each proof rule, we assume all occurring judgements are well-typed, and no

primary names in the premise(s) occur as auxiliary names in the conclusion (this
may be considered as a variant of the standard bound name convention).

We now explain some key rules. For a more detailed explanation, see [41].
[Deref] is similar to [Var, Const], using substitution. We assume !x is free for m in

C. The rule says that, if we wish for C to hold for the dereference of x named u, then we
should assume the same for its content.

[Assign] uses two substitutions discussed, [m/!x] and [()/u] The first substitution
C′[m/!x] says the result of the assignment x := M is turning what is stated about m in
C′[m/!x] into the property of !x. The second one [()/u] says, in effect, the assignment
command terminates (note () is the unique value of type Unit).

[Consequence-Aux] is the rule which was originally introduced for the standard
Hoare Logic by Kleymann [46] (which captures the semantics of auxiliary names).

4 Soundness and Observational Completeness

We begin this section with a quick summary of our notion of model for assertions and
judgements based on the usual observational congruence for call-by-value PCF. We

10



Fig. 4 Selected Structural Rules

[Invariance] [C] MΓ;∆;α :m [C′] Γ;∆0 `C0 (∆0 disjoint from ∆)
[C∧C0] MΓ;∆,∆0;α :m [C′∧C0]

[Consequence-Aux] [C0] MΓ;∆;α :u [C′0] C ⊃ ∃~j.( C0[~j/~i] ∧ (C′0[~y/~x][~j/~i]⊃C′[~y/~x]) )
[C] M :u [C′]

In [Consequence-Aux], we set {~x} = dom(Γ,∆)∪{u}, {~i} = fv(C,C′,C0,C′0)\{~x}, and ~j (resp.
~y) are fresh. We assume no auxiliary reference names occur.

also establish soundness of axioms and proof rules and establish observational com-
pleteness. Proofs except the observational completeness are can be found in [41].

4.1 Observational Congruence

A typed congruence is an equivalence on typed terms with identical bases and types,
closed under the compatibility rules corresponding to the typing rules. We write Γ;∆ `
M1 R M2 : α when Γ;∆ `M1 : α and Γ;∆ `M2 : α are related by a typed relation R .

Definition 4.1 (observational congruence) Let Γ;∆ `M1,2 : α. Then Γ;∆ `M1∼=M2 : α

is the maximum typed congruence such that for each semi-closed ∆ `M1,2 : Unit and
for each σ such that ∆ ` σ, we have (M1,σ) ⇓ iff (M2,σ) ⇓.

Convention 4.2 Below and henceforth we let ωα stand for a(ny) diverging closed term

of type α: e.g. we can take ωα def
= (µxα⇒α.λy.xy)V with V any closed value typed α.

Further we write, after fixing ωα for each α, Ωα⇒β for λxα.ωβ, which is the least value
at each arrow type (note it immediately diverges after invocation).

Example 4.3 Note that the choice of basis affects the contextual congruence. For ex-
ample with

M def
= λyα.let z = y() in 3 N def

= λyα.let z = y() in let z′ = y() in 3

with α = Unit⇒Unit. Then we have `M ∼= N : α⇒Nat, but x : Ref(Nat) `M 6∼= N :
α⇒Nat. To check the latter, take C[ · ] def

= ([ · ]L);if !x = 1 then () else ω with
L def
= λ().x := x+1. Then (C[M],x 7→ 0) converges and (C[N],x 7→ 0) diverges.

Later we shall use the following ordering corresponding to ∼=. Below a typed precon-
gruence is a typed preorder closed under the compatibility rules.

Definition 4.4 (contextual ordering) Let Γ;∆ ` M1,2 : α. Then Γ;∆ ` M1 v M2 : α is
the maximum typed precongruence satisfying, for each ∆ `M1,2 : Unit and for each σ

such that ∆ ` σ, (M1,σ) ⇓ implies (M2,σ) ⇓. We write w for the inverse of v.

v is the preorder corresponding to ∼=, i.e. v∩w=∼=, and induces a partial order on the
congruence classes of ∼=.
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4.2 Models and Soundness

Definition 4.5 (models) A model of type Γ;∆ is a pair (ξ,σ) such that ξ is a finite
map from dom(Γ) to semi-closed values such that each x ∈ dom(Γ) is mapped to a
semi-closed value such that ∆ ` x : Γ(x); and σ is a finite map from dom(∆) to closed
values such that each x ∈ dom(∆) is mapped to a semi-closed value ∆ ` V : α with
∆(x) = Ref(α). We let M , . . . range over models.

We write Γ;∆ `M or M Γ;∆ when M is a model of type Γ;∆. Intuitively, ξ and σ in
(ξ,σ) respectively denote a standard functional environment and a store.

We now formalise the semantics of assertions. First we interpret terms under a
model. We use the following notations.

Notation 4.6 1. Given Γ;∆ ` M such that M = (ξ,σ), we write x : V ∈ M when
ξ(x) =V ; and x 7→V ∈M when ∆(x) = Ref (α) and σ(x) =V with ∆ `V : α.

2. Let Γ;∆ `M such that M = (ξ,σ) below.
(a) We write M [x : V ] for the result of replacing the target of x in ξ with V , assum-

ing x ∈ dom(ξ). Similarly we define M [x 7→V ], ξ[x : V ] and σ[x 7→V ].
(b) We write M ·x :V for (ξ∪{x :V},σ), assuming simultaneously x 6∈ dom(ξ∪σ).

Similarly we define M · [x 7→V ], ξ · x : V and σ · [x 7→V ].
3. ξ\~x removes from ξ all entries mapping elements of~x. Similarly we write M \~x for

the result of taking off~x-elements from the components of M .

Definition 4.7 (interpretation of terms) Let Γ;∆ ` e : ρ for some ρ and Γ;∆ `M . Then
the interpretation of e under M , denoted M [[e]], is given by the following clauses.

M [[xα]]
def
= V (xα :V ∈M )

M [[!xRef (α)]] def
= V (xRef (α) 7→V ∈M )

M [[xRef (α)]] def
= x

M [[c]]
def
= c

M [[op(~e)]] def
= op(M [[~e]])

M [[〈e,e′〉]] def
= 〈M [[e]],M [[e′]]〉

M [[πi(e)]]
def
= πi(M [[e]])

M [[ini(e)]]
def
= ini(M [[e]])

By construction of models, all terms are interpreted as semi-closed values except for
reference names. A reference name is interpreted as itself, which indicates a reference
name is in fact treated as a constant (one may observe that a value does mention refer-
ence names it may access, which indicate they are treated as formal part of the universe
of behaviours, unlike function variables). All distinct reference names are considered
to be distinct constants. This treatment is also reflected in the lack of quantifiers for
reference names in the present logic.

12



Definition 4.8 (satisfaction) Given Γ;∆ `M and Γ;∆ `C, the relation M |=C (read:
M satisfies C) is generated from the following clauses.

M |= e1 = e2 if M [[e1]] ∼= M [[e2]]
M |=C1∧C2 if (M |=C1) ∧ (M |=C2)
M |=C1∨C2 if (M |=C1) ∨ (M |=C2)

M |=C1 ⊃C2 if (M |=C1) ⊃ (M |=C2)
M |= ¬C if ¬ (M |=C)

M |=∀xα.C if ∀∆ `V : α. M · x : V |=C
M |= ∃xα.C if ∃∆ `V : α. M · x : V |=C

M |= [C]e1 • e2 = x[C′] if ∀σ. ( ∆ ` σ ∧ (ξ,σ) |=C ⊃
∃V,σ′. ((M [[e1]])(M [[e2]]), σ) ⇓ (V,σ′)
such that (ξ∪ x :V,σ′) |=C′ )

These definitions are similar to [10, 79] where they are discussed in more detail. We are
now ready to formalise the semantics of judgements. Below Mξ denotes the substitution
of values following ξ, e.g. (x+ y)ξ = 2+3, provided ξ(x) = 2,ξ(y) = 3.

Definition 4.9 (semantics of judgement) |=[C]M :u [C′] iff for each well-typed model
(ξ,σ): (ξ,σ) |=C implies both, (Mξ,σ) ⇓ (V,σ′) and (ξ ·u :V,σ′) |=C′

Proposition 4.10 (soundness of axioms) All axioms of our logic are true under arbi-
trary (well-typed) models.

Theorem 4.11 (soundness of proof rules) If ` [C] M :u [C′] by the proof rules in Figures
3 and 4, then |=[C]M :u [C′].

Proofs of soundness can be found in [41].

4.3 Observability and Program Logics

In languages with compositional semantics, program components with the same con-
textual behaviour are interchangeable without affecting the observable behaviour of the
programs they are part of, thus offering foundations for modular software engineering.
Compositional program logics extend this idea by further allowing programs with the
same specifications to be interchangeable in a larger program, without affecting the
observable behaviour of the whole, up to the latter’s specification. Thus, ideally, valid
assertions for programs should capture exactly the observable behaviour of programs
[29, 55, 56]. Formally, we may ask: are two programs contextually equivalent if and
only if they satisfy the same set of assertions? An affirmative answer reassures us that
the logic enables us to reason about all observational properties, but no more. We call
logics with this property observationally complete.

In the following we show that our logic is indeed observational complete, using the
following steps:

1. We introduce a variant of finite canonical forms (FCFs) [6, 38, 42] which represent
a limited class of behaviours.
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2. We show that for each FCF characteristic formulae (w.r.t. total correctness) can be
derived. They are formulae that capture the whole behaviour of the FCF.

3. By reducing differentiating contexts of two observationally distinct programs to
FCFs, and further to their characteristic formulae, we show any semantically dis-
tinct programs can be differentiated by an assertion, leading to the characterisation
of ∼= by logical validity.

The next two subsections introduce characteristic formulae and FCFs. For simplicity,
and without loss of generality, we work under the following convention.

Convention 4.12 Throughout the present section we only consider Nat, arrow types
and induced reference types. Accordingly the conditional (if M then N else N′)
branches on zero or non-zero, and each assignment has the shape (x := M); N.

Definition 4.13 (TCAs) An assertion C is a total correctness assertion (TCA) at u if
whenever (ξ ·u : V,σ) |=C and V vV ′, we have (ξ ·u : V ′,σ) |=C.

Logics for total correctness properties are about upwards-closed properties. That means
that if |= [C] M :m [C′] and the program M is less defined than the program N, then also
|= [C] N :m [C′]. For example, with Ω being a non-terminating program of integer type,
λx.Ω is less defined than λx.17, and |= [T] λx.Ω :m [T] as well as |= [T] λx.17 :m [T].
This is because logics of total correctness cannot talk about non-termination. If we see
program properties as given by a pair of pre-condition and post-condition, they must be
upwards closed. See [37] for more details.

Characteristic formulae in the present logic are defined as:

Definition 4.14 (characteristic formulae) Given ∆ `V : α, a TCA C at u characterises
V iff: (1) |= [T]V ∆;α :u [C] and (2) |= [T]W ∆;α :u [C] implies ∆ `V vW : α.

In the technical development later, we need to consider characteristic formulae of open
programs, extending Definition 4.14.

Definition 4.15 (characteristic assertion pair) We say a pair (C,C′) is a characteristic
assertion pair (CAP) for Γ;∆ ` M : α at u iff we have: (0) C′ is a TCA at u; (1) |=
[C] MΓ;∆;α :u [C′] and (2) |= [C] NΓ;∆;α :u [C′] implies Γ;∆ ` M v N : α. We also say
(C,C′) characterise Γ;∆ `M : α at u when (C,C′) is a CAP for Γ;∆ `M : α at u.

4.4 Finite Canonical Forms

If (C[M1],σ) converges and (C[M2],σ) diverges, the convergent program can only ex-
plore a finite part of C[ · ]’s and σ’s behaviour because the number of reduction steps
to reach a value is finite. We can thus always make C[ · ] and σ as little defined as
possible, up to the point they have barely necessary constructs for convergence. Since
the resulting minimal context and store are less defined than the original ones, it still
lets M2 diverge. In the functional sublanguage, finiteness can be easily captured as fi-
nite canonical forms [38] (cf. [6, 42]). Below we extend the construction in [38] to the
present language.
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Finite canonical forms (FCFs), ranged over by F,F ′, . . ., are a subset of typable
terms given by the following grammar (which are read as programs in imperative PCFv
in the obvious way). U,U ′, . . . range over FCFs which are values.

F ::= n | ωα | λx.F | let x = yU in F | case x of 〈ni : Fi 〉i∈X

| let x = !y in F | x :=U ;F

Note that x := U ;F should be read as (x := U);F . Recall from Convention 4.2 that ω

is a diverging and closed term. In the case-statement, the index set X is a finite, non-
empty subset of natural numbers. The case construct diverges for values not in X . In
let x = yU in F (resp. case x of 〈ni : Fi 〉i), x should not be free in U (resp. Fi).

Clearly, FCFs can easily and naturally be translated into our imperative PCFv vari-
ant, and is typed following this translation, cf. [38].

The rest of our development relies on this straightforward fact about FCFs. A proof
can be found in [41].

Lemma 4.16 Let M1,2 be values and ∆ ` M1 6∼= M2 : α. Then there exist semi-closed
FCF F and ~U, which are also values, such that, with (i, j) = (1,2) or (i, j) = (2,1):

(FMi,~r 7→ ~U) ⇓ and (FM j,~r 7→ ~U) ⇑

with {~r} ⊃ dom(∆).

4.5 Characteristic Formulae for FCFs

We move to the derivation of CAPs for imperative FCFs. No change in the rules is
necessary except for the let-application which now needs to mention state. In addition,
we introduce one rule for each of dereference and assignment. We also need weakening
rule for values which fills pre/post conditions with assertions on the invariance of states
for values (which allows us to have clean derivations for values). Figure 5 presents the
derivation rules, using stateful formulae. We observe:

– A CAP of n at u is (T,u = n), saying: whenever a program, say M, satisfies
[T]M :u [u= n], M is contextually equal to n. E.g. under x :Nat, if x then n else n
has this property.

– For the case construct, given a CAP (Ai,Bi) at u of each Fi, we make the weakest
precondition for the resulting term to converge, which is the i-indexed disjunction
of x = ni and Ai. For each i-th case, it can guarantee what Fi guarantees.

– A CAP for ω at u is (F,F): since this FCF never terminates, we can do nothing but
assume absurdity. Compared with any program, ω is the least, so it is indeed a CAP
of this program.

– For a CAP of the let-application, first, each value always has the precondition T, so
there is no loss of generality in assuming (T, A) is a CAP for U . We further assume
(C,C′) is a CAP of F . The termination guarantee for F is obtained by extracting the
“current state” by !~r =~j (this equality does not violate TCA since ~j are quantified).
The precondition can equivalently be written as ∃~j. ( !~r =~j ∧ ∀z.[A∧ !~r =~j] f •z =
x [C] ).
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Fig. 5 Derivation Rules for Characteristic Assertions of FCFs

−
[T] n :u [u = n]

[Ci] Fi :u [C′i ]
[∨i(x = ni∧Ci)] case x of 〈ni : Fi 〉i :u [∨i(x=ni∧C′i)]

−
[F] ω :u [F]

[C] FΓ,x:α;∆;β :m [C′]
[T] λx.F :u [∀x.[C]u• x = m[C′]]

[C] F :u [C′]
[C[!x/y]] let y = !x in F :u [C′]

[T] U :z [A] [C]F :u [C′] j fresh
[∀~j. ( !~r = ~j ⊃ ∀z.[A∧ !~r = ~j] f • z = x[C∧ x = j] )] let x = yU in F :u [C′[ j/x]]

[T] U∆;α :z [A] [C] F :u [C′] fv(A)⊂ [z]∪dom(∆)
[∀z.(A⊃C[z/!x])] x :=U ; F :u [C′]

[T] UΓ;∆;α :u [A] dom(∆) =~r
[!~r =~i] UΓ;∆;α :u [A ∧ !~r =~i]

– The last rule, the weakening rule for values, fills the pre/post-conditions with the
same assertion on state, indicating the stateless nature of values: this is needed to
precisely capture their behaviour in the stateful contexts. We assume:

• If [T] U :z [B] etc. is in the premise, we assume the judgement is directly ob-
tained from the rules for values (numerals and abstraction).

• If [C] F :u [C′] etc. is in the premise and F is a value, that judgement should
come immediately after this filling rule (preceding by the rules for values).

– The rule for dereference starts from a CAP (C,C′) for F , and adjoins an additional
constraint on !x from that of y by syntactic substitution, to obtain (C[!x/y],C′) as a
new CAP (this additional constraint is propagated to C′ via auxiliary variables).

– In the rule for assignment, we derive a CAP of a program which writes U to x then
behaves as F . The judgement assumes, by the third premise, that A has no free
auxiliary names. This does not loose generality by universal closure. The rule may
look simple, but its precondition in the conclusion deserves some inspection.

• The assertion ∀z.(A⊃C[z/!x]) may be most easily understood from the view-
point of an MTC (minimal terminating condition) for the resulting program,
x :=U ;F . For this program to converge, the assertion A[!x/z], which will hold
after x := U , should be stronger than C at x, since if not F would diverge —
given that C is an MTC for F . For example, C may demand the content of x
increments 1, 2 and 3, while A may only guarantee that z (i.e. U) increments
1 but not others, giving only a weaker condition than C: or C may demand x
stores 1, while A may say z is 2, guaranteeing a condition contradictory to C.
To avoid such situations, we require A to be stronger than C[z/!x] in a given
initial state.

• A further understanding of the precondition may be obtained by realising that,
while not explicitly present, a consequence of |= [T]U :z [A] (from the premise)
is that the assertion ∃z.A comes free (it is a tautology in the sense that it holds in
any model). Hence, combined with the explicitly given precondition, we have
∃z.(A∧C[z/!x]). Note that its second conjunct stipulates the original precondi-
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tion for F except at x for which we stipulate none (there is no point in stipu-
lating anything about the content of a variable that is going to be overwritten).
The conjunction also indicates that the information on U which A describes is
communicated to C as the state at x after the initial assignment, albeit under
the name z. This is then propagated to the postcondition C′ through the closure
property of the strong CAP (C,C′) for F .

We write `char [C] F :u [C′] when [C] F :u [C′] is derivable from the rules in Figure 5
except, when F is a value, we take the result of applying the weakening rule. We now
observe (with σ′ v σ′0 denoting the point-wise extension of v):

Proposition 4.17 If `char [C] F :u [C′], then (C,C′) satisfies the following conditions.

1. (soundness) |= [C]F :u [C′] with B being a TCA at u.
2. (MTC, minimal terminating condition) (Fξ,σ) ⇓ if and only if (ξ,σ) |=C.
3. (closure) If |= [C0]M :u [C′] such that C0⊃C, then if (Mξ,σ)⇓ (V0,σ

′
0) and (Fξ,σ)⇓

(V,σ′), we have V vV0 and σ′ v σ′0, for each (ξ,σ) |=C0.

Proof See Appendix A.2. ut

4.6 Observational Completeness

We conclude this section by establishing observational completeness. We first define
the standard logical equivalence, cf. [29].

Definition 4.18 (logical equivalence) Write Γ;∆ `M1 ∼=L M2 : α when |= [C] MΓ;∆α

1 :u
[C′] iff |= [C] MΓ;∆;α

2 :u [C′].

Note that the definition of∼=L does not restrict the class of formulae to TCAs. The main
result of this section follows.

Theorem 4.19 Let Γ;∆ `M1,2 : α. Then Γ;∆ `M1 ∼= M2 : α iff Γ;∆ `M1 ∼=L M2 : α.

Proof The “only if” direction is direct from the definition of the model. For the “if”
direction, we prove the contrapositive. Suppose M1 ∼=L M2 but M1 6∼= M2. By abstrac-
tion, we can safely assume M1,2 are semi-closed values. By Lemma 4.16, there exist
semi-closed FCF values F and ~U such that, say,

(FM1,~r 7→ ~U) ⇓ and (FM2,~r 7→ ~U) ⇑ . (4.1)

By Proposition 4.17, there are assertions which characterise F and ~U (in the sense of
Definition 4.14). Let the characteristic formula for F at f be written [[F ]]( f ). We now
reason:

(FM1, ~r 7→ ~U) ⇓
⇒ f : [F ]·m : [M1] |= [∧i[[Ui]](!ri)] f •m = z [T]
⇒ ∀V. ( f : V |= [[F ]] f implies f :V ·m : [M1] |= [∧i[[Ui]]!ri ] f •m = z [T])
⇒ |= [T] M1 :m [∀ f .[[[F ]]( f ) ∧ (∧i[[Ui]](!ri))] f •m = z [T]]
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But by (4.1) we have

6|= [T] M2 :m [∀ f .[[[F ]]( f ) ∧ (∧i[[Ui]](!ri))] f •m = z [T]]

that is M1 6∼=L M2, a contradiction. Thus we conclude M1 ∼= M2, as required. ut

We mention a corollary of Theorem 4.19 which says that the strongest post condi-
tion always gives a CAP for a semi-closed value, after a definition.

Definition 4.20 Given Γ;∆ ` M : α and a TCA C, the set of strongest post conditions
of M w.r.t. M at u (for total correctness), written sp(C,M,u), is the set of TCAs, say C′,
such that: (1) [C] M :u [C′] and (2) whenever [C] M :u [C′′] we have C′ ⊃C′′.

Corollary 4.21 Let A ∈ sp(T,V ∆:α,u). Then A characterises V .

Proof We show V is the least element of the property described by A. Assume not, then
there is W such that W 6w V but [T] W :u [A]. By Theorem 4.19, there is B such that
|= [T]V :u [B] and 6|= [T]W :u [B]. By assumption we have A⊃ B. Hence [T]W :u [B], a
contradiction. ut

Note this says a strong post condition of T w.r.t. a semi-closed term V is always an
up-closed set with the least element being (the congruence class of) V .

5 Reasoning Examples

5.1 Deriving Hoare Logic for Total Correctness

We first embed the standard proof rules of Hoare logic for total correctness with re-
cursive procedures [46] in the logic presented above, thus establishing a precise link
between the proposed logic and traditional Hoare logics for total correctness. Then we
show a generalisation of these rules.

The syntax of programs is given as follows. Let p,q, . . . range over procedure labels.

e ::= c | !x | op(e1, ...,en)

P,Q, .. ::= skip | x := e | P;Q | if e then P else Q | while e do P
| call p | proc p = P in Q

In proc p = P in Q, a procedure body P is named p, where we allow calls to p to
occur in P. The reduction rules are standard [77], hence are omitted. Procedures are
parameterless and do not return values. We still use the explicit dereference notation
!x since it clarifies the correspondence with imperative PCFv. Assertions, still ranged
over by C,C′, . . ., are a proper subset of those of Section 2, having only natural numbers
and references to storing natural numbers as data typed. Moreover, the new logic omits
evaluation formulae

Let ? ∈ {∧,∨,⊃} and Q ∈ {∀,∃}.

e ::= iNat | !x | n | op(e1, ...,en)

C ::= e1 = e2 | C1 ?C2 | ¬C | Q iNat.C
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Hereafter we shall safely confuse logical terms and expressions (as in Hoare logic).
Moreover, auxiliary (function) variables are exclusively ranged over by i, j, . . .

The judgement takes the shape Σ ` [C]P [C′], where [C]P [C′] is the standard Hoare
triple and Σ is a finite map from procedural labels to pairs of formulae, writing each
element of a map as a triple [C]p[C′]. The meaning of [C]p[C′] is understood just as a
Hoare triple, saying: calling p at an initial state C will terminate with a final state C′.
The logic uses these triples as an assumption on the behaviour of procedures a program
may use, and infer the resulting behaviour of the program.

Fig. 6 Hoare Logic with Recursive Procedure (total correctness)

[Skip] −
Σ `[C]skip[C]

[AssignH] −
Σ `[C[e/!x]]x := e[C]

[Seq]Σ `[C]P[C0] Σ `[C0]Q[C′]
Σ `[C]P;Q [C′]

[IfH]
Σ `[C∧ e]P1 [C′] Σ `[C∧¬e]P2 [C′]

Σ `[C]if e then P1 else P2 [C′]
[While]

C∧ e⊃ e′  0
Σ `[C∧ e∧ e′ = i]P [C∧ e′ � i]
Σ `[C]while e do P [C∧¬i]

[Call] [C]p[C′] ∈ Σ

Σ `[C]call p [C′]
[RecProc]

Σ, [∃ j � i.C( j)]p[C0] ` [C(i)]P [C0]
Σ, [∃i.C(i)]p[C0] ` [C]Q [C′]

Σ ` [C]proc p = P in Q[C′]

[Consequence-Aux] [C0]P[C′0] C ⊃ ∃~j.(C0[~j/~i] ∧ (C′0[~y/~x][~j/~i]⊃C′[~y/~x]) )
[C] M :u [C′]

Figure 6 presents the proof rules. For simplicity of presentation, we use a single
recursion in [RecPro] and mathematical induction in [While] and [RecPro] (their gener-
alisation does not pose any technical difficulty). In [While] and [RecPro], we assume i, j
are auxiliary and only occur in mentioned formulae and that the holes in C(i) exhaust
i. Among possible structural rules, we mention Kleymann’s strengthened consequence
rule [46], from which other known structural rules, such as the standard consequence
rule and Hoare’s adaptation rule, can be derived. In the rule,~i (resp. ~x) are the vector
of auxiliary (resp. program) variables occurring in C0 and C′0, while ~j (resp. ~y) are the
vector of fresh names of the same length as~i (resp.~x).

We now embark on the embedding. The encoding of programs into imperative PCF
is standard (procedure labels are simply taken to be variables).

[[skip]]
def
= () [[x := e]] def

= x := e [[P;Q]]
def
= [[P]]; [[Q]] (

def
= (λ().Q)P )

[[if e then P else Q]]
def
= if e then [[P]] else [[Q]]

[[while e do P]] def
= (µw.λ().if e then [[P]];(w()) else ())()

[[call p]] def
= p() [[proc p = P in Q]]

def
= (λp.[[Q]])(µp.λ().[[P]])

Note all commands have unit type. The judgement Σ ` [C]P[C′] is translated as:

[[[Σ]]∧C][[P]][C′] with [[ /0]]
def
= T and [[Σ, [C]p[C′]]] def

= [[Σ]]∧ [C]p• ()[C′]
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Formulae are simply the subset of those for the imperative PCF. If we use the standard
model of number theory [54, §3.1] for Hoare logic, validity of formulae also coincide
for this subset of formulae. Thus the remaining task is to embed the proof rules. Below
we show each rule in Figure 6 has a clean encoding into the logic for imperative PCF.

Proposition 5.1 (embedding of Hoare logic for total correctness) Σ ` [C]P[C′] implies
` [[[Σ]]∧ [C]][[P]][C′].

The embedding is interesting because it immediately suggests new derived proof
rules for imperative higher-order functions, in a coarser grain than the original ones.
First let us consider how the while rule in Hoare logic can be extended to treat non-
simple expressions as guard. The rule is to be considered as part of the proof rules for
the imperative PCFv.

[While-H]
[C]M :b [Bb∧C] C∧B[t/b]⊃ e′ 0 [C∧B[t/b]∧ e′=n]N [C∧e′� n]

[C]while M do N [C∧B[f/b]]

Note the rule can be used even when the guard M includes higher-order expressions,
unlike the standard while rule. In that setting the while command can be considered
as a macro, just as our preceding embedding does. An essentially identical inference
proves its soundness through the soundness of the original rules.

Next we refine a recursion rule into the one for multiple recursion. The rule is easily
encodable into the let-rec rule.

[MRecProc]

Σ, [∃ j � i.C1( j)]p1[G1], . . . [∃ j � i.Cn( j)]pn[Gn] ` [C(i)]Ph [Gh] (1≤h≤n)

Σ, [∃ j � i.C( j)]p1[G1], . . . [∃ j � i.C( j)]pm[Gm] ` [C]Q [C′]

Σ ` [C]proc [p1 = P1, . . . , pn = Pn] in P[C′]

Similarly we can easily treat higher-order commands and expressions, based on the
rules in Section 3, while respecting a distinction between expressions and commands
(for the treatment of local variables, see Section 6).

5.2 Example Reasoning
Closure Factorial. Recall closureFact from Section 1. Its specification can be given
as follows.

[T] closureFact :u [∀iNat. [T]u• i [ [T] !y• () = z [z = i!] ]]

We use the following fact about factorials:

0! = 1 ∧ ∀iNat.(i+1)! = (i+1)× i!. (5.1)

Let A(g, i) def
= [T]g • () = z[z = i!], B( f , i) def

= [T] f • i [ [T] !y • () = z [z = i!]], and
B′( f , i) def

= ∀ jNat � i.B( f , j). By a straightforward application of the proof rules (see
Appendix B for the detailed inference), we obtain, for N def

= λxNat.if x= 0 thenM1 elseM2:

[B′( f , i)] N :u [ ∀xNat.(x = i ⊃ B(u,x)) ] (5.2)

By applying the above we obtain:

[B′( f , i)] N :u [B(u, i) ] (5.3)

We can now apply (Rec) to reach the required judgement.
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Circular Factorial. Next we consider circFact:

circFact
def
= x := λz.if z = 0 then 1 else z× (!x)(z−1)

Its specification may be written down as, under the typing x : Ref (Nat⇒Nat):

[T] circFact [∃g.(∀i.[!x = g](!x)• i = i![!x = g] ∧ !x = g)] (5.4)

The specification says:

After executing circFact, x stores a procedure which would calculate a facto-
rial if, as an assumption, x stores a program which has precisely that behaviour
itself; and x does store that behaviour.

The assertion tersely describes all we need to know about circFact including its circu-
larity (for a precise understanding of this assertion, note !x in the internal pre/post con-
ditions of the evaluation formula is a hypothetical content of x, while !x which nakedly
occurs in the postcondition is the actual content of x, cf. §4.2, Page 13). The assertion
makes it clear that calculation of a factorial by the stored procedure demands that x
stores itself: if that stored procedure is stored in another variable, and if we change the
content of x, it will no longer calculate a factorial.

For the derivation, let:

A(u,g, j) def
= [!x = g]u• j = j![!x = g].

C(!x,g, i) def
= ∀ j � i. A(!x,g, j) ∧ !x = g.

We also set, for brevity:

M def
= λy.if y = 0 then 1 else y× (!x)(y−1)

Then a direct compositional inference leads to:

[T] x := M [ ∀yg.[C(!x,g,y)]!x• y = y! [C(!x,g,y)]] (5.5)

The key reasoning step is the following entailment:

∀yg.[C(!x,g,y)] !x• y = y! [C(!x,g,y)] ⊃ ∃g. (∀i.A(!x,g, i)∧ !x = g) (5.6)

which is derived as follows:

∀yg.[C(!x,g,y)] !x• y = y! [C(!x,g,y)]
≡ ∀y.∀g. [∀ j � y.A(g,g, j)∧ !x = g] !x• y = y! [∀ j � y.A(g,g, j)∧ !x = g]
≡ ∀g.∀y. [∀ j � y.A(g,g, j)∧ !x = g] !x• y = y! [∀ j � y.A(g,g, j)∧ !x = g]
≡ ∀g.∀y. ((∀ j � y.A(g,g, j) ⊃ [!x = g] !x• y = y! [!x = g] ) ) (†,‡)
⊃ ∃g. (∀y. (∀ j � y.A(g,g, j) ⊃ [!x = g] g• y = y! [!x = g] ) ∧ !x = g) (?)
def
= ∃g.(∀y. (∀ j � y.A(g,g, j) ⊃ A(g,g,y)) ∧ !x = g)
⊃ ∃g.( ∀y.A(g,g,y) ∧ !x = g )

⊃ ∃g.( ∀y.A(!x,g,y) ∧ !x = g ),
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In above, we use the following axioms of evaluation formulae in [41]:

(†) [A∧C] x• y = z [C′] ≡ A ⊃ [C] x• y = z [C′] z 6∈ fv(A)
(‡) [C0]x• y=z[C′0] ⊃ [C] x• y = z [C′] where C ⊃C0 and C′0 ⊃C′

In (?), we have used the well-known axiom from predicate calculus with equality:

∀x.A ⊃ A[y/x] ≡ ∃x.(A∧ x = y)

which holds for an arbitrary y. By applying (5.5) to (5.6) we obtain (5.4), as required.

6 Discussion

Observational Completeness and Extensions The core of the paper answered the
following question in the affirmative: Can we build a Hoare logic for a programming
language with higher-order state such that operational and axiomatic semantics coin-
cide? The key technical tool we used were characteristic formulae which capture the
meaning of a program in a single pair of pre- and post-condition. Characteristic for-
mulae arose in the context of concurrency theory [64], see [7] for an overview. An
existence of characteristic formulae in a different theory tradition already suggests that
the concept is not an artifact of the specific PCF-variant, but rather a general technique
that can be used to build observationally complete program logics for substantially dif-
ferent kinds of programming languages (see [12]). We list our subsequent work related
to the logic and observational completeness developed in this paper.

– Our work [37] refines the concept of characteristic formulae and presents observa-
tionally complete program logics with characteristic formulae for partial, as well as
total correctness for call-by-value PCF. [37] also presents an observationally com-
plete logic for call-by-value PCF with unrestricted higher-order state.

– The papers [79] extend the logic of the present paper to call-by-value PCF with
unrestricted higher-order state (including aliasing) and unrestricted local memory,
e.g. allowing programs like: let x = ref(7) in (x,λ f y.(x := f x y; !x)). The result-
ing logic is for total correctness, is observationally complete and has characteristic
formulae.

– In [9] a total correctness logic for call-by-value PCF extended with callcc and
throw for unrestricted explicit control flow manipulation is presented. The logic
is observationally complete, has characteristic formulae, and enables us to reason
about the notorious argfc program callcc λk.(throw k λx.(throw k λy.x)),
which, when called once, returns twice.

– [13] presents an observationally complete logic with characteristic formulae for a
variant of call-by-value PCF extended with meta-programming features.

– Finally, [11] introduces observationally complete Hoare logics with characteris-
tic formulae for partial, total and generalised correctness for (essentially) arbitrary
typed π-calculi. In this setting, typing disciplines are presented by logical axioms.

Characteristic formulae are interesting for another reason: if they can be inferred by
induction on program syntax, as they can here and in all logics listed above, they enable
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a different, two-phased style of program verification. In conventional verification with
program logics, typically, we build a proof tree whose root is of the form [A] M :m [B]
where A,B express the desired program properties. Reasoning about programs is inter-
twined with reasoning in the ambient theory of mathematics, and Hoare’s Consequence
rule mediates between the two. With characteristic formulae, reasoning about programs
has two separate phases.

– Computation of the characteristic assertion pair of a program, done by induction on
the type derivation of a program.

– Verification of desired program properties from characteristic assertion pairs. This
involves checking if the target properties are implied by its characteristic formula.

Note that tools for either phase can be specialised for their different purposes; in par-
ticular, tools for the second phase can be program language agnostic, and shared as
’back-ends’ for different ’front-end’ program logics.

One important task in making program logics usable for large-scale software ver-
ification is mechanisation. Recently Charguéraud has successfully developed program
logics with characteristic formulae for PCF-like languages with and without state as ex-
tensions of higher-order logics [14, 15]. He gives shallow embeddings of his logics into
Coq, and uses the embedding to verify a large number of highly non-trivial programs in
the two-phased style described above.

6.1 Related Work

In the following we discuss related work focusing on logics for higher-order imperative
languages. For comparisons in different contexts (for example, process logics, general
aliasing and local references), see [10, 35, 36, 39].4

Equational Logics for Higher-Order Functions. Equational logics for the λ-calculi
have been studied since the classical work by Curry and Church. LCF [24] augments the
standard equational theory of the λ-calculus with Scott’s fixed point induction. Our pro-
gram logics for higher-order functions differ in that an assertion describes behavioural
properties of programs rather than equates them, allowing specifications with arbitrary
degrees of precision, as well as smoothly extending to non-functional behaviour.

The reasoning methods for λ-calculi have been studied focusing on the principles
of parametricity using equational logics [4, 68]. The presented method differs in that it
offers behavioural specifications for interface of a program, rather than directly equat-
ing or relating programs. It should however be noted that, for calculating validity of
entailment, the present method does need to make resort to semantic arguments for
polymorphic behaviours, see [39]. This suggests fruitful interplay between the present
logical method, on the one hand, and the reasoning principles as developed in, and
extending, [4, 68] on the other.

4 This subsection was written by Kohei Honda. Since both reviewers and the editor are happy
with this subsection in the first version, we keep this subsection in this revision to record his
last writing on this topic.
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Logical Expressiveness and Impossibility Result. Compositional program logics for
imperative languages have been studied extensively since Hoare’s seminal work. In late
1970s and early 1980s, there are a few attempts to extend Hoare logic to higher-order
languages, mostly focusing on Algol and its derivatives. One of the basic works in this
period is Clarke’s work [16] (see also [18, §7.4.2.5]), which shows that a sound and
(relatively) complete Hoare logic in the standard sense cannot exist for Algol-like (or
Pascal-like) programming languages with the following set of features: (1) higher-order
procedures, (2) recursion, (3) static scoping, (4) global variables, and (5) nested internal
procedures. His argument can be briefly summarised as follows.

– Assume we have a sound and complete Hoare-like logic for partial correctness.
This means we can prove {C}P{C′} whenever it is true under any interpretation
relative to true sentences of the underlying domain, cf. [17].

– Now assuming the language is standard first-order logic and take finite interpreta-
tions. Then validity of assertions is decidable. This makes provability in Hoare logic
decidable. In particular, this holds for {T}P{F}, which witnesses P’s divergence.

– But if the target language has the above five features, we can emulate a general
computing device even under finite interpretations. This contradicts the recursive-
ness of validity of judgements, hence the proof system cannot be complete.

Clark’s construction of general computing device under finite models relates to Jones
and Muchnick’s work in [44, 45], where they investigate decidability and complexity of
programs with a fixed, finite number of memory locations, each of which can store only
a finite amount of information with and without recursion (for example they showed
[44] that undecidability can come from differences in the calling mechanisms).

Clarke’s result indicates a fundamental discrepancy between the expressiveness of
the assertion languages in Hoare logic for partial correctness (in the traditional sense)
and the expressiveness of programming languages with rich features: the same simpli-
fication — making the data domain finite — has different effects on the tool for de-
scription (assertions) and the target of description (programs). Much subsequent work
focuses on sublanguages of the Algol fragment Clarke proved incompleteness for, es-
tablishing their completeness.

How can we position the presented logic in the context of Clarke’s work? We first
note the following, which directly draw on Clarke’s result. Below by “finite base types”
we mean that Nat is interpreted as a non-trivial finite domain. By “static local variable”
we mean a local variable declaration never exported outside of its scope.

Proposition 6.1 The termination problem of the imperative PCFv in §2.1 extended with
static local variables is undecidable under finite base types.

Proof By Clarke’s result (see also an alternative, and lucid, construction of Turing ma-
chine in Cousot’s survey [18]). ut

Note static local variables in the above sense can be easily captured in the present
logic through the standard method in Hoare logic, cf.[8]. At this point we do not know
whether imperative PCFv without static local variables has the same properties or not.

Proposition 6.1 indicates that Hoare-like logic in the traditional sense cannot be
complete under finite models. The next result shows the other side of the coin, showing
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inherent complexity of the assertion language of the present logic. Below by logic for
the functional sublanguage we mean the logic which only use the empty reference basis
(i.e. semantically without stores and syntactically without dereferences).

Proposition 6.2 The validity of assertions in the logic for the functional sublanguage
is undecidable even under finite base types.

Proof This result relies on:

1. The observational congruence of PCFv with finite bases and without recursion but
with ⊥ coincides with that of PCFv-programs with finite bases and with recursion.

2. For this language we can derive characteristic formulae following Section 4.

By adopting Loader’s result [51], the contextual congruence of finitary PCFv with bot-
tom (even without recursion) is undecidable. By the extensionality axiom noted in Sec-
tion 2, this means that, in this finitary language, it is as difficult to calculate validity in
this sublogic as calculating two programs are contextually equal or not.5 ut

Corollary 6.3 The validity of assertions in the present logic (for imperative PCFv) is
undecidable even under finite base models.

Proof By taking the empty reference basis. ut

Note this result crucially relies on direct description of higher-order behaviours in the
logical language. While it is standard [27] to consider strong models (those which can
represent all arithmetical relations) for total correctness, the above result shows how
such description leads to inherent complexity of the presented logical language, under
any non-trivial class of interpretations.

Program Logics for Sublanguages of Algol (1): Olderog’s Analysis. In [62]. Olderog
presents a sound and complete proof system for sub-languages of Algol with different
variants of copy rules, treated uniformly based on the shape of call trees w.r.t. a given
copy rule. Trakhtenbrot et al. [75] independently presented a sound and complete logic
for an Algol-like language with copy rule. Later Olderog [63] presented a precise and
uniform characterisation of existence of sound and (relatively) complete Hoare logic for
sublanguages of a Pascal-like language, called Lpas, which allows second-order proce-
dures. His characterisation is amazingly simple: sound and complete Hoare-like logics
exist for an admissible sublanguage of Lpas (here “admissibility” indicates closure un-
der natural syntactic transformations respecting semantics inside Lpas) if and only if its
call trees are regular in the standard sense. An example of a program which does not
have a regular call tree (even under finite interpretation), from [63], follows (we use
letrec/let for readability).

letrec p = λ f .(letrec q = λ(). f () in p(q); f ()) in let r = λ().skip in p(r)

5 Loader’s result is for call-by-name PCF with finite domains, with bottom and without recursion
(the use of bottom is fundamental for his undecidability result). His argument is however easily
converted to call-by-value PCF with finite base domains and bottom.
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which is, modulo translation of let/letrec, easily a PCFv-program, strengthening our
intuition behind Proposition 6.2.

As the above example shows, Olderog’s results offer a deep analysis of the dynamics
of languages with recursive higher-order procedures, uncovering structural information
under Clarke’s impossibility result. The same programming example also shows that
imperative PCFv easily allows recursive calls which have nonregular call trees. If we
aim at (at least) describing all semantic properties of a target programming language by
the present program logic, then being able to describe behaviours with non-regular call
structures may not be inhibited, at least as a starting point.

On its basis, however, we may pose the following question, based on Olderog’s anal-
ysis: if we start from the use the presented logical language and imperative PCFv, how
would the uniform restrictions considered in [62, 63] or analogous ones alter properties
of the logic? One of our main concerns underlying this question is about tractability in
reasoning (for example for model checking). We believe it is at least theoretically inter-
esting and possibly pragmatically rewarding to reintroduce notions and results from his
and others’ studies on Algol-like languages in the present extended (and therefore far
more intractable) setting.

Program Logics for Sublanguages of Algol (2): Damm and Josco’s Logic. Algol
and its sublanguages strictly separate commands from (first-order and higher-order)
expressions. Further, variables only store first-order values such as integers. For this
reason most of Hoare logics studied for these programming languages do not directly
describe higher-order behaviour in assertions. One of the exceptions is work by Damm
and Josco [19], where they use predicate variables (which represent e.g. postconditions)
by instantiating them with a concrete predicate using a fixed correspondence in vari-
ables. For example, assume given an expression P of type α⇒Prg (Prg is the program
type), they assert

{Cpre}P{Cpost},

where Cpre and Cpost are pre/post conditions of type α⇒Prg, taking a predicate of type
α. Thus the above formula in fact means that, for any expression Q of type α, and for
any of its assertion in the shape similar to the standard most general formula [62], we
have:

{x = i}Q{C′} ⊃ {Cpost(C′)}P(Q){Cpre(C′)}

which is now of type Prg, so that the judgement is an ordinary Hoare triple. There are
three observations.

1. The use of a specific, and fixed, form of precondition of Q is crucial: since it wholly
captures a state transformation by Q of interest, we can instantiate it into both
pre/post conditions of the resulting command.

2. The instantiation is based on syntactic substitution of formulae using fixed vari-
ables, which works because the construction of higher-order formulae such as Cpost
and Cpre above reflects Algol’s type structure: they are always built up from first-
order state transformation one by one (so a formula of a higher-order type contains
a sequence of substitutions broken down to first-order state transforms).
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3. Because of (2), their approach is not directly extensible to stored higher-order pro-
cedures, so that (for example) the behaviour of closureFact and circFact can-
not be asserted. More importantly, the framework may not allow description of
generic higher-order behaviour like that of as Map and App as we did in Section 5
unless we alter the basic structure.

We believe the comparisons with our framework as given above (especially the third
point) may suggest the effectiveness of evaluation formulae as a simple but powerful
logical device to describe general stateful applicative behaviour.

Program Logics for Sublanguages of Algol (3): Halpern’s Logic. German, Clarke
and Halpern [22] and Halpern [26] studied completeness for Clarke’s sub-language
of Algol. Halpern [26] studied the language (called PRG83) using a separate class of
assertion called covering assertions which roughly say which variables a program reads
and writes. He then considers a judgement of the following form:

CA ⊃ {A}P{B}

where CA is a covering assertion involving a program and identifiers it covers. His logic
relies on the validity of such entailment, and, as such, is higher-order. He has shown,
through the use of most general formulae for partial correctness, that his proof system
is sound and complete with respect to strongly expressive models (i.e. those which can
express weakest preconditions for arbitrary programs) and under the provision that all
true judgements of the above form can be given by an oracle, He uses what he calls
store domains where an element in a domain is equipped with its support (free names,
or locations it uses), which is similar to the notion of models in Section 4. A main
difference in this aspect is that, in our models, it is not an element but a domain which
is equipped with free names, since type information of abstract values already includes
its reference typing. We follow more recent approaches to operational and denotational
semantics of programs which manipulate locations, as found in the work by Pitts and
Stark [66].

Reynolds’s Specification Logic. Specification logic by Reynolds [71] is a program
logic for Idealised Algol which combine the traditions of both LCF and Hoare logic,
where Hoare triples appear textually in assertions. It is a bold enterprise, since the logic
aims to capture the whole of Idealised Algol including noninterference between expres-
sions (needed to tame intractability of write effects in call-by-name evaluations).

The target language, Idealised Algol, is a purified form of Algol. As such, it has a
strict separation between expressions (including abstraction, application and recursion)
and commands (which is a special case of expressions), where only commands allow
such constructs as loop and sequential composition. The judgement in Reynolds’s logic
(which he calls specification) uses, as its atomic formulae, a Hoare triple {C}M{C′}
(with M being a program text), equality of expressions, “noninterference” predicate
and a “good variable” predicate, the latter two used for asserting on noninterference.
These are combined with intuitionistic connectives (conjunction, entailment and falsity)
and universal quantifiers over natural numbers. Note that, in this way, a judgement may
contain many instances of program texts. Reynolds intends such a judgement to indicate
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a “predicate about environments in the sense of Landin”, i.e. the set of all possible
environments which satisfy the judgement.

Reynolds presented several proof rules. One interesting rule is essentially the fol-
lowing one (we write S for a judgement in Reynolds’s logic and S[M] for a judgement
with a hole willed with an expression in it).

` S[M] M ∼= N
` S[N]

Note M can occur contravariantly in S[ · ]. Other rules include, as in LCF, all stan-
dard logical inference rules, but they also combine rules for subtyping and the standard
rules for Hoare triples (the assignment rule becomes complex due to the concern on
noninterference). A major part of the efforts in [71] are done for formalising rules for
noninterference. Subsequent studies on semantics of specification logics by O’Hearn
[70], Tennent [74] and Ghica [23] also centre on precise formalisation of this notion.

Both specification logic and the logic studied in the present paper aim to capture a
general class of imperative higher-order behaviours, albeit difference in the choice of
languages. One technical similarity is a conceptual distinction between a store and an
environment, which is explicit in the present logic because of the dereference notation.
On the other hand, the main differences are:

1. Reynolds’s logic is not (intended as) a compositional logic in Hoare’s sense. This
leads to two technical differences.

– The present assertion language directly assert on and compositionally verify
higher-order expressions, whereas Reynolds’s logic does neither. This lack is
partly compensated by the substitutivity rule listed above (note however this
rule involves direct reasoning on M ∼= N at the level of programs).

– Judgements in Reynolds’s’ logic may contain assertions on program texts whereas
the present logic maintains strict distinction between a program and an asser-
tion, the latter describing the behaviour of the former.

2. Effective reasoning principles for complex data types (starting from sums and prod-
ucts) is central to the present logic, which is not treated in specification logic. We
believe their treatment may not be easy without using anchors.

3. There is also a minor technical difference in that the present logic is for total cor-
rectness while Reynolds’s logic is for partial correctness, though much of Reynolds’s
technical development would equally work for total correctness, similarly the pre-
sented framework can cleanly accommodate partial correctness.

Reynolds’s logic precedes the presented logic in that he tries to capture semantics of
typed higher-order programs in a logical framework. As noted above, his logic does
not (aim to) offer a compositional reasoning method for higher-order expressions and
data structures, which is the main concern of the present work. An interesting topic
which these comparisons may suggest is a possibility to extend the present framework
to the logic for program development where we can combine programs and their spec-
ifications, as strongly advocated by Jifeng and Hoare [32]. As another interest, con-
trol of interference in the higher-order imperative call-by-name behaviours is central to
Reynolds’s logical framework as well as to subsequent studies on its semantics. It is an
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interesting subject of further study if, under the same setting as Reynolds, whether we
can obtain a clean compositional logic following the present framework and its ramifi-
cations.

Other Related Work. For both typed and untyped λ-calculi, equational logics have
been studied since the classical work by Church and Curry. LCF [24] augments the
standard equational theories of the λ-calculus with Scott’s fixpoint induction. In LCF-
like logics, programs appear as terms of the logical language. These terms are equated
by syntactic equations such as βη-conversions, for which statelessness of computation
is essential. Mason [52] studies a LCF-like logic for imperative call-by-value functions,
where imperative effects of programs are reasoned using small step reductions, a non-
congruent syntactic equivalence and effect propagations. His logic is not (intended as)
a compositional program logic but does allow certain contextual reasoning.

Dynamic Logic [28], introduced by Pratt [69] and studied by Harel and others [27],
uses programs and predicates on them as part of formulae, facilitating detailed specifica-
tions of various properties of programs such as (non-)termination as well as intensional
features. As far as we know, higher-order procedures have not been treated in Dynamic
Logic, even though we believe part of the proposed method to treat higher-order func-
tions would work consistently in their framework.

Names have been used in Hoare logic since an early work by Kowaltowski [47], and
are found in the work by von Oheimb [76], Leavens and Baker [50] and Abadi and Leino
[5], for treating parameter passing and return values. These works do not treat higher-
order procedures and data types, which are uniformly captured in the present logic along
with parameters and return values through the use of names. This generality comes from
the fact that a large class of behaviours of programs are faithful representation as name
passing processes which interact at names: our assertion language offers a concise way
to describe such interactive behaviour in a logical framework.

Reynolds, O’Hearn and others [61, 72] study extensions of Hoare logic in which
new logical connectives are used for reasoning about low-level operations such as
garbage collection in the first-order setting. A clean logical treatment of low-level fea-
tures and higher-order constructs would be an interesting topic for further study. One of
the major aims of their work is to offer tractable reasoning for aliasing. This aspect of
their work are extensively discussed in [10] and [79].

The characterisation of observational semantics by logical formulae are well-known
in process logics [29] and is also discussed in Hoare logics [32, 55]. Nevertheless, none
of the related work discussed above reports observational completeness in the sense of
Theorem 4.19. We believe that, especially when a program logic treats assertions on
higher-order programs (as in the present logic), precise correspondence between con-
textual behaviours and logical descriptions is important for various engineering con-
cerns, for example substitutivity of modules through specifications. The notion of char-
acteristic assertions in our sense is closely related with so-called most general formulae,
cf. [8, 46].

The use of side-effect-free expressions when reasoning about assignment is a sta-
ple in compositional program logics. Freedom from side effects is however hard to
maintain in a higher-order setting because of the complex interplay between higher-
order procedures. The clean embedding of Hoare’s assignment rule in §5 suggests that
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the presented framework effectively refines the standard approach while retaining its
virtues in the original setting. It should be noted that in the context of an integrated
verification framework JML [2], Leavens and others report engineering significance of
the principle of the use of side-effect free expressions in practice. Experiment of the
use of the proposed extensions in practical engineering settings would be an interesting
subject for further study.

For solving some of the central issues associated with program development on a
formal basis, a study on theories, calculi and practice of program/data refinement aims
to build methodologies by which one can develop programs starting from general speci-
fications and, through refinement of successively more concrete specifications, reach an
executable program, cf. [20, 30, 32] (this line of study includes integrated software de-
velopment frameworks such as VDM [43] and more recent Z notation[78]). One of the
ideas strongly advocated in [32] in this context is a specification language in which we
can combine programs and formulae using logical connectives and program constructs.
While some trials to obtain such a calculus for higher-order procedures exist (for exam-
ple see [59]), no tractable solutions have been known (Hoare and Jifeng [30, 32] noted
difficulties to apply their framework to higher-order objects). Can the present theory
contribute to the development of a simple, general and practical theory of refinement
for programs and data types? By doing so, can it add anything to the existing integrated
framework such as those using, for example, Z notation [78]? The semantic analysis of
the proposed logic and its extensions, as partly discussed in Section 4, would offer a
useful foundation for such an inquiry.

The origin of the assertions and judgements introduced in the present work is the
logic for typed π-calculi [34, 36] where linear types lead to a compositional process
logic. The known precise embeddings of high-level languages into these typed π-calculi
can be used to determine the shape of name-based logics like the one presented here for
the embedded languages. Once found, they can be embedded back with precision into
the originating process logics. [33, 34, 36] discuss process logics and their relationship
to the program logics in detail.
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14. Arthur Charguéraud. Program verification through characteristic formulae. In Proc. ICFP,
pages 321–332, 2010.
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A Observational Completeness: Detailed Proofs

A.1 Supplement to Proof of Lemma 4.16

Assume ∆ `M1 6∼= M2 : α and let C[ · ] and ~V be such that, for example:

(C[M1], ~r 7→~V ) ⇓ and (C[M2], ~r 7→~V ) ⇑

which means, through the βV -equality:

(WM1, ~r 7→~V ) ⇓ and (WM2, ~r 7→~V ) ⇑

where we set W def
= λx.C[x]. Note the convergence in (WM1, ~r 7→ ~V ) ⇓ takes, by the

very definition, only a finite number of reductions. Let it be n. Then (occurrences of)
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λ-abstractions in W and ~V can only be applied up to n times, similarly for other de-
structors. Using this, we transform these programs into FCF values maintaining the
above property. We illustrate the basic ideas. First, all recursion used in W and ~V are n
times unfolded through the standard unfolding (e.g., given λx.M, the 0th unfolding is Ω

(cf. Convention 4.2), the 1st unfolding is M[Ω/x], the 2nd unfolding is M[M[Ω/x]/x],
etc.), still maintaining convergence. Similarly βv-redexes can be eliminated by perform-
ing reductions n times, while the “if” statement can be made less defined by pruning
all branches which do not contribute to convergence. Variables of higher-order types
are η-converted, while all Nat-typed variables are replaced by constants combined with
the case construct, through inspection of their concrete usage during reductions. Ap-
plications are replaced by let-applications. For details of the transformation, see be-
low. We now obtain (semi-closed) FCF values, which we set to be F and ~U . Since
the convergence/divergence behaviour of (FM1,~r 7→ ~U) has not changed in compari-
son with (WM1,~r 7→ ~V ), and because (FM2,~r 7→ ~U) is more prone to divergence than
(WM2,~r 7→~V ), we still obtain:

(FM1, ~r 7→ ~U) ⇓ and (FM2, ~r 7→ ~U) ⇑

as required.
In the following we present the translation of W into its corresponding FCF used

above. We write:

1. ηα(x) for the η-expansion of a variable x of type α using let’s in the obvious way
(e.g. ηNat⇒Nat(y) def

= λx.let z = yx in z). If α = Nat then it is identity.

2. caseω x of 〈i : Mi 〉 is the case construct which allows infinite branching (which
we later convert into finite branching).

Let the number of reduction steps needed to converge be n. The translation is in five
stages, as given below. For brevity we assume only a single first-order operator, succ(M),
is used in programs: generalisation to inclusion of other first-order operators is imme-
diate.

Stage 1: unfolding. Unfold each recursion in W n times (as illustrated in the main
proof). Let the resulting term be W ′.

Stage 2: let-translation. On W ′ we perform the translation 〈〈W ′, x, x〉〉where 〈〈M, y, N〉〉
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is given by induction on M as follows.

〈〈x, y, N〉〉 def
= N[x/y]

〈〈n, y, N〉〉 def
= N[n/y]

〈〈λx.M, y, N〉〉 def
= N[λx.〈〈M, z, z〉〉/y]

〈〈succ(M), y, N〉〉 def
= 〈〈M, x, N[succ(x)/y]〉〉

〈〈M1M2, y, N〉〉 def
= 〈〈M1, f , 〈〈M2, x, let y = f x in N〉〉〉〉

〈〈if M then N1 else N2, y, N′〉〉 def
= 〈〈M, x, if x then 〈〈N1[t/x], y, N′〉〉

else 〈〈N2[f/x], y, N′〉〉〉〉

〈〈let y = M1 in M2, z, N〉〉 def
= 〈〈M, y, 〈〈M2, z, N〉〉〉〉

〈〈!x, y, N〉〉 def
= let y = !x in N

〈〈x := M1;M2, y, N〉〉 def
= 〈〈M1, z, x := z;〈〈M2, y, N〉〉〉〉

We can check that 〈〈M, y, N〉〉 keeps or replicates βV -redexes in M and N, possibly
changing (λx.L1)L2 into (λx.L′1)z. We now repeat the following transformations n times.

1. Firstly, reduce all βV -redexes in the resulting term, including those under λ-abstraction,
simultaneously.

2. Secondly, letting the resulting term be (say) V , we calculate 〈〈V, x, x〉〉 again, and
let the resulting term be used for the next round (if we have not reached n).

After the n-th round, if there still remain any λV -redexes in the term, we replace them
with ω (of the same type). Let the resulting program be W ′′.
Stage 3: η-conversion. On W ′′, we perform the following two transformations consec-
utively.

– Every subterm of W ′′ of the form λxα⇒β.C[x]i where C[x]i enumerates all free oc-
currences of x in the body (if any) except those of the form xM, is simultaneously
transformed into:

λxα⇒β.C[ηα⇒β(x)]i,

thus eliminating all occurrences of arrow type variables except those occurring in
the function positions of let-applications.

– Every subterm of W ′′ of the form λxNat.C[x]i, where C[x]i enumerates all free oc-
currences of x in the body (if any), is simultaneously transformed into:

λxNat.caseω x of 〈n : C[n]i 〉 ,

thus eliminating all occurrences of Nat-typed variables.

Let the resulting term be W †.

Stage 4: case branch pruning. By inspecting reductions starting from W †M1 reaching
convergence, we can witness which numerals (if ever) are fed to each subterm occurring
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in W † of the form λxNat.M. This decides a finite number of numerals ever fed to each
abstraction of the form λxNat.M in W ‡. By pruning all unnecessary branches, we now
transform all infinite case constructs to finite constructs without changing behaviour (if
none is fed we turn it into Ω

def
= λx.ω). Let the resulting term be W ‡.

Stage 5: final cleanup. First observe that, in each subterm of the form succ(N), N
is either a numeral or again of the form succ(N′) (with obvious generalisation when
other first-order operators are involved). Hence we can completely calculate away each
successor (and other first-order operators).

Let the resulting term be F . Then FM1 can precisely mimic reductions of WM1 to reach
convergence. The same transformation is performed for each Vi in ~V , obtaining a FCF,
named Ui. This concludes the transformation of W an ~V into desired FCFs.

A.2 Proofs for Proposition 4.17

In the subsequent proof of Proposition 4.17, we use the following notations for brevity.

Notation A.1

1. We write (ξ ·u : M,σ) ⇓ (ξ ·u : V,σ′) for (Mξ,σ) ⇓ (V,σ′).
2. We write (M1,σ1)v (M2,σ2) when we have (Mi,σi) ⇓ (Vi,σ

′
i) (i = 1,2) such that

V1 vV2 and σ1 v σ2.

As before, it is easy to inductively verify (soundness). Below we show (MTC) and
(closure).

(Numeral) Let C def
=~r =~i and C′ def

= C ∧ u = n. MTC is trivial. For closure, assume
[C0]M :u [C′] with C0 ⊃C and let (ξ,σ) |=C0. Then

(ξ ·u : Mξ,σ) ⇓ (ξ ·u : V,σ′0) |=C′ ⊃ V ∼= n ∧ σ∼= σ
′

where σ∼= σ′ is by noting C′ says the state is unchanged from the precondition C. Since
(ξ ·u : n,σ) ⇓ (ξ ·u : n,σ), we are done.

(Case-n) Let F ′ def
= case x of 〈ni : Fi 〉i, C def

= ∨i(x = ni∧Ci) and C′ def
= ∨i(x=ni∧C′i).

By (IH), assume (Ci,C′i) satisfies (MTC) and (closure) w.r.t. Fi at u, for each i. Let ξ′ be

a model for the assumed basis and ξ
def
= ξ′/x. For MTC we reason:

(F ′ξ′,σ) ⇓ ⇔ ∨i(ξ
′(x) = ni ∧ (Fiξ,σ) ⇓)

⇔ ∨i(ξ
′(x) = ni ∧ (ξ,σ) |= Ai )

⇔ ξ |= A.

For (closure), let E ⊃C and assume |= [E]M :u [C′]. We have E∧x = ni ⊃ Ci∧x = ni.
Note also we have, noting x = ni is stateless:

|= [E ∧ x = ni]M :u [Ci] (A.1)
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We can now reason:

(ξ′,σ) |= E ⊃ ∃i.( ξ′ |= E ∧ x = ni)
⊃ ∃i.(ξ(x) = ni ∧ Fiξ v Mξ) (IH)
⊃ F ′ξ′ ∼= Fiξ v Mξ.

(Omega) Straightforward.

(Abstraction) Similar to (Numeral) above.

(Dereference) Let F ′ def
= let x = !y in F and assume by induction that (C,C′) is a

strong CAP of F at u. First we show C[x/!x] is an MTC for F ′. Below we assume ξ,σ
etc. are appropriately typed.

(F ′ξ, σ) ⇓ ⇔ (F(ξ · x : σ(y)), σ) ⇓ (reduction)
⇔ (ξ · x : σ(y), σ) |=C (IH: C is an MTC for F)
⇔ (ξ, σ) |=C[!y/x]

Next we show the closure property.
Below let ξ′ = ξ · x : σ(y) and C0 ⊃C[!y/x].

|= [C0]M[C′] ∧ (ξ,σ) |=C0
⊃ |= [C∧C0]M[C′] ∧ (ξ′,σ) |=C∧C0
⊃ (Fξ′, σ) v (Mξ′, σ)
⊃ (F ′, σ) v (Mξ′, σ)

The third line is by the closure condition for (C,C′), by being a strong CAP of F by
our induction hypothesis.

(Assignment) Let

F ′ def
= x :=U ; F C0

def
= ∀z.(A⊃C[z/!x]) (A.2)

Further by induction we stipulate:

(IH1) (C,C′) satisfies (MTC) and (closure) w.r.t. F at u;
(IH2) (T, A) satisfies (MTC) and (closure) w.r.t. U at z, assuming the auxiliary names

in A are empty, without loss of generality.

From (IH2) we infer:
∀ξ,σ. (ξ · z :Uξ, σ) |= A (A.3)

Hence also:
∀ξ,σ. (ξ,σ) |= ∃z.A. (A.4)

Assume ξ,σ etc. are appropriately typed and recall σ[x 7→ V ] indicates the result of
updating the content of x in σ with V .
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Fig. 7 Asserted Programs for the Proof of Closure in Assignment Rule

[C0] let y = !x in
[C0[y/!x]] x :=U ;

[C∧A[!x/z][y/!x]] x := y ; M :u [C′]

[C0] let y = !x in
[C0[y/!x]] x :=U ;

[C′∧A[!x/z][y/!x]] F :u [C′]

Above we choose y to be fresh and recall [T] U :z [A]. Two coloured parts are inequated by the
closure condition from the induction hypothesis (the lower is less defined).

We first show (C0,C′) is an MTC for F ′ under the given inductive hypotheses. We
infer, for some I:

(F ′ξ, σ) ⇓ ⇔ (Fξ, σ[x 7→Uξ]) ⇓ (reduction)
⇔ (ξ, σ[x 7→Uξ]) |=C (IH1)
⇔ (ξ · z :Uξ, σ[x 7→Uξ]) |= A ∧ C (by (A.3) above)
⇔ (ξ · z :Uξ, σ) |= A ∧ C[z/!x] (substitution)
⇔ (ξ · z :Uξ, σ) |= A ∧ ∀z.(A ⊃ C[z/!x]) (∗)
⇔ (ξ, σ) |= ∃z.A ∧ ∀z.(A ⊃ C[z/!x]) (by (A.3) above)
⇔ (ξ, σ) |= ∀z.(A ⊃ C[z/!x]) (by (A.4) above)

In each line above, a comment on the right-hand side of a formulae caters for both
directions of implications. The logical equivalences directly connect the condition for
convergence to the precondition under a given model, (ξ,σ). For (∗), the “if” direction
(upwards) is immediate. For the “then” direction, we derive the second conjunct of the
subsequent from that of the precedent. For an arbitrary (well-typed) W :

(ξ·z :Uξ, σ) |=C[z/!x] ∧ (ξ·z :W,σ) |= A
⇒ (ξ·z :Uξ, σ) |=C[z/!x] ∧ [T] W :z [A] (definition of |=)
⇒ (ξ·z :Uξ, σ) |=C[z/!x] ∧ Uξ v W (IH2)
⇒ (ξ·z :W, σ) |=C[z/!x] (IH1, C is a TCA at !x)

For closure, we let C0 ⊃ ∃z.A∧∀z.(A ⊃ C[z/!x]) and assume:

[C0] M :u [C′]. (A.5)

We use the following programs. We set F ′ def
= x :=U ;F as before.

N def
= let y = !x in x :=U ;x := y;M

L def
= let y = !x in F ′

Immediately:
N ∼= M and L ∼= F ′. (A.6)

38



We start with an assertion on the subprogram of N, x := y;M, which we are going to
compare with F . We first observe:

[C0[y/!x]] x := y [C0] (A.7)

Combined with the assumption (A.5), we reach:

[C0[y/!x]] x := y ; M :u [C′] (A.8)

Further, as we have seen for the main inference for MTC, we have:

(ξ·z : Uξ, σ[x 7→Uξ]) |=C ⇔ (ξ, σ) |=C0. (A.9)

Hence by (IH2) we reach, writing ξ′ for ξ·z :Uξ:

∀ξ,σ. (ξ′, σ[x 7→Uξ]) |=C[y/!x] ⊃ (Fξ
′, σ) v ( (x := y;M)ξ′, σ) (A.10)

We now reason, writing further σ′ = σ[x 7→Uξ]:

(ξ,σ) |=C0 ⊃ (ξ′,σ′) |=C0[y/x] (A.9)
⊃ (Fξ′, σ′) v ( (x := y;M)ξ′, σ′) (A.10)
⊃ (F ′ξ′, σ) v ( (x :=U ;x := y;M)ξ′, σ) (reduction)
⊃ (Lξ, σ) v ( Nξ, σ) (reduction)
⊃ (F ′ξ, σ) v ( Mξ, σ) (A.6)

(Let-Application) Let F ′ def
= let x = fU in F ξ0 =~y :~V and ξ = ξ0 · f : W , as well as

σ =~r 7→~V . We assume:

(IH1) (C,C′) satisfies (MTC) and (closure) w.r.t. u for F .
(IH2) (T,A) satisfies (MTC) and (closure) w.r.t. z for U .

We also let
C1

def
= ∃~j. ( !~r = ~j ∧ ∀z.[A∧ !~r = ~j] f • z = x[C] )

First we show C1 is an MTC for F ′. By (IH2) we have |= [T]U :z [A] hence for any ξ0
(omitting auxiliary I):

ξ0 · z :Uξ0 |= A (A.11)

Below we write (ξ·x : M,σ) ⇓ (ξ·x : V,σ′) when (Mξ,σ) ⇓ (V,σ′).

(F ′ξ,σ) ⇓
⇔ (ξ0 · x : WU, σ) ⇓ (ξ · x : S, σ) |=C (IH1, (A.11))
⇔ ∀U1 wUξ0 ⊃ (ξ · x : WU1, σ) ⇓ (ξ · x : S1, σ′1) |=C (C TCA at x)
⇔ z : U1 ·ξ0 |= A ⊃ (ξ · x : WU1, σ) ⇓ (ξ · x : S1, σ′1) |=C (IH2)
⇔ z : U1 ·ξ0 |= A ⊃ (z : U1 ·ξ ·~j :~V , σ) |= [!~r = ~j] f • z = x[C] (Def-eval)
⇔ (ξ ·~j :~V , σ) |= [A∧!~r : ~j] f • z = x[C] (†)
⇔ (ξ, σ) |= ∀~j.(!~r = ~j ⊃ [A∧!~r : ~j] f • z = x[C])

The last line’s “then” direction is because, if ~j are not mapped to what are equivalent
to~v, the premise of the entailment does not hold.
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For the closure condition, let Γ;∆ `M : α. Further let C0 be such that:

C0 ⊃C1

and assume:
[C0]M :u [C′]. (A.12)

Let a vector of names ~z be fresh below. We write let ~z = !~r in F for a sequence of
let-derefs and~r :=~V for a sequence of assignments.

M0
def
= let~z = !~r in let x = yU in (~r :=~z ; M)

By checking the reduction we have M ∼= M0, hence we hereafter use M0 instead of M
without loss of precision. Now assume: (ξ, σ) |=C0. By (A.12) we have:

(ξ·u : M0ξ, σ) −→∗ (ξ·u : (~r := σ(~r);M)ξ, σ0) |=C

−→∗ (ξ·u : Mξ, σ) |=C0

−→∗ (ξ·u : V ′, σ
′) |=C′

As the above reduction indicates, we can check:

[C] (~r := σ(~r);M)ξ, σ0) :u [C′] (A.13)

We are almost there. Observe, by |= [C]F :u [C′]:

(ξ·u : F ′ξ, σ)−→∗ (ξ·u : Fξ, σ0) |=C −→∗ (ξ·u : V ′′, σ
′′) |=C′

By (IH1) and (A.13) we know: (ξ·u : V ′′, σ′′)v (ξ·u : V ′, σ′), as required.

B Detailed Proof Derivations of Reasoning Examples

This section lists the detailed derivations omitted from Section 5. We use the following
simple rules which are easily derivable in the proof rules in Section 3:

[Seq’]
[C]M [C0] [C0]N :u [C′]

[C]M;N :u [C′]
[Simple]

−
[C[e/u]]e :u [C]

Closure Factorial The following derivation starts from the left branch of the condi-
tional, followed by its right branch. We omit trivial application of (Consequence). (Sub)
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and (Mult) are proof rules for subtraction and multiplication given as [Op] in Figure 3.

[1 = x!] 1 :m [m = x!] (Const)

2. [B′( f , i)∧ x = i∧ x = 0] 1 :m [m = x!] ((5.1), Conseq)

3. [B′( f , i)∧ x = i∧ x = 0] λ().1 :m [A(m,x)] (Abs)

4. [B′( f , i)∧ x = i∧ x = 0] y := λ().1 :m [A(!y,x)] (Assign)

5. [B′( f , i)∧ x = i∧ x 6= 0] f :m [B′(m, i)] (Var)

6. [B′( f , i)∧ x = i∧ x 6= 0] x−1 :n [n = (x−1)] (Simple, Conseq)

7. [B′( f , i)∧ x = i∧ x 6= 0] f (x−1) [A(!y,x−1)] (App)

8. [A(!y,x−1)] !y :m [A(m,x−1)] (Deref)

9. [A(!y,x−1)] (!y)() :v [v = (x−1)!] (8. Const, App)

10. [A(!y, i−1) ] (!y)()× x :z [z = x!] (9, Var, Mult, (5.1), Conseq)

11. [B′( f , i)∧ x = i∧ x 6= 0] f (x−1) ; (!y)() :z [z = x!] (7, 10, Seq)

12. [B′( f , i)∧ x = i∧ x 6= 0] λ().( f (x−1) ; (!y)() ) :m [A(m,x) ] (Abs)

13. [B′( f , i)∧ x = i∧ x 6= 0] y := λ().( f (x−1) ; (!y)() ) :u [A(!y,x) ] (Assign)

14. [B′( f , i)∧ x = i] if x = 0 then M1 else M2 :u [A(!y,x) ] (4, 13, IfH)

15. [B′( f , i)] λxNat.if x = 0 then M1 else M2 :u
[ ∀xNat. [x = i]u• i [ [T] !y• () = z [z = i!] (Abs)

16. [B′( f , i)] λxNat.if x = 0 then M1 else M2 :u
[ ∀xNat.(x = i ⊃ B(u,x)) ] (e5, Conseq)

17. [B′( f , i)] λxNat.if x = 0 then M1 else M2 :u [B(u, i) ] (Conseq)

18. [T] µ fNat⇒Unit.λxNat.if x = 0 then M1 else M2 :u [∀iNat.B(u, i) ] (Rec)

Circular Factorial We set, for brevity:

M def
= λy.if y = 0 then 1 else y× (!x)(y−1)
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We now infer, letting y be typed with Nat and omitting simple applications of Conse-
quence Rule:

1. [C(!x,g,y) ∧ y = 0] 1 :m [m = y! ∧ C(!x,g,y)] (Simple)

2. [C(!x,g,y) ∧ ¬y = 0] y× (!x)(y−1) :m [m = y! ∧ C(!x,g,y)] (Simple, App)

3. [C(!x,g,y)] if y = 0 then 1 else y× (!x)(y−1) :m [m = y! ∧ C(!x,g,y)] (IfH)

4. [T]M :u [ ∀gy.[C(!x,g,y)]u• y = y! [C(!x,g,y)] ] (Abs, ∀)

5. [T] x := M [ ∀yg.[C(!x,g,y)]!x• y = y! [C(!x,g,y)] ] (Assign)

6. [T] circFact [ ∃g. (∀i.A(!x,g, i)∧ !x = g) ] (Conseq)

The application of (Consequence) in Line 6 uses the the entailment in the main section.
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