
A Gentle Introduction to
Multiparty Asynchronous Session Types

Mario Coppo1, Mariangiola Dezani-Ciancaglini1,
Luca Padovani1, and Nobuko Yoshida2

1 Dipartimento di Informatica, Università di Torino
2 Department of Computing, Imperial College London

Abstract. This article provides a gentle introduction to multiparty session types,
a class of behavioural types specifically targeted at describing protocols in dis-
tributed systems based on asynchronous communication. The type system en-
sures well-typed processes to enjoy non-trivial properties, including communi-
cation safety, protocol fidelity, as well as progress. The adoption of multiparty
session types can positively affect the whole software lifecycle, from design to
deployment, improving software reliability and reducing its development costs.

1 Introduction

In modelling distributed systems where processes interact by means of message pass-
ing, one soon realises that many interactions are meant to occur within the scope of
private channels following disciplined protocols. We call such private interactions ses-
sions and the protocols that describe them session types. In its simplest form, a session
is established between two peers, such as a client connecting with a server. In these
cases, the sessions are “binary” or “dyadic” [39, 42]. In general, a session may involve
any (usually fixed, but sometimes variable) number of peers. In these cases, we speak of
multiparty sessions and of their protocol descriptions as of multiparty session types [43].

The ability to describe complex interaction protocols by means of a formal, simple
and yet expressive type language can have a profound impact on the way distributed
systems are designed and developed. This is witnessed by the fact that some important
standardisation bodies for web-based business and finance protocols [73, 72, 68] have
recently investigated design and implementation frameworks for specifying message
exchange rules and validating business logic based on the notion of multiparty sessions,
where multiparty session types are “shared agreements” between teams of programmers
developing possibly large and complex distributed protocols or software systems.

A multiparty session type theory consists of three main ingredients:

– At the most abstract level is the global type, which describes a communication
protocol from a neutral viewpoint in terms of the interactions that are supposed to
occur between the protocol peers, of the order of these interactions, and of the kind
of messages exchanged during these interactions.

– At the most concrete level are processes, which describe the behaviour of the
peers involved in the session using a formal language (usually, a dialect of the
π-calculus).

– Somehow in between these two levels are local types, one for each peer, which de-
scribe the same communication protocol as the global type, but from the viewpoint
of each peer.

These ingredients are strictly related: a projection operation extracts the local type of
each peer from the global type, and a type system makes sure that a process uses the
communication channels it owns according to their local type. Once these relations are
established, a number of properties can be proved, among which:

– communication safety, namely the fact that there is never a mismatch between the
types of sent and expected messages, despite the same communication channel is
used for exchanging messages of different types;

– protocol fidelity, namely the fact that the interactions that occur are accounted for
by the global type and therefore are allowed by the protocol;

– progress, namely the fact that every message sent is eventually received, and every
process waiting for a message eventually receives one.

Remarkably, these properties are guaranteed by means of purely local checks on
the single peers that participate in the protocol, despite the fact that they will run in-
dependently once the session has been established. The ability to prove relevant global
properties by means of local checks is one of the key features of session type theories.

The present article formalises these concepts and provides a gentle introduction to
multiparty session type theory. The process calculus and the type system we use have
been first introduced in [3] and then developed in [25]. Notably, the focus of these two
papers was the design of a type system assuring progress even in presence of session
interleaving. In this article we solely describe the so-called communication type sys-
tem, which assures communication safety, protocol fidelity and, when no sessions are
interleaved, progress.

Outline. We start illustrating our calculus with simple yet comprehensive examples in
§2. The calculus of asynchronous, multiparty sessions is the content of §3. The com-
munication type system assuring that processes behave correctly with respect to the
sessions in which they are involved is illustrated with examples in §4. §5 discusses re-
lated work and further readings. To ease reading and accessibility of the content, proofs
of the properties enjoyed by well-typed processes and additional technical material have
been collected in the Appendix.

2 Examples

In this section we present two versions of a simple but non-trivial example that illus-
trates the basic functionalities and features of the process calculus that we work with.
This example comes from a Web service usecase in Web Service Choreography De-
scription Language (WS-CDL) Primer 1.0 [73], capturing a collaboration pattern typi-
cal to many business and distributed protocols [62, 72, 69].

2

2.1 Example 1: the three buyer protocol

The setting is that of a system involving Alice, Bob, and Carol that cooperate in order to
buy a book from a Seller. The participants follow a protocol that is described informally
below:

1. Alice sends a book title to Seller and Seller sends back a quote to Alice and Bob.
Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts,
then sends his address to Seller and Seller answers with the delivery date.

3. If the price exceeds Bob’s budget, Bob asks Carol to collaborate by establishing a
new session. Bob sends Carol how much she has to contribute and delegates the
remaining interactions with Alice and Seller to her.

4. If Carol’s contribution is within her budget, she accepts the quote, notifies Alice,
Bob and Seller, and continues the rest of the protocol with Seller and Alice as if she
were Bob. Otherwise, she notifies Alice, Bob and Seller to quit the protocol.

Alice Seller Bob Carol
2 [INIT] a 3 [INIT] a 1

"Title"

quote quote

quotediv 2

2 [INIT] b 1

quote− contrib−99

y

ok

okok

"Address"

date

Fig. 1. An execution of the three buyer protocol.

Figure 1 depicts an execution of the above protocol where Bob asks Carol to col-
laborate (by delegating the remaining interactions with Alice and Seller) and the trans-
action terminates successfully.

Multiparty session programming consists of two steps: specifying the intended com-
munication protocols using global types and implementing these protocols using pro-
cesses. The specifications of the three-buyer protocol are given as two distinct global
types: one is Ga among Alice, Bob and Seller and the other is Gb between Bob and
Carol. In Ga Alice plays role 2, Bob plays role 1, and Seller plays role 3, while in Gb
Bob plays role 2 and Carol plays role 1. We annotate the global types with line numbers

3

(i) so that we can easily refer to the actions in them.

Ga =
(1) 2 −→ 3 : 〈string〉.
(2) 3 −→ {1,2} : 〈int〉.
(3) 2 −→ 1 : 〈int〉.
(4) 1 −→ {2,3} : {ok : 1−→ 3 : 〈string〉.
(5) 3−→ 1 : 〈date〉.end,
(6) quit : end}

Gb =
(1) 2 −→ 1 : 〈int〉.
(2) 2 −→ 1 : 〈T〉.
(3) 1 −→ 2 : {ok : end,quit : end}

T=⊕〈{2,3},{ok : !〈3,string〉.?(3,date).end,quit : end}〉

Global types provide an overall description of the two conversations, directly ab-
stracting the scenario of the diagram. In Ga, line (1) denotes Alice sending a string
value to Seller. Line (2) says that Seller sends the same integer value to Alice and Bob
and line (3) says that Alice sends an integer to Bob. In lines (4–6) Bob sends either ok
or quit to Seller and Alice. In the first case Bob sends a string to Seller and receives a
date from Seller, in the second case there are no further communications.

Line (2) in Gb represents the delegation of a channel with the communication be-
haviour specified by the session type T from Bob to Carol (note that Seller and Alice in
T concern the session on a). Then Carol terminates the interaction as if she were Bob
in session a. Note that in this case the Seller do not know if he is talking with Bob or
Alice.

Seller = a [3](y).y?(2, title).y!〈{1,2},quote〉.y&(1,{ok : y?(1,address).y!〈1,date〉.0,quit : 0})

Alice = a[2](y).y!〈3,"Title"〉.y?(3,quote)).y!〈1,quotediv 2〉.y&(1,{ok : 0, quit : 0})

Bob = a[1](y).y?(3,quote).y?(2,contrib).if (quote− contrib < 100)
then y⊕〈{2,3},ok〉.y!〈3,"Address"〉.y?(3,date).0

elseb [2](z).z!〈1,quote− contrib−99〉.z!〈〈1,y〉〉.z&(1,{ok : 0,quit : 0})

Carol = b[1](z).z?(2,x).z?((2, t)).if (x < 100)
then z⊕〈2,ok〉.t⊕〈{2,3},ok〉.t!〈3,"Address"〉.t?(3,date).0

else z⊕〈2,quit〉.t⊕〈{2,3},quit〉.0

Table 1. Implementation of the three buyer protocol.

Table 1 shows an implementation of the three buyer protocol conforming to Ga and
Gb for the processes Seller, Alice, Bob, and Carol in the calculus that we will formally
define in §3.1. The service name a is used for initiating sessions corresponding to the
global type Ga. Seller initiates a three party session by means of the session request
operation a [3](y), where the index 3 identifies Seller. Since 3 is also the overall number
of participants in this session, a occurs with an over-bar. Alice and Bob get involved
in the session by means of the session accept operations a[1](y) and a[2](y) and the
indexes 2 and 1 identify them as Alice and Bob, respectively. Once the session has

4

started, Seller, Alice and Bob communicate using their private channels represented by
y. Each channel y can be interpreted as a session endpoint connecting a participant with
all the others in the same session; the receivers of the data sent on y are specified by
giving the participant numbers. Line (1) of Ga is implemented by the matching output
and input actions y!〈p,"Title"〉 of Alice and y?(2, title) of the Seller. Line (2) of Ga
is implemented by the output action y!〈{1,2},quote〉 of the Seller which is matched by
the input actions y?(3,quote) of both Bob and Alice. Line (3) of Gb is implemented by
the selection and branching actions z⊕〈2,ok〉, z⊕〈2,quit〉 and z&(1,{ok : 0,quit : 0}).

In process Bob, if the quote minus Alice’s contribution exceeds 100, another session
between Bob and Carol is established through the shared service name b. Delegation oc-
curs by passing the private channel y from Bob to Carol (actions z!〈〈1,y〉〉 and z?((2, t))),
so that the rest of the session with Seller and Alice is carried out by Carol.

In this particular example no deadlock is possible, even if different sessions are
interleaved with each other and the communication topology changes because of dele-
gation.

2.2 Example 2: the three buyer protocol with recursion

We now describe a variant of the above example that uses recursion. The scenario is
basically the same, the only part that changes is that, if the price exceeds the budget, Bob
initiates a negotiation with Carol to collaborate together by establishing a new session:
Bob starts asking a first proposal of contribution to Carol. At each step Carol answers
with a new offer. Bob can accept the offer, try with a new proposal or give up. When
Bob decides to end the negotiation (accepting the offer or giving up) he communicates
the exit to Carol and, as before, Carol concludes the protocol with Seller.

Figure 2 depicts the part of the protocol involving recursion.

Bob Carol
2 [INIT] b 1

quote

offer

more
iteration

ok

delegate T

choice

Fig. 2. The three buyer protocol with recursion: additional interactions between Bob and Carol.

The communication protocols are described by the following global types; these are
similar to the ones of the previous example. In particular Ga is exactly the same (since
the server does not notice the further interactions among the buyers). Instead, Gb is now

5

Seller = a [3](y).y3?(2, title).y!〈{1,2},quote〉.y&(1,{ok : y?(1,address).y!〈1,date〉.0, quit : 0})

Alice = a[2](y).y!〈3,"Title"〉.y?(3,quote).y!〈1,quote div 2〉.y&(1,{ok : 0, quit : 0})

Bob = a[1](y).y?(3,quote).y?(2,contrib).
if (quote - contrib < 100) then y⊕〈{2,3},ok〉.y!〈3,"Address"〉.y?(3,date).0
else b [2](z).

def X(x′,z′,y′) =
z′!〈1,x′〉.z?(1,w).
if good(w) then z′⊕〈1,ok〉.z′!〈〈1,y′〉〉.0
else if negotiable(w) then z′⊕〈1,more〉.X〈newproposal(w),z′,y′〉

else z′⊕〈1,quit〉.y′⊕〈{2,3},quit〉.0
in X〈firstproposal(quote),z,y〉

Carol = b[1](z). def Y (z′) = z′?(2,x).z′!〈2,offer(x)〉.
z′&(2,{ok : z′?((2, t)).t⊕〈{2,3},ok〉.t!〈3,"Address"〉.t?(3,date).0

more : Y 〈z′〉,
quit : 0})

in Y 〈z′〉

Fig. 3. The three buyer example with recursion.

more involved since we have a recursive part which represents the (possibly) recursive
negotiation between Bob and Carol.
Ga =
(1) 2 −→ 3 : 〈string〉.
(2) 3 −→ {1,2} : 〈int〉.
(3) 2 −→ 1 : 〈int〉.
(4) 1 −→ {2,3} : {ok :1−→ 3 : 〈string〉.
(5) 3−→ 1 : 〈date〉.end,
(6) quit : end}

Gb =
(1) µt.2 −→ 1 : 〈int〉.
(2) 1 −→ 2 : 〈int〉.
(3) 2 −→ 1 : {ok : 2−→ 1 : 〈T〉.end,

more : t,
quit : end}

T=⊕〈{3,2},{ok :!〈3,string〉.?(3,date).end,quit : end}〉

The code of the example is in Figure 3. Again, it is similar to the previous one, but
for the recursive definitions in the processes Bob and Carol. Note that the recursive
process X in Bob’s code has a data parameter (x′) and two channel parameters (y′ and
z′), while the process Y in Carol’s code has only one channel parameter (z′).

3 The Calculus for Multiparty Sessions

In this section we formalise syntax and operational semantics of the calculus of mul-
tiparty asynchronous sessions. To ease the presentation and limit some technicalities,
with respect to the previous section we consider a slightly simpler calculus in which
communication actions always specify exactly one receiver instead of a non-empty set
of receivers and we assume that recursive definitions have exactly one data parameter
and one channel parameter. Allowing multiple receivers is mostly a matter of syntactic

6

P ::= u [p](y).P Multicast request
|| u[p](y).P Accept
|| c!〈p,e〉.P Value sending
|| c?(p,x).P Value reception
|| c!〈〈p,c′〉〉.P Channel delegation
|| c?((q,y)).P Channel reception
|| c⊕〈p, l〉.P Selection
|| c&(p,{li : Pi}i∈I) Branching
|| if e then P else Q Conditional
|| P | Q Parallel
|| 0 Inaction
|| (νa)P Service name hiding
|| def D in P Recursion
|| X〈e,c〉 Process call
|| (νs)P Session hiding
|| s : h Message queue

D ::= X(x,y) = P Declaration
E ::= [] || P || (νa)E Evaluation context
|| (νs)E || def D in E
|| E | E

a, b Service name
x Value variable

y, z, t Channel Variable
s Session name

p, q Participant number
X , Y Process variable

l Label
s[p] Channel with role

u ::= x || a Identifier
v ::= a || true Value
|| false

e ::= v || x
|| e and e′ Expression
|| not e . . .

c ::= y || s[p] Channel
m ::= (q,p,v) Message in transit
|| (q,p,s[p′])
|| (q,p, l)

h ::= h ·m || � Queue

Table 2. Process syntax and naming conventions.

sugar, since a communication action involving multiple receivers can be canonically en-
coded as a sequence of actions involving single receivers only. Some notions, however,
such as the projection operator, are affected by this design choice and should be adjusted
accordingly. The interested reader may refer to [25] for the presentation of the calculus
with native support for multiple receivers, and to [34] for the definition of a projection
operator that can handle actions with multiple receivers encoded as sequences of actions
with single receivers only.

3.1 Syntax

The present calculus is a variant of the calculus in [43], as explained in §5. The syntax
of processes, ranged over by P,Q . . . , and that of expressions, ranged over by e,e′, . . . ,
is given by the grammar in Table 2, which shows also naming conventions. The oper-
ational semantics is defined by a set of reduction rules. In the reduction of processes it
is handy to introduce elements, like queues of messages and runtime channels, which
are not expected to occur in the source code written by users (user processes). These
elements, which are referred as runtime syntax, appear shaded .

The processes of the form u [p](y).P and u[p](y).P cooperate in the initiation of a
multiparty session through a service name identified by u, where p denotes a participant
to the session. Participants are represented by progressive numbers and are ranged over
by p, q,... The barred identifier is the one corresponding to the participant with the
highest number, which also gives the total number of participants needed to start the
session. The (bound) variable y is the placeholder for the channel that will be used in
the communications. After opening a session each channel placeholder will be replaced

7

by a channel with role s[p], which represents the runtime channel of the participant p in
the session s.

Process communications (communications that can only take place inside initiated
sessions) are performed using the next three pairs of primitives: the sending and receiv-
ing of a value; the channel delegation and reception (where the process performing the
former action delegates to the process receiving it the capability to participate in a ses-
sion by passing a channel associated with that session); and the selection and branching
(where the former action sends one of the labels offered by the latter). The input/output
operations (including the delegation ones) specify the channel and the sender or the re-
ceivers, respectively. Thus, c!〈p,e〉 denotes the sending of a value on channel c to the
participant p; accordingly, c?(p,x) denotes the intention of receiving a value on channel
c from the participant p. The same holds for delegation/reception (but the receiver is
only one) and selection/branching.

An output action is a value sending, channel delegation or label selection: an output
process is a process whose first action is an output action. An input action is a value
reception, session reception or label branching: an input process is a process whose first
action is an input action. A communication action is either an output or an input action.

As usual evaluation contexts are processes with some holes.
As in [43], we use message queues in order to model TCP-like asynchronous com-

munications (where message order is preserved and sending is non-blocking). A mes-
sage in a queue can be a value message, (q,p,v), indicating that the value v was sent by
the participant q and the recipients is the participant p; a channel message (delegation),
(q,p,s[p′]), indicating that q delegates to p the role of p′ on the session s (represented
by the channel with role s[p′]); and a label message, (q,p, l) (similar to a value mes-
sage). The empty queue is denoted by �. By h ·m we denote the queue obtained by
concatenating m to the queue h. With some abuse of notation we will also write m ·h to
denote the queue with head element m. By s : h we denote the queue h of the session
s. Queues and channels with role are generated by the operational semantics (described
later).

We call pure a process which does not contain message queues.
There are many binders: request/accept actions bind channel variables, value recep-

tions bind value variables, channel receptions bind channel variables, declarations bind
value and channel variables, recursions bind process variables, hidings bind service and
session names. In (νs)P all occurrences of s[p] and the queue s inside P are bound. We
say that a process is closed if the only free names in it are service names (i.e. if it does
not contain free variables or free session names).

3.2 Operational Semantics

Processes are considered modulo structural equivalence, denoted by ≡, and defined
adding α-conversion to the rules in Table 3. We denote by fn(Q) (fn(D)) the set of free
names in Q (D), by dpv(D) the set of process variables declared in D and by fpv(Q) the
set of process variables which occur free in Q. Besides the standard rules [50], we have
a rule for rearranging messages in a queue when the senders or the receivers are not the
same.

8

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νr)P | Q≡ (νr)(P | Q) if r /∈ fn(Q)

(νr)(νr′)P≡ (νr′)(νr)P (νa)0≡ 0 (νs)(s : �)≡ 0

where r ::= a || s

def D in 0≡ 0 def D in (νr)P≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D′ in (def D in P)
if (dpv(D)∪ fpv(D))∩dpv(D′) = dpv(D)∩ (dpv(D′)∪ fpv(D′)) = /0

s : h · (q,p,ζ) · (q′,p′,ζ ′) ·h′ ≡ s : h · (q′,p′,ζ ′) · (q,p,ζ) ·h′ if p 6= p′ or q 6= q′

Table 3. Structural equivalence.

Table 4 shows the reduction rules of processes (we use −→∗ and −→k with the
expected meaning). Rule [Init] describes the initiation of a new session among n par-
ticipants that synchronise over the service name a. The last participant a [n](y).Pn, dis-
tinguished by the overbar on the service name, specifies the number n of participants.
After the initiation, the participants will share the private session name s, and the queue
associated to s, which is initially empty. The variable y in each participant p will be
replaced by the corresponding channel with role s[p]. The output rules [Send], [Deleg]
and [Sel] enqueue values, channels and labels, respectively, into the queue of the ses-
sion s (in rule [Send], e ↓ v denotes the evaluation of the expression e to the value v).
The input rules [Rcv], [SRcv] and [Branch] perform the corresponding complementary
operations. Note that these operations check that the sender matches, and also that the
message is actually meant for the receiver.

4 Communication Type System

This section introduces the communication type system, by which we can check type
soundness of the communications and protocol fidelity. This type system is the one in-
troduced in [25], but the proof of subject reduction is cleaned up by the use of the prop-
erty stated in Lemma 1. As we have done in §3.1, here too we only consider commu-
nication actions with single receivers, even though the examples make use of a slightly
general syntax.

4.1 Global and Session Types

Global types describe the whole conversation scenarios of multiparty session. Session
types correspond to projections of global types on the individual participants: they are
types of pure processes. The grammar for global and session types is given in Table 5.

9

a[1](y).P1 | ... | a[n−1](y).Pn−1 | a [n](y).Pn−→
(νs)(P1{s[1]/y} | ... | Pn−1{s[n−1]/y} | Pn{s[n]/y} | s : �) [Init]

s[p]!〈q,e〉.P | s : h−→ P | s : h · (p,q,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉.P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈l,q〉.P | s : h−→ P | s : h · (p,q, l) [Sel]

s[p]?(q,x).P | s : (q,p,v) ·h −→ P{v/x} | s : h [Rcv]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [SRcv]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, l j) ·h −→ Pj | s : h (j ∈ I) [Branch]

if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e ↓ v) [ProcCall]

P−→ P′ ⇒ E [P]−→ E [P′] [Ctxt]

P≡ P′ and P′ −→ Q′ and Q≡ Q′ ⇒ P−→ Q [Str]

Table 4. Reduction rules.

Sorts S,S′, . . . are associated to values (either base types or closed global types, ranged
over by G). Exchange types U,U ′, ... consist of sort types or closed session types, ranged
over by T.

The global type p→ q : 〈S〉.G says that participant p multicasts a value of sort S to
the participant q 6= p and then the interactions described in G take place. Similarly, the
global type p→ q : 〈T〉.G says that participant p 6= q delegates a channel of type T to
participant q and the interaction continues according to G. When it does not matter we
use p→ q : 〈U〉.G to refer both to p→ q : 〈S〉.G and p→ q : 〈T〉.G.
Type p→ q : {li : Gi}i∈I says that participant p send one of the labels li to participants
q. If l j is sent, interactions described in G j take place. Type µt.G is a recursive type, as-
suming type variables (t, t′, . . .) are guarded in the standard way, i.e., type variables only
appear under some prefix. We take an equi-recursive view of recursive types, not distin-
guishing between µt.G and its unfolding G{µt.G/t} [66, §21.8]. Type end represents
the termination of the session.

Session types represent the input-output actions performed by single participants.
The send types !〈p,S〉.T , !〈p,T〉.T express, respectively, the sending of a value of sort
S to participant p or the sending of a channel of type T to participant p followed by
the communications described by T . The selection type ⊕〈p,{li : Ti}i∈I〉 represents the
transmission to participant p of a label li chosen in the set {li | i ∈ I} followed by the
communications described by Ti. The receive and branching types are dual of send
and selection types. Recursion is guarded also in session types, and we consider them
modulo fold/unfold as done for global types.

The relation between global and session types is formalised by the notion of projec-
tion as in [43].

10

S ::= bool | . . . | G Sorts
U ::= S | T Exchange types

Global types
G ::= p→ q : 〈S〉.G Value exchange

|| p→ q : 〈T〉.G Channel exchange
|| p→ q : {li : Gi}i∈I Branching
|| µt.G || t || end Recursion/end

Session types
T ::= !〈p,S〉.T Send value

|| !〈p,T〉.T Send channel
|| ?(p,U).T Receive
|| ⊕〈p,{li : Ti}i∈I〉 Selection
|| &(p,{li : Ti}i∈I) Branching
|| µt.T || t || end Recursion/end

Table 5. Global and session types.

Definition 1. The projection of a global type G onto a participant q (G � q) is defined
by induction on G:

(p→ p′ : 〈U〉.G′) � q=


!〈p′,U〉.(G′ � q) if q= p,

?(p,U).(G′ � q) if q= p′,

G′ � q otherwise.

(p→ p′ : {li : Gi}i∈I) � q=


⊕〈p′,{li : Ti}i∈I〉 if q= p

&(p,{li : Gi � q}i∈I) if q= p′

Gi0 � q where i0 ∈ I if q 6= p,q 6= p′

and Gi � q= G j � q for all i, j ∈ I.

(µt.G) � q=

{
µt.(G � q) if G � q 6= t,
end otherwise.

t � q= t end � q= end.

As an example, we list two of the projections of the global types Ga and Gb of the
three-buyer protocol in §2.

Ga � 3 = ?(2,string).!〈{1,2}, int〉;&(1,{ok :?(1,string).!〈1,date〉.end,quit : end})
Gb � 1 = ?(2, int).?(2,T).⊕〈2,{ok : end,quit : end}〉

where T is defined at page 4.

Hereafter we assume all global types are well formed, i.e. G � q is defined for all q
which occur in G.

4.2 Typing Rules for Pure Processes

The typing judgements for expressions and pure processes are of the shapes:

Γ ` e : S and Γ ` P.∆

11

where

- Γ is the standard environment which associates variables to sort types, service
names to closed global types and process variables to pairs of sort types and session
types;

- ∆ is the session environment which associates channels to session types.

Formally we define:

Γ ::= /0 || Γ , x : S || Γ , a : G || Γ ,X : S T and ∆ ::= /0 || ∆ ,c : T

assuming that we can write Γ ,x : S only if x 6∈ dom(Γ), where dom(Γ) denotes the
domain of Γ , i.e., the set of identifiers which occur in Γ . We use the same convention
for a : G, X : S T and c : T (thus we can write ∆ ,∆ ′ only if dom(∆)∩dom(∆ ′) = /0).

Table 6 presents the typing rules for expressions and pure processes.
Rule (NAME) is standard: recall that u stands for x and a and S includes G.
Rule (MCAST) permits to type a request on a service identified by u, if the type

of y is the p-th projection of the global type G of u and the maximum participant in G
(denoted by mp(G)) is p. Rule (MACC) permits to type the p-th participant identified
by u, which uses the channel y, if the type of y is the p-th projection of the global type
G of u and p< mp(G).

In the typing of the example of the three-buyer protocol the types of the channels y
in Seller and z in Carol are respectively the third projection of Ga and the first projection
of Gb. By applying rule (MCAST) we can then derive a : Ga ` Seller . /0. Similarly by
applying rule (MACC) we can derive b : Gb `Carol. /0. (The processes Seller and Carol
are defined in Table 1.)

The successive six rules associate the input/output processes to the input/output
types in the expected way. For example we can derive:

` t⊕〈{2,3},ok〉.t!〈3,"Address"〉; t?(3,date).0.{t : T}

where T=⊕〈{2,3},{ok :!〈3,string〉.?(3,date).end, quit : end}〉. Note that, according
to our notational convention on environments, in rule (DELEG) the channel which is
sent cannot appear in the session environment of the premise, i.e., c′ 6∈ dom(∆)∪{c}.

Rule (PAR) permits to put in parallel two processes only if their session environ-
ments have disjoint domains.

In rules (INACT) and (VAR) we take environments ∆ which associate end to arbi-
trary channels, denoted by “∆ end only”.

The present formulation of rule (DEF) forces to type process variables only with
µ-types, while the formulation in [3, 43]:

Γ ,X : S T,x : S ` P. y : T Γ ,X : S T ` Q.∆

Γ ` def X(x,y) = P in Q.∆

allows to type unguarded process variables with arbitrary types, which can be meaning-
less. For example with the more permissive rule we can derive

` def X(x,y) = X(x,y) in X〈true,z〉.{z : T}

for an arbitrary closed T, while in our system we cannot type this process since its only
possible type would be µt.t, which is not guarded and then forbidden.

12

Γ ,u : S ` u : S (NAME) Γ ` true, false : bool (BOOL)
Γ ` ei : bool (i = 1, 2)

Γ ` e1 and e2 : bool
(AND)

Γ ` u : G Γ ` P.∆ ,y : G � p p= mp(G)
(MCAST)

Γ ` u [p](y).P.∆

Γ ` u : G Γ ` P.∆ ,y : G � p p< mp(G)
(MACC)

Γ ` u[p](y).P.∆

Γ ` e : S Γ ` P.∆ ,c : T
(SEND)

Γ ` c!〈p,e〉.P.∆ ,c : !〈p,S〉.T

Γ ,x : S ` P.∆ ,c : T
(RCV)

Γ ` c?(q,x).P.∆ ,c :?(q,S).T

Γ ` P.∆ ,c : T
(DELEG)

Γ ` c!〈〈p,c′〉〉.P.∆ ,c : !〈p,T〉.T,c′ : T

Γ ` P.∆ ,c : T,y : T
(SRCV)

Γ ` c?((q,y)).P.∆ ,c :?(q,T).T

Γ ` P.∆ ,c : Tj j ∈ I
(SEL)

Γ ` c⊕〈p, l j〉.P.∆ ,c :⊕〈p,{li : Ti}i∈I〉

Γ ` Pi .∆ ,c : Ti ∀i ∈ I
(BRANCH)

Γ ` c&(p,{li : Pi}i∈I).∆ ,c : &(p,{li : Ti}i∈I)

Γ ` P.∆ Γ ` Q.∆
′

(PAR)
Γ ` P | Q.∆ ,∆ ′

Γ ` e : bool Γ ` P.∆ Γ ` Q.∆

(IF)
Γ ` if e then P else Q.∆

∆ end only
(INACT)

Γ ` 0.∆

Γ ,a : G ` P.∆

(NRES)
Γ ` (νa)P.∆

Γ ` e : S ∆ end only
(VAR)

Γ ,X : S T ` X〈e,c〉.∆ ,c : T

Γ ,X : S t,x : S ` P. y : T Γ ,X : S µt.T ` Q.∆

(DEF)
Γ ` def X(x,y) = P in Q.∆

Table 6. Typing rules for expressions and pure processes.

4.3 Types and Typing Rules for Runtime Processes

In this subsection we extend the communication type system to processes containing
queues. We start by defining the types of queues.

Message Types M ::= !〈p,U〉 message send
|| ⊕〈p, l〉 message selection
|| M;M message sequence

Generalised τ ::= T session
|| M message
|| M;T continuation

13

(QINIT)
Γ `{s} s : �. /0

Γ `{s} s : h.∆ Γ ` v : S
(QSEND)

Γ `{s} s : h · (q,p,v).∆ ;{s[q] : !〈p,S〉}

Γ `{s} s : h.∆

(QDELEG)
Γ `{s} s : h · (q,p,s′[p′]). (∆ ;{s[q] : !〈p,T〉}),s′[p′] : T

Γ `{s} s : h.∆

(QSEL)
Γ `{s} s : h · (q,p, l).∆ ;{s[q] :⊕〈p, l〉}

Table 7. Typing rules for queues.

Message types are the types for queues: they represent the messages contained in the
queues. The message send type !〈p,U〉 expresses the presence in a queue of an element
of type U to be communicated to participant p. The message selection type ⊕〈p, l〉 rep-
resents the communication to participant p of the label l and M;M represents sequenc-
ing of message types (we assume associativity for “;”). For example⊕〈{1,3},ok〉 is the
message type for the message (2,{1,3},ok).

A generalised type is either a session type, or a message type, or a message type
followed by a session type. Type M;T represents the continuation of the type M asso-
ciated to a queue with the type T associated to a pure process. Examples of generalised
types are

!〈3,string〉.?(3,date).end and !〈3,string〉; ?(3,date).end,
which only differ for the replacement of the leftmost “.” by “;”. In the first the type
!〈3,string〉 corresponds to an output action sending a string to participant 3, while in
the second type !〈3,string〉 corresponds to a message for participant 3 with a value of
type string. See the examples of typing judgements at the end of this subsection.

In the typing rules for single queues the turnstile ` is decorated with {s} (where s
is the session name of the current queue) and the session environments are mappings
from channels to message types. The empty queue has the empty session environment.
Each message adds an output type to the current type of the channel which has the
role of the message sender. Table 7 lists the typing rules for queues, where all types in
session environments are message types. The operator “;” between an arbitrary session
environment and a session environment containing only one association is defined by:

∆ ;{s[q] : M}=

{
∆ ′,s[q] : M′;M if ∆ = ∆ ′,s[q] : M′,
∆ ,s[q] : M otherwise.

For example we can derive `{s} s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉}.

For typing pure processes in parallel with queues, we need to use generalised types
in session environments and to add further typing rules.

In order to take into account the structural congruence between queues (see Table 3)
we consider message types modulo the equivalence relation ≈ induced by the rule:

M; \〈p,Z〉; \′〈p′,Z〉;M′ ≈M; \′〈p′,Z〉; \〈p,Z〉;M′ if p 6= p′

14

where \ ∈ {!,⊕} and Z ∈ {U, l}).
The equivalence relation on message types extends to generalised types by:

M ≈M′ implies M;τ ≈M′;τ

We say that two session environments ∆ and ∆ ′ are equivalent (notation ∆ ≈ ∆ ′)
if c : τ ∈ ∆ and τ 6= end imply c : τ ′ ∈ ∆ ′ with τ ≈ τ ′ and vice versa. The reason for
ignoring end types is that rules (INACT) and (VAR) allow to freely introduce them.

In composing two session environments we want to put in sequence a message type
and a session type for the same channel with role. For this reason we define the partial
composition ∗ between generalised types as:

τ ∗ τ ′ =

{
τ;τ ′ if τ is a message type,
τ ′;τ if τ ′ is a message type.

Notice that τ ∗ τ ′ is defined only if at least one between τ and τ ′ is a message type.
We extend ∗ to session environments as expected:

∆ ∗∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : τ ∗ τ ′ || c : τ ∈ ∆ ∧ c : τ ′ ∈ ∆ ′}.

Note that ∗ is commutative, i.e., ∆ ∗∆ ′ = ∆ ′ ∗∆ . Also if we can derive message types
only for channels with roles, we consider channel variables in the definition of ∗ for
session environments since we want to get for example that {y : end} ∗ {y : end} is
undefined (message types do not contain end).

To give the rules for typing processes with queues we introduce consistency of ses-
sion environments, which assures that each pair of participants in a multiparty conversa-
tion performs their mutual communications in a consistent way. Consistency is defined
using the notions of projection of generalised types and of duality, given respectively in
Definitions 2 and 3. Notice that projection is not defined for message types.

Definition 2. The partial projection of the generalised type τ onto q, denoted by τ � q,
is defined by:

(!〈p,U〉.T) � q=

{
!U.T � q if q= p,

T � q otherwise.
(?(p,U).T) � q=

{
?U.T � q if p= q,

T � q otherwise.

(!〈p,U〉;τ ′) � q=

{
!U ;τ ′ � q if q= p,

τ ′ � q otherwise.
(⊕〈p, l〉;τ ′) � q=

{
⊕l;τ ′ � q if q= p,

τ ′ � q otherwise.

(⊕〈p,{li : Ti}i∈I〉) � q=

{
⊕{li : Ti � q}i∈I if q= p,

Ti0 � q where i0 ∈ I if q 6= p and Ti � q= Tj � q for all i, j ∈ I.

(&(p,{li : Ti}i∈I)) � q=

{
&{li : Ti � q}i∈I if q= p,

Ti0 � q where i0 ∈ I if q 6= p and Ti � q= Tj � q for all i, j ∈ I.

(µt.T) � q=

{
µt.(T � q) if T � q 6= t,
end otherwise.

t � q= t end � q= end

Definition 3. The duality relation between projections of generalised types (./) is the
minimal symmetric relation which satisfies:

15

end ./ end t ./ t T ./ T′ =⇒ µt.T ./ µt.T′
T ./ T′ =⇒ !U.T ./ ?U.T′ T ./ T′ =⇒ !U ;T ./ ?U.T′

∀i ∈ I Ti ./ T
′
i =⇒ ⊕{li : Ti}i∈I ./ &{li : T′i}i∈I

∃i ∈ I l = li ∧ T ./ Ti =⇒ ⊕l;T ./ &{li : Ti}i∈I

where T ranges over projections of generalised types.

Definition 4. A session environment ∆ is consistent for the session s (notation co(∆ ,s))
if s[p] : τ ∈ ∆ and s[q] : τ ′ ∈ ∆ imply τ � q ./ τ ′ � p. A session environment is consistent
if it is consistent for all sessions which occur in it.

It is easy to check that projections of a same global type are always dual.

Proposition 1. Let G be a global type and p 6= q. Then (G � p) � q ./ (G � q) � p.

This proposition assures that session environments obtained by projecting global types
are always consistent.

The vice versa is not true, i.e. there are consistent session environments which are
not projections of global types. An example is:

{s[1] :?(2,bool).!〈3,bool〉.end,s[2] :?(3,bool).!〈1,bool〉.end,s[3] :?(1,bool).!〈2,bool〉.end}

Note that for sessions with only two participants, instead, all consistent session envi-
ronments are projections of global types.

Γ ` P.∆

(GINIT)
Γ ` /0 P.∆

Γ `Σ P.∆ ∆ ≈ ∆
′

(EQUIV)
Γ `Σ P.∆

′

Γ `Σ P.∆ Γ `Σ ′ Q.∆
′

Σ ∩Σ
′ = /0

(GPAR)
Γ `Σ∪Σ ′ P | Q.∆ ∗∆

′

Γ `Σ P.∆ co(∆ ,s)
(GSRES)

Γ `Σ\s (νs)P.∆ \ s

Γ ,a : G `Σ P.∆

(GNRES)
Γ `Σ (νa)P.∆

Γ ,X : S t,x : S ` P.{y : T} Γ ,X : S µt.T `Σ Q.∆

(GDEF)
Γ `Σ def X(x,y) = P in Q.∆

Table 8. Typing rules for processes.

Table 8 lists the typing rules for processes containing queues. The judgement

Γ `Σ P.∆

means that P contains the queues whose session names are in Σ . Rule (GINIT) promotes
the typing of a pure process to the typing of an arbitrary process without session names,
since a pure process does not contain queues. When two arbitrary processes are put in

16

parallel (rule (GPAR)) we need to require that each session name is associated to at
most one queue (condition Σ ∩Σ ′ = /0).

Examples of derivable judgements are:

`{s} P | s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉; !〈1,string〉.?(1,date).end}

where P = s[3]!〈1,"Address"〉;s[3]?(1,date);0 and

`{s} P′ | s : (3,{1,2},ok) · (3,1,"Address").{s[3] :⊕〈{1,2},ok〉; !〈1,string〉; ?(1,date).end}

where P′ = s[3]?(1,date);0. Note that

P | s : (3,{1,2},ok)−→ P′ | s : (3,{1,2},ok) · (3,1,string)

A simple example showing that consistency is necessary for subject reduction is the
process:

P = s[1]!〈2, true〉.s[1]?(2,x).0 | s[2]?(1,x′).s[2]!〈1,x′+1〉.0

which can be typed with the non consistent session environment

{s[1] :!〈2,bool〉.?(2,nat).end,s[2] :?(1,nat).!〈1,nat〉.end}

In fact P reduces to the process

s[1]?(2,x).0 | s[2]!〈1, true+1〉.0

which cannot be typed and it is stuck.

4.4 Subject Reduction

Since session environments represent the forthcoming communications, by reducing
processes session environments can change. This can be formalised as in [43] by intro-
ducing the notion of reduction of session environments, whose rules are:

– {s[p] : M; !〈q,U〉.T} ⇒ {s[p] : M; !〈q,U〉;T}
– {s[p] : !〈q,U〉;τ,s[q] : M; ?(p,U).T} ⇒ {s[p] : τ,s[q] : M;T}
– {s[p] : M;⊕〈p,{li : Ti}i∈I〉} ⇒ {s[p] : M;⊕(p, l j);Tj} for j ∈ I
– {s[p] :⊕〈q, l〉;τ,s[q] : M;&(p,{li : Ti}i∈I)} ⇒ {s[p] : τ,s[q] : M;Ti} if l = li
– ∆ ,∆ ′′ ⇒ ∆ ′,∆ ′′ if ∆ ⇒ ∆ ′

where M can be missing and message types are considered modulo the equivalence
relation ≈ defined at page 14.
The first rule corresponds to putting in a queue a message with sender p, receiver q and
content of type U . The second rule corresponds to reading from a queue a message with
sender p, receiver q and content of type U . The third and fourth rules are similar, but a
label is transmitted.

Notice that not all the left-hand-sides of the reduction rules for processes are typed
by consistent session environments. For example,

Γ `Σ s[1]?(2,x).s[1]?(2,y).0 | s : (2,1,true).{s[1] :?(2,bool).?(2,nat).end,s : [2] : !〈bool,1〉}

17

Observe that s[1]?(2,x).s[1]?(2,y).0 | s : (2,1, true) matches the left-hand-side of the
reduction rule [Rcv] and {s[1] :?(2,bool).?(2,nat).end,s : [2] : !〈bool,1〉} is not con-
sistent. The process obtained by putting this network in parallel with s[2]!〈1,7〉.0 has a
consistent session environment. It is then crucial to show that if the left-hand-side of a
reduction rule is typed by a session environment, which is consistent when composed
with some other session environment, then the same property holds for the right-hand-
side too. It is sufficient to consider the reduction rules which do not contain process re-
ductions as premises, i.e. which are the leaves in the reduction trees. This is formalised
in the following lemma, which is the key step for proving the Subject Reduction Theo-
rem.

Lemma 1 (Main Lemma). Let Γ `Σ P.∆ , and P−→ P′ be obtained by any reduction
rule different from [Ctxt], [Str], and ∆ ∗∆0 be consistent, for some ∆0. Then there is ∆ ′

such that Γ `Σ P′ .∆ ′ and ∆ ⇒∗ ∆ ′ and ∆ ′ ∗∆0 is consistent.

We end this section by formulating subject reduction.

Theorem 1 (Subject Reduction). If Γ `Σ P.∆ with ∆ consistent and P−→∗ P′, then
Γ `Σ P′ .∆ ′ for some consistent ∆ ′ such that ∆ ⇒∗ ∆ ′.

Appendix A proves subject reduction. Note that communication safety and protocol
fidelity easily follow from Theorem 1.

5 Related Work

5.1 Multiparty Session Types

The first theoretical works on multiparty session types are [10] and [43]. The paper
[10] uses a distributed calculus where each channel connects a master endpoint to one
or more slave endpoints; instead of global types, they solely use (recursion-free) local
types. For type checking, local types are projected to binary sessions, so that type safety
is ensured using duality, but it loses sequencing information: hence progress in a session
interleaved with other sessions is not guaranteed.

In this article we have presented the calculus of [25], which is an essential improve-
ment and simplification of the calculus in [43]. Both processes and types in [43] share
a vector of channels and each communication uses one of these channels. In the present
work, instead, processes and types use indexes for identifying the participants of a ses-
sion.

The communication type system in this article improves the one of [43] in two
main technical points without sacrificing expressiveness. First, it avoids the overhead
of global linearity-check in [43] because our global types automatically satisfy the lin-
earity condition in [43] due to the limitation to bi-directional channel communications.
Second, it provides a more liberal policy in the use of variables in delegation, since we
do not require to delegate a set of session channels. The global types in [43] have a
parallel composition operator, but its projectability from global to local types limits to
disjoint senders and receivers; hence our global types do not affect the expressivity.

18

5.2 Theoretical Studies on Multiparty Session Types

Extensions of the original multiparty session types [43] and of the communication type
system in this article have been proposed, often motivated by use cases resulting from
industry applications (§ 5.8). Such extensions include: a subtyping for asynchronous
multiparty session types enhancing efficiency [52], motivated by financial protocols
and multicore algorithms; parametrised global types for parallel programming and Web
service descriptions [34]; communication buffered analysis [30]; extensions to the sum-
type and its encoding [61] for describing Healthcare workflows; and exception handling
for multiparty conversations [15] for Web services and financial protocols; a liveness-
preserving refinement for multiparty session types [64].

Multiparty session types can be extended with logical assertions following the de-
sign by contract framework [7]. This framework is enriched in [6] to handle stateful
logical assertions, while [21] offers more fine-grained property analysis for multiparty
session types with these stateful assertions.

In [31] roles are inhabited by an arbitrary number of participants which can dynam-
ically join and leave a session. The paper [71] shows that the multirole session types
[31] can be naturally represented in a dependent-typed language.

To enhance expressivity and flexibility of multiparty session types, the work [28]
proposes nested, higher-order multiparty session types and the work [18] studies a gen-
eralisation of choices and parallelism. The paper [17] directly types a global description
language [16] by multiparty session types without using local types. This direct ap-
proach can type processes which are untypable in the original multiparty session typing
(i.e. the communication type system in this article). The paper [51] extends the work in
[17] to compositional global description languages.

As another line of the study, we extend the multiparty session types to express tem-
poral properties [9]. In this work, the global times are enriched with time constraints, in
a way similar to timed automata.

A type system enforcing a stronger correspondence between nondeterministic choices
expressed in multiparty session types and the behaviour of processes involved in multi-
party sessions has been investigated in [8].

An overview of the recent developments in these studies is the survey in the state-
of-the art report produced by the Foundations Working Group of the IC COST Action
BETTY, entitled “Foundations of Behavioural Types” [45].

5.3 Progress and Session Interleaving

Multiparty session types are a convenient methodology for ensuring progress of systems
of communicating processes. However, progress is only guaranteed within a single ses-
sion [43, 35, 31], but not when multiple sessions are interleaved. The first papers con-
sidering progress for interleaved sessions required the nesting of sessions in Java [36,
24]. These systems can guarantee progress for only one single active binary session.
The work [25] develops a static interaction type system for global progress in dynami-
cally interleaved and interfered multiparty sessions. A type inference algorithm for this
system has been studied in [22], although for finite types only. The work [63, technical
report] presents a type system for the linear π-calculus that can ensure progress even in

19

presence of session interleaving, exploiting an encoding similar to that described in [27]
of sessions into the linear π-calculus. However, not all multiparty sessions can be en-
coded into well-typed linear π-calculus processes. In this respect, the richer structure of
multiparty session types increases the range of systems for which non-trivial properties
such as progress can be guaranteed.

5.4 Security

Enforcement of integrity properties in multiparty sessions, using session types, has been
studied in [4, 67]. These papers propose a compiler which, given a multiparty session
description, implements cryptographic protocols that guarantee session execution in-
tegrity.

The work [14] and in its extended version [12] propose a session type system for
a calculus of multiparty sessions enriched with security levels, adding access control
and secure information flow requirements in the typing rules, and show that this type
system guarantees preservation of data confidentiality during session execution. In [13]
this calculus is equipped with a monitored semantics, which blocks the execution of
processes as soon as they attempt to leak information, raising an error.

Various approaches for enforcing security into calculi and languages for structured
communications have been recently surveyed in the state-of-the art report produced
by the Security Working Group of the IC COST Action BETTY, entitled “Combining
Behavioural Types with Security Analysis” [2].

5.5 Behavioural Semantics

Typed behavioural theory has been one of the central topics in the study of the π-
calculus throughout its history, for example, reasoning about various encodings into the
typed π-calculi [65, 74, 47]. In the context of typed bisimulations and reduction-closed
theories, the work [46] shows that unique behavioural theories can be constructed based
on the multiparty session types. The behavioural theory in [46] treats the mutual effects
of multiple choreographic sessions which are shared among distributed participants as
their common knowledge or agreements, reflecting the origin of choreographic frame-
works [73]. These features related to multiparty session type discipline make the theory
distinct from any type-based bisimulations in the literature and also applicable to a
real choreographic usecase from a large-scale distributed system. This bisimulation is
called globally governed, since it uses global multiparty specifications to regulate the
conversational behaviour of distributed processes.

5.6 Runtime Monitoring and Adaptation

Multiparty session types were originally developed to be used for static type checking of
communicating processes. Via collaborations with Ocean Observatories Initiative [62],
it was discovered that the framework of multiparty session types can be naturally ex-
tended to runtime type checking (monitoring). A formulation of the runtime monitoring
(dynamic or runtime type checking) is firstly proposed in [20]. Later the work [5] has

20

formally proved its correctness and properties guaranteed by the runtime monitoring
based on multiparty session types. See § 5.8.

Works addressing adaptation for multiparty communications include [26], [23] and
[19]. The paper [26] proposes a choreographic language for distributed applications.
Adaptation follows a rule-based approach, in which all interactions, under all possible
changes produced by the adaptation rules, proceed as prescribed by an abstract model.
In [23] a calculus based on global types, monitors and processes is introduced and
adaptation is triggered after the execution of the communications prescribed by a global
type, in reaction to changes of the global state. In contrast, in [19] adaptation is triggered
by security violations, and assures access control and secure information flow.

5.7 Linkages with Other Frameworks

The work [32] gives a linkage between communicating automata [11] and a general
graphical version of multiparty session types, proving a correspondence between the
safety properties of communicating automata and multiparty session types. The paper
[33] studies the sound and complete characterisation of the multiparty session types
in communicating automata and applies the result to the synthesis of the multiparty
session types. The inference of global types from a set of local types is also studied
in [48]. The techniques developed in [33, 48] are extended to a synthesis of general
graphical multiparty session types in [49].

The recent work [37] studies the relationship of multiparty session types with Petri
Nets. It proposes a conformance relation between global session nets and endpoint pro-
grams, and proves its safety.

5.8 Implementations based on Multiparty Session Types

The research group led by the last author is currently designing and implementing a
modelling and specification language with multiparty session types [68, 69] in collabo-
ration with some industrial partners [41, 40]. This protocol language is called Scribble.
An article [75] also explains the origin and recent development on Scribble.

Java protocol optimisation [70] based on multiparty session types and generation
of multiparty cryptographic protocols [4] are also studied. The multiparty session type
theory is applied to Healthcare workflows [38]. Its prototype implementation (the mul-
tiparty session π-processes with sumtypes) is available from [1].

Based on the runtime type checking theory, we are implementing a runtime mon-
itoring [29, 44, 55] under collaborations with Ocean Observatories Initiative [62]. The
work [29, 44] allows interruptions in Scribble and proves the correctness of this exten-
sion. Further we generalise the Python implementation to the Actor framework [54]. In
order to express temporal properties studied in timed multiparty session types [9], the
work [53] extends Scribble with timed constrains and implements the runtime monitor-
ing in Python.

We also apply the multiparty session types to high-performance parallel program-
ming in C [58, 60] and MPI [57]. A parametrised version of Scribble [57, 59] based

21

on the theory of parametrised multiparty session types [34] is developed. This exten-
sion, called Pabble, is used for automatically generating MPI parallel programs from
sequential C code in [56].

Acknowledgements. The research reported in this chapter has been partially supported
by COST IC1201. The first three authors have been partially supported by MIUR
PRIN Project CINA Prot. 2010LHT4KM and Torino University/Compagnia San Paolo
Project SALT. The last author has been partially supported by EPSRC EP/K011715/01,
EP/K034413/01 and EP/L00058X/1 and the EU project FP7-612985 UpScale.

References

1. Apims, 2014. http://thelas.dk/index.php?title=Apims.
2. Massimo Bartoletti, Ilaria Castellani, Pierre-Malo Deniélou, Mariangiola Dezani-

Ciancaglini, Silvia Ghilezan, Jovanka Pantovic, Jorge A. Pérez, Peter Thiemann, Bernardo
Toninho, and Hugo Torres Vieira. Combining Behavioural Types with Security Analysis,
2014. Submitted for journal publication.

3. Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global Progress in Dynamically Interleaved Multiparty
Sessions. In Franck van Breugel and Marsha Chechik, editors, CONCUR’08, volume 5201
of LNCS, pages 418–433. Springer, 2008.

4. Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James J.
Leifer. Cryptographic Protocol Synthesis and Verification for Multiparty Sessions. In John C.
Mitchell, editor, CSF’09, pages 124–140. IEEE Computer Society Press, 2009.

5. Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring Networks through Multiparty Session Types. In Dirk Beyer and Michele Boreale,
editors, FMOODS/FORTE’13, volume 7892 of LNCS, pages 50–65. Springer, 2013.

6. Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A Multiparty Multi-Session
Logic. In Catuscia Palamidessi and Mark Dermot Ryan, editors, TGC’12, volume 8191
of LNCS, pages 111–97. Springer, 2012.

7. Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A Theory of Design-by-
Contract for Distributed Multiparty Interactions. In Paul Gastin and François Laroussinie,
editors, CONCUR’10, volume 6269 of LNCS, pages 162–176. Springer, 2010.

8. Laura Bocchi, Hernán C. Melgratti, and Emilio Tuosto. Resolving Non-determinism in
Choreographies. In Zhong Shao, editor, ESOP’14, volume 8410 of LNCS, pages 493–512.
Springer, 2014.

9. Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed Multiparty Session Types. In
Paolo Baldan and Daniele Gorla, editors, CONCUR’14, volume 8704 of LNCS, pages 419–
434. Springer, 2014.

10. Eduardo Bonelli and Adriana Compagnoni. Multipoint Session Types for a Distributed Cal-
culus. In Gilles Barthe and Cédric Fournet, editors, TGC’07, volume 4912 of LNCS, pages
240–256. Springer, 2008.

11. Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal of
the ACM, 30:323–342, April 1983.

12. Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing Access Con-
trol and Secure Information Flow in Sessions. Information and Computation, 238:68–105,
2014.

22

13. Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information Flow
Safety in Multiparty Sessions. Mathematical Structures in Computer Science, 2015. To
appear.

14. Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
Types for Access and Information Flow Control. In Paul Gastin and François Laroussinie,
editors, CONCUR’10, volume 6269 of LNCS, pages 237–252. Springer, 2010.

15. Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global Escape in Multiparty Sessions.
Mathematical Structures in Computer Science, 2015. To appear.

16. Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centered
Programming for Web Services. ACM Transactions on Programming Languages and Sys-
tems, 34(2):8, 2012.

17. Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty Asyn-
chronous Global Programming. In Roberto Giacobazzi and Radhia Cousot, editors,
POPL’13, pages 263–274. ACM, 2013.

18. Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On Global Types
and Multi-Party Session. Logical Methods in Computer Science, 8(1):24, 2012.

19. Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-Adaptation and
Secure Information Flow in Multiparty Structured Communications: A Unified Perspective.
In Marco Carbone, editor, BEAT’14, volume 162 of EPTCS, pages 9–18, 2014.

20. Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida.
Asynchronous Distributed Monitoring for Multiparty Session Enforcement. In Roberto
Bruni and Vladimiro Sassone, editors, TGC’11, volume 7173 of LNCS, pages 25–45.
Springer, 2012.

21. Tzu-Chun Chen and Kohei Honda. Specifying Stateful Asynchronous Properties for Dis-
tributed Programs. In Maciej Koutny and Irek Ulidowski, editors, CONCUR’12, volume
7454 of LNCS, pages 209–224. Springer, 2012.

22. Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. In-
ference of Global Progress Properties for Dynamically Interleaved Multiparty Sessions. In
Rocco De Nicola and Christine Julien, editors, COORDINATION’13, volume 7890 of LNCS,
pages 45–59. Springer, 2013.

23. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Self-Adaptive Multiparty
Sessions. Service Oriented Computing and Applications, pages 1–20, 2014.

24. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asynchronous Ses-
sion Types and Progress for Object-Oriented Languages. In Marcello Bonsangue and
Einar Broch Johnsen, editors, FMOODS’07, volume 4468 of LNCS, pages 1–31. Springer,
2007.

25. Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
Global Progress for Dynamically Interleaved Multiparty Sessions. Mathematical Structures
in Computer Science, 2015. To appear.

26. Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio Gabbrielli.
AIOCJ: A Choreographic Framework for Safe Adaptive Distributed Applications. In Benoı̂t
Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, SLE’14, volume
8706 of LNCS, pages 161–170. Springer, 2014.

27. Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session Types Revisited. In
Danny De Schreye, Gerda Janssens, and Andy King, editors, PPDP’12, pages 139–150.
ACM Press, 2012.

28. Romain Demangeon and Kohei Honda. Nested Protocols in Session Types. In Maciej Koutny
and Irek Ulidowski, editors, CONCUR’12, volume 7454 of LNCS, pages 272–286. Springer,
2012.

23

29. Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical Interruptible Conversations: Distributed Dynamic Verification with Multiparty Ses-
sion Types and Python. Formal Methods in System Design, pages 1–29, 2015.

30. Pierre-Malo Deniélou and Nobuko Yoshida. Buffered Communication Analysis in Dis-
tributed Multiparty Sessions. In Paul Gastin and François Laroussinie, editors, CONCUR’10,
volume 6269 of LNCS, pages 343–357. Springer, 2010.

31. Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic Multirole Session Types. In Thomas
Ball and Mooly Sagiv, editors, POPL’11, pages 435–446. ACM Press, 2011.

32. Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet Communicat-
ing Automata. In Helmut Seidl, editor, ESOP’12, volume 7211 of LNCS, pages 194–213.
Springer, 2012.

33. Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, ICALP’13, volume 7966
of LNCS, pages 174–186. Springer, 2013.

34. Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
Multiparty Session Types. Logical Methods in Computer Science, 8(4), 2012.

35. Mariangiola Dezani-Ciancaglini and Ugo de’ Liguoro. Sessions and Session Types: an
Overview. In Cosimo Laneve and Jianwen Su, editors, WS-FM’09, volume 6194 of LNCS,
pages 1–28. Springer, 2010.

36. Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. Session Types for Object-Oriented Languages. In Dave Thomas, editor,
ECOOP’06, volume 4067 of LNCS, pages 328–352. Springer, 2006.

37. Luca Fossati, Raymond Hu, and Nobuko Yoshida. Multiparty Session Nets. In Matteo Maffei
and Emilio Tuosto, editors, TGC’14, volume 8902 of LNCS, pages 112–127. Springer, 2014.

38. Anders Henriksen, Lasse Nielsen, Thomas Hildebrandt, Nobuko Yoshida, , and Fritz Hen-
glein. Trustworthy Pervasive Healthcare Services via Multi-party Session Type. In Jens
Weber and Isabelle Perseil, editors, FHIES’12, volume 7789 of LNCS, pages 124–141, 2013.

39. Kohei Honda. Types for Dyadic Interaction. In Eike Best, editor, CONCUR’93, volume 715
of LNCS, pages 509–523. Springer, 1993.

40. Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain Demangeon,
Pierre-Malo Deniélou, and Nobuko Yoshida. Structuring Communication with Session
Types. In Gul A. Agha, Atsushi Igarashi, Naoki Kobayashi, Hidehiko Masuhara, Satoshi
Matsuoka, Etsuya Shibayama, and Kenjiro Taura, editors, COB’14, volume 8665 of LNCS,
pages 105–127. Springer, 2014.

41. Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
Scribbling Interactions with a Formal Foundation. In Raja Natarajan and Adegboyega K.
Ojo, editors, ICDCIT’11, volume 6536 of LNCS, pages 55–75. Springer, 2011.

42. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type
Disciplines for Structured Communication-based Programming. In Chris Hankin, editor,
ESOP’98, volume 1381 of LNCS, pages 22–138. Springer, 1998.

43. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session
Types. In George C. Necula and Philip Wadler, editors, POPL’08, pages 273–284. ACM
Press, 2008.

44. Raymond Hu, Rumyana Neykova, Nobuko Yoshida, and Romain Demangeon. Practical In-
terruptible Conversations: Distributed Dynamic Verification with Session Types and Python.
In Axel Legay and Saddek Bensalem, editors, RV’13, volume 8174 of LNCS, pages 148–130.
Springer, 2013.

45. Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luı́s Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres

24

Vieira, and Gianluigi Zavattaro. Foundations of Behavioural Types, 2014. Submitted for
journal publication.

46. Dimitrios Kouzapas and Nobuko Yoshida. Globally Governed Session Semantics. Logical
Methods in Computer Science, 10, 2015.

47. Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. On Asynchronous
Eventful Session Semantics. Mathematical Structures in Computer Science, 29:1–62, 2015.

48. Julien Lange and Emilio Tuosto. Synthesising Choreographies from Local Session Types.
In Maciej Koutny and Irek Ulidowski, editors, CONCUR’12, volume 7454 of LNCS, pages
225–239. Springer, 2012.

49. Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From Communicating Machines to
Graphical Choreographies. In Sriram K. Rajamani and David Walker, editors, POPL’15,
pages 221–232. ACM Press, 2015.

50. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

51. Fabrizio Montesi and Nobuko Yoshida. Compositional Choreographies. In Pedro R.
D’Argenio and Hernán C. Melgratti, editors, CONCUR’13, volume 8052 of LNCS, pages
439–425. Springer, 2013.

52. Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global Principal Typing in Partially
Commutative Asynchronous Sessions. In Giuseppe Castagna, editor, ESOP’09, volume 5502
of LNCS, pages 316–332. Springer, 2009.

53. Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed Runtime Monitoring for
Multiparty Conversations. In Marco Carbone, editor, BEAT’14, volume 162 of EPTCS, pages
19–26, 2014.

54. Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. In Eva Kühn and
Rosario Pugliese, editors, COORDINATION’14, volume 8459 of LNCS. Springer, 2014.

55. Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, RV’13, volume 8174 of LNCS,
pages 363–358. Springer, 2013.

56. Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. Protocols by Default: Safe MPI
Code Generation based on Session Types. In Björn Franke, editor, CC’15, LNCS. Springer,
2015.

57. Nicholas Ng and Nobuko Yoshida. Pabble: Parameterised Scribble. Service Oriented Com-
puting and Applications, pages 1–16, 2014.

58. Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty Session C: Safe Parallel Pro-
gramming with Message Optimisation. In Carlo A. Furia and Sebastian Nanz, editors,
TOOLS’12, volume 7304 of LNCS, pages 202–218. Springer, 2012.

59. Nicholas Ng, Nobuko Yoshida, and Wayne Luk. Scalable Session Programming for Het-
erogeneous High-Performance Systems. In Steve Counsell and Manuel Núñez, editors,
SEFM’13, volume 8368 of LNCS, pages 82–98. Springer, 2013.

60. Nicholas Ng, Nobuko Yoshida, Xin Yu Niu, Kuen Hung Tsoi, and Wayne Luk. Session
Types: Towards Safe and Fast Reconfigurable Programming. SIGARCH CAN, 40:22–27,
2012.

61. Lasse Nielsen, Nobuko Yoshida, and Kohei Honda. Multiparty Symmetric Sum Types. In
Sibylle B. Fröschle and Frank D. Valencia, editors, EXPRESS’10, volume 41 of EPTCS,
pages 121–135, 2010.

62. Ocean Observatories Initiative, 2010. http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
63. Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In Thomas A.

Henzinger and Dale Miller, editors, CSL-LICS’14, pages 72:1–72:10. ACM Press,
2014. Extended technical report available at http://hal.archives-ouvertes.fr/

hal-00932356v2/document.

25

64. Luca Padovani. Fair Subtyping for Multi-Party Session Types. Mathematical Structures in
Computer Science, pages 1–41, 2014.

65. Benjamin Pierce and Davide Sangiorgi. Typing and Subtyping for Mobile Processes. Journal
of Mathematical Structures in Computer Science, 6(5):409–454, 1996.

66. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
67. Jérémy Planul, Ricardo Corin, and Cédric Fournet. Secure Enforcement for Global Process

Specifications. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR’09, volume
5710 of LNCS, pages 511–526. Springer, 2009.

68. Savara. SAVARA JBoss RedHat Project, 2010. http://www.jboss.org/savara.
69. Scribble. Scribble JBoss RedHat Project, 2008. http://www.jboss.org/scribble.
70. K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick Eugster. Efficient

Session Type Guided Distributed Interaction. In Dave Clarke and Gul A. Agha, editors,
COORDINATION’10, volume 6116 of LNCS, pages 152–167. Springer, 2010.

71. Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure Distributed Programming with Value-Dependent Types. In Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, ICFP’11, pages 266–278. ACM
Press, 2011.

72. UNIFI. International Organization for Standardization ISO 20022 UNIversal Financial In-
dustry message scheme, 2002. http://www.iso20022.org.

73. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage. http://www.w3.org/2002/ws/chor/, 2002.

74. Nobuko Yoshida. Graph Types for Monadic Mobile Processes. In Vijay Chandru and
V. Vinay, editors, FSTTCS’96, volume 1180 of LNCS, pages 371–386. Springer, 1996.

75. Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble Protocol
Language. In Martı́n Abadi and Alberto Lluch-Lafuente, editors, TGC’13, volume 8358 of
LNCS, pages 22–41. Springer, 2013.

A Properties of the Communication Type System

This appendix completes the description of the communication type system given in §4.
Auxiliary lemmas, in particular inversion lemmas, are the content of §A.1. Lastly §A.2
proves subject reduction.

A.1 Auxiliary Lemmas

We start with inversion lemmas which can be easily shown by induction on derivations.

Lemma 2 (Inversion Lemma for Pure Processes).

1. If Γ ` u : S, then u : S ∈ Γ .
2. If Γ ` true : S, then S = bool.
3. If Γ ` false : S, then S = bool.
4. If Γ ` e1 and e2 : S, then Γ ` e1 : bool and Γ ` e2 : bool and S = bool.
5. If Γ ` a [p](y).P.∆ , then Γ ` a : G and Γ ` P.∆ ,y : G � p and p= mp(G).
6. If Γ ` a[p](y).P.∆ , then Γ ` a : G and Γ ` P.∆ ,y : G � p and p< mp(G).
7. If Γ ` c!〈p,e〉.P.∆ , then ∆ = ∆ ′,c : !〈p,S〉.T and Γ ` e : S and Γ ` P.∆ ′,c : T .
8. If Γ ` c?(q,x).P.∆ , then ∆ = ∆ ′,c :?(q,S).T and Γ ,x : S ` P.∆ ′,c : T .
9. If Γ ` c!〈〈p,c′〉〉.P.∆ , then ∆ = ∆ ′,c : !〈p,T〉.T,c′ : T and Γ ` P.∆ ′,c : T .

26

10. If Γ ` c?((q,y)).P.∆ , then ∆ = ∆ ′,c :?(q,T).T and Γ ` P.∆ ′,c : T,y : T.
11. If Γ ` c⊕〈p, l j〉.P.∆ , then ∆ = ∆ ′,c : ⊕〈p,{li : Ti}i∈I〉 and Γ ` P.∆ ′,c : Tj and

j ∈ I.
12. If Γ ` c&(p,{li : Pi}i∈I).∆ , then ∆ = ∆ ′,c : &(p,{li : Ti}i∈I) and Γ ` Pi .∆ ′,c : Ti
∀i ∈ I.

13. If Γ ` P | Q.∆ , then ∆ = ∆ ′,∆ ′′ and Γ ` P.∆ ′ and Γ ` Q.∆ ′′.
14. If Γ ` if e then P else Q.∆ , then Γ ` e : bool and Γ ` P.∆ and Γ ` Q.∆ .
15. If Γ ` 0.∆ , then ∆ end only.
16. If Γ ` (νa)P.∆ , then Γ ,a : G ` P.∆ .
17. If Γ ` X〈e,c〉 . ∆ , then Γ = Γ ′,X : S T and ∆ = ∆ ′,c : T and Γ ` e : S and

∆ ′ end only.
18. If Γ ` def X(x,y) = P in Q.∆ , then Γ ,X : S t,x : S ` P.{y : T} and

Γ ,X : S µt.T ` Q.∆ .

Lemma 3 (Inversion Lemma for Processes).

1. If Γ `Σ P.∆ and P is a pure process, then Σ = /0 and Γ ` P.∆ .
2. If Γ `Σ s : h.∆ , then Σ = {s}.
3. If Γ `{s} s : �.∆ , then ∆ end only.
4. If Γ `{s} s : h · (q,p,v) .∆ , then ∆ ≈ ∆ ′;{s[q] : !〈p,S〉} and Γ `{s} s : h .∆ ′ and

Γ ` v : S.
5. If Γ `{s} s : h · (q,p,s′[p′]).∆ , then ∆ ≈ (∆ ′;{s[q] : !〈p,T〉}),s′[p′] : T and

Γ `{s} s : h.∆ ′.
6. If Γ `{s} s : h · (q,p, l).∆ , then ∆ ≈ ∆ ′;{s[q] :⊕〈p, l〉} and Γ `{s} s : h.∆ ′.
7. If Γ `Σ P | Q.∆ , then Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0 and ∆ = ∆1 ∗∆2 and

Γ `Σ1 P.∆1 and Γ `Σ2 Q.∆2.
8. If Γ `Σ (νs)P.∆ , then Σ = Σ ′ \ s and ∆ = ∆ ′ \ s and co(∆ ′,s) and Γ `Σ ′ P.∆ ′.
9. If Γ `Σ (νa)P.∆ , then Γ ,a : G `Σ P.∆ .

10. If Γ `Σ def X(x,y) = P in Q.∆ , then Γ ,X : S t,x : S ` P. y : T and
Γ ,X : S µt.T `Σ Q.∆ .

The following lemma allows to characterise the types due to the messages which
occur in queues. The proof is standard by induction on the lengths of queues.

Lemma 4. 1. If Γ `{s} s : h1 · (q,p,v) ·h2 .∆ , then ∆ = ∆1 ∗{s[q] : !〈p,S〉} ∗∆2 and
Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S.
Vice versa Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S imply

Γ `{s} s : h1 · (q,p,v) ·h2 .∆1 ∗{s[q] : !〈p,S〉}∗∆2.
2. If Γ `{s} s : h1 · (q,p,s′[p′]) · h2 .∆ , then ∆ = (∆1 ∗ {s[q] : !〈p,T〉} ∗∆2),s′[p′] : T

and Γ `{s} s : hi .∆i (i = 1,2).
Vice versa Γ `{s} s : hi .∆i (i = 1,2) imply

Γ `{s} s : h1 · (q,p,s′[p′]) ·h2 . (∆1 ∗{s[q] : !〈p,T〉}∗∆2),s′[p′] : T.
3. If Γ `{s} s : h1 ·(q,p, l)·h2.∆ , then ∆ =∆1∗{s[q] :⊕〈p, l〉}∗∆2 and Γ `{s} s : hi .∆i

(i = 1,2).
Vice versa Γ `{s} s : hi .∆i (i = 1,2) imply

Γ `{s} s : h1 · (q,p, l) ·h2 .∆1 ∗{s[q] :⊕〈p, l〉}∗∆2.

27

We end this subsection with two classical results: type preservation under substitu-
tion and under equivalence of processes.

Lemma 5 (Substitution lemma).

1. If Γ ,x : S ` P.∆ and Γ ` v : S, then Γ ` P{v/x}.∆ .
2. If Γ ` P.∆ ,y : T , then Γ ` P{s[p]/y}.∆ ,s[p] : T .

Proof. Standard induction on type derivations, with a case analysis on the last applied
rule. ut

Theorem 2 (Type Preservation under Equivalence). If Γ `Σ P.∆ and P≡ P′, then
Γ `Σ P′ .∆ .

Proof. By induction on≡. We only consider some interesting cases (the other cases are
straightforward).

– P | 0 ≡ P. First we assume Γ `Σ P .∆ . From Γ ` /0 0 . /0 by applying (GPAR) to
these two sequents we obtain Γ `Σ P|0.∆ .
For the converse direction assume Γ `Σ P|0.∆ . Using 3(7) we obtain: Γ `Σ1 P.∆1,
Γ `Σ2 0.∆2, where ∆ = ∆1 ∗∆2, Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0. Using 3(1) we get
Σ2 = /0, which implies Σ = Σ1, and Γ ` 0 .∆2. Using 2(15) we get ∆2 end only
which implies ∆1 ≈ ∆1 ∗∆2, so we conclude Γ `Σ P.∆1 ∗∆2 by applying (EQUIV).

– P |Q≡Q | P. By the symmetry of the rule we have to show only one direction. Sup-
pose Γ `Σ P | Q.∆ . Using 3(7) we obtain Γ `Σ1 P.∆1, Γ `Σ2 Q.∆2, where ∆ =
∆1 ∗∆2, Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0. Using (GPAR) we get Γ `Σ Q | P.∆2 ∗∆1.
Thanks to the commutativity of ∗, we get ∆2 ∗∆1 = ∆ and so we are done.

– P | (Q | R) ≡ (P | Q) | R. Suppose Γ `Σ P | (Q | R) .∆ . Using 3(7) we obtain
Γ `Σ1 P.∆1, Γ `Σ2 Q | R.∆2, where ∆ = ∆1 ∗∆2, Σ = Σ1∪Σ2 and Σ1∩Σ2 = /0.
Using 3(7) we obtain Γ `Σ21 Q .∆21, Γ `Σ22 R .∆22 where ∆2 = ∆21 ∗∆22, Σ2 =
Σ21 ∪ Σ22 and Σ21 ∩ Σ22 = /0. Using (GPAR) we get Γ `Σ1∪Σ21 P | Q .∆1 ∗∆21.
Using (GPAR) again we get Γ `Σ (P | Q) | R .∆1 ∗∆21 ∗∆22 and so we are done
by the associativity of ∗. The proof for the other direction is similar.

– s : h1 ·(q,p,v) ·(q′,p′,v′) ·h2 ≡ s : h1 ·(q′,p′,v′) ·(q,p,v) ·h2 where p 6= p′ or q 6= q′.
We assume p 6= p′ and q= q′, the proof in the case q 6= q′ being similar and simpler.
If Γ `Σ s : h1 ·(q,p,v) ·(q,p′,v′) ·h2 .∆ , then Σ = {s} by Lemma 3(2). This implies
∆ = ∆1 ∗{s[q] : !〈p,S〉; !〈p′,S′〉} ∗∆2 and Γ `{s} s : hi .∆i (i = 1,2) and Γ ` v : S
and Γ ` v′ : S′ by Lemma 4(1). By the same lemma we can derive

Γ `{s} s : h1 · (q,p′,v′) · (q,p,v) ·h2 .∆1 ∗{s[q] : !〈p′,S′〉; !〈p,S〉}∗∆2,
and we conclude using rule (EQUIV), since by definition

∆1 ∗{s[q] : !〈p′,S′〉; !〈p,S〉}∗∆2 ≈ ∆ .
ut

A.2 Proof of Subject Reduction

We show the Main Lemma first and then the Subject Reduction Theorem.

28

Lemma 1 (Main Lemma). Let Γ `Σ P.∆ , and P−→ P′ be obtained by any reduction
rule different from [Ctxt], [Str], and ∆ ∗∆0 be consistent, for some ∆0. Then there is ∆ ′

such that Γ `Σ P′ .∆ ′ and ∆ ⇒∗ ∆ ′ and ∆ ′ ∗∆0 is consistent.

Proof. The proof is by cases on process reduction rules. We only consider some paradig-
matic cases.

– [Init] a[1](y).P1 | ... | a [n](y).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/y} | s : �).
By hypothesis Γ `Σ a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn .∆ ; then, since the
redex is a pure process, Σ = /0 and Γ ` a[1](y).P1 | a[2](y2).P2 | . . . | a [n](y).Pn .∆

by Lemma 3(1). Using Lemma 2(13) on all the processes in parallel we have

Γ ` a[i](y).Pi .∆i (1≤ i≤ n−1) (1)
Γ ` a [n](y).Pn .∆n (2)

where ∆ =
⋃n

i=1 ∆i. Using Lemma 2(6) on (1) we have

Γ ` a : G
Γ ` Pi .∆i,y : G � i (1≤ i≤ n−1). (3)

Using Lemma 2(5) on (2) we have

Γ ` a : G
Γ ` Pn .∆n,y : G � n (4)

and mp(G) = n. Using Lemma 5(2) on (4) and (3) we have

Γ ` Pi{s[i]/y}.∆i,s[i] : G � i (1≤ i≤ n). (5)

Using (PAR) on all the processes of (5) we have

Γ ` P1{s[1]/y}|...|Pn{s[n]/y}.
⋃n

i=1(∆i,s[i] : G � i). (6)

Note that
⋃n

i=1(∆i,s[i] : G � i) = ∆ ,s[1] : G � 1, . . . ,s[n] : G � n. Using (GINIT),
(QINIT) and (GPAR) on (6) we derive

Γ `{s} P1{s[1]/y}|...|Pn{s[n]/y} | s : �.∆ ,s[1] : G � 1, . . . ,s[n] : G � n. (7)

Using (GSRES) on (7) we conclude

Γ ` /0 (νs)(P1{s[1]/y}|...|Pn{s[n]/y} | s : �).∆

since {s[1] : G � 1, . . . ,s[n] : G � n} is consistent and
(∆ ,s[1] : G � 1, . . . ,s[n] : G � n)\ s = ∆ .

29

– [Send] s[p]!〈q,e〉.P | s : h−→ P | s : h · (p,q,v) (e ↓ v).
By hypothesis, Γ `Σ s[p]!〈q,e〉.P | s : h .∆ . Using Lemma 3(7), (1), and (2) we
have Σ = {s} and

Γ ` s[p]!〈q,e〉.P.∆1 (8)
Γ `{s} s : h.∆2 (9)

where ∆ = ∆2 ∗∆1. Using 2(7) on (8) we have

∆1 = ∆ ′1,s[p] : !〈q,S〉.T
Γ ` e : S (10)

Γ ` P.∆ ′1,s[p] : T. (11)

From (10) by subject reduction on expressions we have

Γ ` v : S. (12)

Using (QSEND) on (9) and (12) we derive

Γ `{s} s : h · (p,q,v).∆2;{s[p] : !〈q,S〉}. (13)

Using (GINIT) on (11) we derive

Γ ` /0 P.∆
′
1,s[p] : T (14)

and then using (GPAR) on (14), (13) we conclude

Γ `{s} P | s : h · (p,q,v). (∆2;{s[p] : !〈q,S〉})∗ (∆ ′1,s[p] : T).

Note that ∆2 ∗ (∆ ′1,s[p] : !〈q,S〉.T) ⇒ (∆2;{s[p] : !〈q,S〉}) ∗ (∆ ′1,s[p] : T) and the
consistency of (∆2 ∗ (∆ ′1,s[p] : !〈q,S〉.T))∗∆0 implies the consistency of

((∆2;{s[p] : !〈q,S〉})∗ (∆ ′1,s[p] : T))∗∆0.

– [Rcv] s[p]?(q,x).P | s : (q,{p},v) ·h−→ P{v/x} | s : h.
By hypothesis, Γ `Σ s[p]?(q,x).P | s : (q,{p},v) · h .∆ . By Lemma 3(7), (1), and
(2) we have Σ = {s} and

Γ ` s[p]?(q,x).P.∆1 (15)
Γ `{s} s : (q,{p},v) ·h.∆2 (16)

where ∆ = ∆2 ∗∆1. Using Lemma 2(8) on (15) we have

∆1 = ∆ ′1,s[p] :?(q,S).T
Γ ,x : S ` P.∆ ′1,s[p] : T (17)

Using Lemma 4(1) on (16) we have

∆2 = {s[q] : !〈{p},S′〉}∗∆ ′2
Γ `{s} s : h.∆ ′2 (18)

Γ ` v : S′. (19)

30

The consistency of ∆ ∗∆0 implies S = S′. Using Lemma 5(1) from (17) and (19)
we get
Γ ` P{v/x}.∆ ′1,s[p] : T , which implies by rule (GINIT)

Γ ` /0 P{v/x}.∆
′
1,s[p] : T. (20)

Using rule (GPAR) on (20) and (18) we conclude

Γ `{s} P{v/x} | s : h.∆
′
2 ∗ (∆ ′1,s[p] : T).

Note that ({s[q] : !〈{p},S〉} ∗∆ ′2) ∗ (∆ ′1,s[p] :?(q,S);T) ⇒ ∆ ′2 ∗ (∆ ′1,s[p] : T) and
the consistency of (({s[q] : !〈{p},S〉} ∗∆ ′2)∗ (∆ ′1,s[p] :?(q,S);T))∗∆0 implies the
consistency of (∆ ′2 ∗ (∆ ′1,s[p] : T))∗∆0.

– [Sel] s[p]⊕〈p, l〉.P | s : h−→ P | s : h · (p,q, l).
By hypothesis, Γ `Σ s[p]⊕〈q, l〉.P | s : h .∆ . Using Lemma 3(7), (1), and (2) we
have Σ = {s} and

Γ ` s[p]⊕〈q, l〉.P.∆1 (21)
Γ `{s} s : h.∆2 (22)

where ∆ = ∆2 ∗∆1. Using Lemma 2(11) on (21) we have for l = l j (j ∈ I):

∆1 = ∆ ′1,s[p] :⊕〈q,{li : Ti}i∈I〉
Γ ` P.∆ ′1,s[p] : Tj. (23)

Using rule (QSEL) on (22) we derive

Γ `{s} s : h · (p,q, l).∆2;{s[p] :⊕〈q, l〉}. (24)

Using (GPAR) on (23) and (24) we conclude

Γ `{s} P | s : h · (p,q, l). (∆2;{s[p] :⊕〈q, l〉})∗ (∆ ′1,s[p] : Tj).

Note that ∆2 ∗ (∆ ′1,s[p] : ⊕〈q,{li : Ti}i∈I〉) ⇒ (∆2;{s[p] : ⊕〈q, l〉}) ∗ (∆ ′1,s[p] : Tj)
and the consistency of (∆2 ∗ (∆ ′1,s[p] : ⊕〈q,{li : Ti}i∈I〉)) ∗∆0 implies the consis-
tency of ((∆2;{s[p] :⊕〈q, l〉})∗ (∆ ′1,s[p] : Tj))∗∆0.

– [Branch] s[p]&(q,{li : Pi}i∈I) | s : (q,{p}, l j) ·h−→ Pj | s : h.
By hypothesis, Γ `Σ s[p]&(q,{li : Pi}i∈I) | s : (q,{p}, l j) ·h.∆ . Using Lemma 3(7),
(1), and (2) we have Σ = {s} and

Γ ` s[p]&(q,{li : Pi}i∈I).∆1 (25)
Γ `{s} s : (q,{p}, l j) ·h.∆2 (26)

where ∆ = ∆2 ∗∆1. Using Lemma 2(12) on (25) we have

∆1 = ∆ ′1,s[p] : &(q,{li : Ti}i∈I)

Γ ` Pi .∆ ′1,s[p] : Ti ∀i ∈ I. (27)

31

Using Lemma 4(3) on (26) we have

∆2 = {s[q] :⊕〈p, l j〉}∗∆ ′2
Γ `{s} s : h.∆ ′2. (28)

Using (GPAR) on (27) and (28) we conclude

Γ `{s} Pj | s : h.∆
′
2 ∗ (∆ ′1,s[p] : Tj).

Note that

({s[q] :⊕〈p, l j〉}∗∆
′
2)∗ (∆ ′1,s[p] : &(q,{li : Ti}i∈I)) ⇒ ∆

′
2 ∗ (∆ ′1,s[p] : Tj).

and the consistency of (({s[q] : ⊕〈p, l j〉} ∗∆ ′2) ∗ (∆ ′1,s[p] : &(q,{li : Ti}i∈I))) ∗∆0
implies the consistency of (∆ ′2 ∗ (∆ ′1,s[p] : Tj))∗∆0 for j ∈ I. ut

Theorem 1 (Subject Reduction). If Γ `Σ P.∆ with ∆ consistent and P−→∗ P′, then
Γ `Σ P′ .∆ ′ for some consistent ∆ ′ such that ∆ ⇒∗ ∆ ′.

Proof. Let P≡ E [P0] and P′ ≡ E [P′0], where P0 −→ P′0 by one of the rules considered in
Lemma 1. By structural equivalence we can assume E = (

−→
νa)(
−−−−−→
def D in (

−→
νs)([] | P1))

without loss of generality. Theorem 2 and Lemma 3(9), (10) and (8) applied to
Γ `Σ P.∆ give Γ ,

−−→
a : G,

−−−−−−→
X : S µt.T `Σ0 P0 .∆0, and Γ ,

−−→
a : G,

−−−−−−→
X : S µt.T `Σ1 P1 .∆1 and

−−−−−−−−−−−−−−−−−−−→
Γ ,
−−→
a : G,X : S t ` Q.{y : T}, where

−→
D =

−−−−−−−→
X(x,y) = Q, Σ = (Σ0∪Σ1)\−→s and

∆ =(∆0∗∆1)\−→s . The consistency of ∆ implies the consistency of ∆0∗∆1 by Lemma 3(8).
By Lemma 1 there is ∆ ′0 such that Γ ,

−−→
a : G,

−−−−−−→
X : S µt.T `Σ0 P′0 .∆ ′0 and ∆0 ⇒∗ ∆ ′0 and

∆ ′0 ∗∆1 is consistent. We derive Γ `Σ P′ .∆ ′, where ∆ ′ = (∆0 ∗∆ ′1) \
−→s by applying

typing rules (GPAR), (GSRES), (GDEF) and (GNRES). Observe that ∆ ⇒∗ ∆ ′ and
∆ ′ is consistent. ut

32

